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Teaching Foundational Statistical Topics
to Biologists: Package asbio
by Ken Aho

Abstract The package asbio (Aho, 2010) is de-
signed to facilitate the teaching of statistics to
biology students. It contains simple graphical
functions for conceptualizing sampling distribu-
tions, likelihood, and other foundational topics.
Animation is often used in these functions to em-
phasize central ideas.

As a teacher of classes in biostatistics I have found
that fundamental concepts (e.g. sampling distribu-
tions, power, hypothesis testing) are often poorly un-
derstood by graduate students, even those with sev-
eral stats courses behind them. Even less well under-
stood are more complex but foundational topics like
probability density functions and likelihood (Horgan
et al., 1999).

Statistical concepts can be elucidated with R-
programing (Fox, 2002) and computer-generated
graphics including animation (Xie and Chang, 2008).
In this paper I demonstrate applications in the R-
package asbio (Aho, 2010) that facilitate understand-
ing of two fundamental topics: sampling distribu-
tions and likelihood. This is accomplished with an-
imated graphical functions that can be easily cus-
tomized by teachers and students.

Sampling distributions

The function samp.dist from asbio samples with-
out replacement from up to two parental distribu-
tions with up to two distinct sample sizes. The de-
fault statistic calculated at each sample iteration is
the sample mean although any statistic can be spec-
ified. Indeed, up to four distinct distributions of
statistics can be assembled, and these can be com-
bined in infinite ways by calling an auxiliary func-
tion. The resulting distribution is displayed in an an-
imated histogram. The package animation allows R-
animations to be saved as movie files, and provides
useful animations, including depictions of the cen-
tral limit theorem (function clt.ani). The function
samp.dist, however, provides additional flexibility
(in demonstrating sampling distributions) by allow-
ing alternative statistics, multiple statistics, and mul-
tiple simultaneous parent distributions.

Sampling distribution of X̄

If a parental distribution can be described as X ∼
(µ,σ2), then repeated random sampling, using

a sample size n, will result in the distribution:

X̄ d−→N
(
µ, σ2/n

)
, as n→∞.

I will graphically demonstrate this idea (using
samp.dist) by sampling from an exponential parent
distribution using four different sample sizes (Fig. 1).

require(asbio)
exp.parent<-rexp(10000)
par(mfrow=c(2,2),mar=c(4.4,4.5,1,0.5))
samp.dist(parent=exp.parent,s.size=1,anim=FALSE)
samp.dist(parent=exp.parent,s.size=5,anim=FALSE)
samp.dist(parent=exp.parent,s.size=10,anim=FALSE)
samp.dist(parent=exp.parent,s.size=50,anim=FALSE)
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Figure 1: Sampling distribution of X̄ for four sample
sizes, given a parental distribution EXP(1). As sam-
ple size increases the distribution becomes increas-
ingly normal.

The process of sample statistic accumulation can
be animated by allowing the default anim=TRUE. For
instance, the code:

samp.dist(parent=exp.parent,s.size=5)

depicts the accumulation of means for the distribu-
tion in Fig. 1b. This animation is pedagogically im-
portant because it shows that a true sampling dis-
tribution requires an infinite number of estimates.
Clearly a collection of ten means will not resemble
a normal distribution regardless of their sample size.
Only when the number of means grows large does
this distribution begin to approximate "true" frequen-
tist characteristics.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859



CONTRIBUTED ARTICLE 2

The function samp.dist also provides seamless
depictions of the effect of changing sample sizes. For
instance, the code:

samp.dist(parent=exp.parent,fix.n=FALSE,interval=.3)

shows sampling distributions of X̄ based on sample
sizes from 1 to 30, with an animation speed of one
frame/0.3 second.

This sort of animation can be combined with esti-
mates of the standard error, by specifying show.SE =
TRUE. This presentation can then be used to demon-
strate the consistency and efficiency of an estimator.
For example, the following code shows that while
both X̄ and the sample median are consistent for µ, X̄
is more efficient, given a normal parent distribution.

parent<-rnorm(10000)
samp.dist(parent, fix.n=FALSE, interval=.3,n.seq=
seq(1,100),show.SE=TRUE);dev.new()
samp.dist(parent, fix.n=FALSE,interval=.3,stat=
median,xlab="Median",n.seq=seq(1,100),show.SE=TRUE)

Variance estimates for these sampling distributions
(i.e. SE2’s) show that the median is only about 64%
as efficient as the mean (Fig. 2).
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Figure 2: Sampling distributions of (a) X̄, and (b)
the median, given a standard normal parent distri-
bution.

It is also possible to demonstrate the effect of sam-
ple contamination on estimators. For example, we
can rerun the code above, but now specify a standard
normal parent distribution with 10% contamination
from N(10,1).

parent<-c(rnorm(9000),rnorm(1000,mean=10))

In this situation the median will be nearly six times
more efficient than the mean.

Sampling distribution of S2

Unlike the sampling distribution of X̄, the sampling
distribution of S2 is rarely graphically demonstrated.
This is unfortunate because this distribution allows
computation of asymmetric confidence intervals for
mixed models parameters, vital to contemporary
analyses.

If we assume a normal parent distribution, then
the sampling distribution of S2 can be related to a χ2

distribution. In particular, if X1,. . . , Xn represent ran-
dom samples from N(µ,σ2), then:

(n− 1)S2/σ2 ∼ χ2(n− 1). (1)

To demonstrate this concept we require a normal
parent distribution.

parent<-rnorm(10000)

We are not interested in the sampling distribution of
S2, but the sampling distribution of (n− 1)S2/σ2. As
a result we create an auxiliary function representing
Eq. 1.

eq1.dist<-function(s.dist,sigma.sq=1,s.size=8){
func.res<-((s.size-1)*s.dist)/sigma.sq;func.res}

We will call this function using the func argument
from samp.dist. The func argument is used to incor-
porate a function (e.g. eq1.dist) that manipulates
and combines one or more sampling distributions.1

Finally we run samp.dist. By default samp.dist
calculates one thousand statistics for a single sample
size. We increase this to 10000 to get a concise view
of the sampling distribution for n = 8.

xlabel<-expression(paste("(n - 1)",sˆ2,"/",sigma^2))
samp.dist(parent, s.size=8,stat=var,xlab=xlabel,
R=10000,func=eq1.dist)

We see that this sampling distribution is indeed de-
scribed by χ2(n− 1) (Fig. 3).

curve(dchisq(x,7),from=0,to=30,add=TRUE,
lwd=2,col=1)

(n − 1)s2/σ2
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Figure 3: Sampling distribution of (n− 1)S2/σ2, for
a sample size of 8, and a standard normal parent dis-
tribution. The histogram is based on 10000 estimates.

1The non-fixed arguments of a function called by func must include, and be limited to, sampling distributions (e.g. s.dist).
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Sampling distributions of test statistics

Imperative to frequentist procedures are sampling
distributions of test statistics. The test statistic, t*,
is often used to quantify evidence against a null hy-
pothesis (H0) that the mean of a normal population
with an unknown variance is equal to the value, µ0

t∗ =
√

n(x̄− µ0)
s

. (2)

If H0 is true, then t*’s can be represented with a
random variable T that follows a t-distribution with
n - 1 degrees of freedom. In particular, if X1 ,. . . , Xn
represent a random sample from N(µ,σ2) then:

T =
Z√

V/(n− 1)
∼ t(n− 1), (3)

where Z ∼ N(0,1) and V ∼ χ2(n− 1).
To demonstrate this we again require a normal

parent distribution.

parent<-rnorm(100000)

We use a standard normal parent distribution be-
cause it depicts a true null hypothesis (if µ0 = 0), since
E(X̄) = µ0 = 0.

Once again we will create an auxiliary function
to manipulate and combine sampling distributions.
This time, however, we require two sampling distri-
butions, one forX̄ and one for S2. These will be run
through a function, representing Eq. 2, to find out-
comes for the random variable T.

t.star<-function(s.dist1,s.dist3,s.size=8){
func.res<-s.dist1/(sqrt(s.dist3/s.size));func.res}

We use the terms s.dist1 and s.dist3 to indicate
that the same sample from the same parental distri-
bution will be to be used to calculate x̄ and s2 for a
particular t*. These statistics will be specified as stat
and stat3. Conversely, s.dist2 and s.dist4 will
be sampling distributions for statistics from a second
parental distribution. These statistics are, if neces-
sary, specified with the arguments stat2 and stat4.
This application will be demonstrated shortly.

samp.dist(parent,s.size=8,stat=mean,stat3=var,
xlab="t*",func=t.star,col.anim="gray",ylim=c(0,.4))

We see that the thicker tails of the t-distribution
provide a better representation of the sampling dis-
tribution of T than the standard normal distribution
(Fig. 4).

curve(dt(x,7),from=-6,to=6,add=TRUE,lwd=2,col=4)
curve(dnorm(x),from=-6,to=6,add=TRUE,lwd=2,col=2,
lty=2)
legend("topleft",lwd=c(2,2),lty=c(1,2),col=c(4,2),
legend=c("t(7)","N(0,1)"),bty="n")

t*
R

el
at

iv
e 

fr
eq

ue
nc

y

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

n = 8t(7)
N(0,1)

Figure 4: Sampling distribution of T for a one sample
t-test given a sample size of 8 and a parent popula-
tion N(0,1).

The function samp.dist is also helpful in illustrat-
ing what happens when statistical assumptions are
violated. To demonstrate we will use the pooled vari-
ance t-test procedure.

The family of t-procedures allow inferential com-
parisons of two normal parent populations, X1 and
X2. If the parent populations can be assumed to have
equal variances then t* can be calculated as:

t∗ =
(x̄1 − x̄2)− µ0√
MSE

(
1

n1
+ 1

n2

) , (4)

where MSE is a pooled variance estimator of the joint
distribution, X1 - X2:

MSE =
∑c

i ∑nc
j (xij − x̄i)2

∑c
i ni − c

,

and c is the number of populations being compared
(here c = 2).

We wish to test the null hypothesis that the differ-
ence in population means is equal to µ0. If H0 is true,
then t*’s can be represented by a random variable, T,
where T ∼ t(n1 + n2 − 2).

We will create two parent populations with equal
means. That is, we will create a scenario where the
null is true (if µ0= 0). However we will specify non-
normal parent populations for X1 and X2 with un-
equal variances. As a result our example will violate
the requirements of the pooled variance t-test proce-
dure.

parent<-rexp(100000,1)
parent2<-runif(100000,min=0,max=2)
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We now require four sampling distributions: X̄1, S2
1,

X̄2, and S2
2. These will be run through an auxiliary

function representing Eq. 4 to create a conceptual
sampling distribution for T. Although this is not re-
quired by samp.dist, we specify the same sample
sizes for X1 and X2; n1 = n2 = 6.

t.star<-function(s.dist1,s.dist2,s.dist3,s.dist4,
s.size=6,s.size2=s.size){
MSE<-(((s.size-1)*s.dist3)+((s.size2-1)*s.dist4))/
(s.size+s.size2-2)
func.res<-(s.dist1-s.dist2)/(sqrt(MSE)*
sqrt((1/s.size)+(1/s.size2)));func.res}

Again, we call t.star in the func argument for
samp.dist.

samp.dist(parent,parent2=parent2,s.size=6,s.size2=
s.size,stat=mean,stat2=mean,stat3=var,stat4=var,
xlab="t*",func=t.star,show.n=FALSE)
curve(dt(x,10),from=-6,to=6,add=TRUE,lwd=2)
legend("topleft",lwd=2,col=1,legend="t(10)",bty="n")

The sampling distribution is strongly negatively
skewed (Fig. 5). A t-distribution is clearly inappro-
priate here.
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Figure 5: Sampling distribution for T for a pooled
variance t procedure, given uniform and exponential
parent distributions, and sample sizes: n1 = n2 = 6.

Similar approaches to these can be used to explore
other test statistics, i.e. F*, X2, etc.

Likelihood

Vital to modern statistical procedures is the topic
of likelihood. Likelihood functions underlie
information-theoretic and Bayesian approaches em-
braced by biologists, but are often poorly understood
(Burnham and Anderson , 2002).

The function loglik.plot depicts log-likelihood
for both important probability density functions
(e.g. normal, exponential) and customized likeli-
hood functions. It creates two animated plots. The
first shows the log-likelihood function, and demon-
strates the derivation of a maximum likelihood esti-
mate (MLE) for a specified parameter. The second
shows a probability density function (pdf) that uses
MLEs for parameters, and demonstrates how likeli-
hood is calculated.

With likelihood we must first assume a probabil-
ity term or a pdf that describes a process of interest.
The likelihood function is:

L(θ|data) =
n

∏
i=1

f (xi|θ), (5)

where f (xi|θ) represents a pdf applied to the ith ob-
servation in a sample of size n, given a parameter, θ,
required by the pdf. The log-likelihood function is
generally more straightforward to apply.

`(θ|data) = ln

[
n

∏
i=1

f (xi|θ)

]
=

n

∑
i=1

ln f (xi|θ) (6)

The MLE for θ is an estimate, θ̂, that maximizes the
likelihood or log-likelihood function.

If we assume that a process is normally dis-
tributed, then it will have the following log-
likelihood function:

` = `(µ,σ2|data)

= −n
(

lnσ +
1
2

ln2π

)
− 1

2σ2

n

∑
i=1

(xi − µ)2 .
(7)

Conceptually the MLE for µ is found by holding σ
and the data constant, varying possible estimates for
µ, and finding the value that maximizes the function.

Optimization can often be used to derive a ML es-
timator. For instance, to find the ML estimator for µ
we first take the derivative of ` with respect to µ:

d`

dµ
= 0 +

d`

dµ

[
− 1

2σ2

n

∑
i=1

(xi − µ)2

]

= (−1)
(
− 2

2σ2

) n

∑
i=1

(xi − µ)

=
1
σ2

n

∑
i=1

(xi − µ) .

We then substitute µ̂ for µ, take the derivative equal
to 0, and solve for µ̂.

1
σ2

n

∑
i=1

(xi − µ̂) = 0
n

∑
i=1

(xi − µ̂) = 0

n

∑
i=1

xi − nµ̂ = 0
∑n

i=1 xi

n
= µ̂
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A second derivative test assures us that this solu-
tion is a maximum and that the maximum likelihood
estimator of µ is the sample mean.

We can demonstrate these important ideas us-
ing loglik.plot. Consider 10 plant heights (in cm)
taken for the forb Pedicularis oederi in random sam-
pling of an alpine meadow. Based on previous work
we assume that the underlying population of plant
heights is normal. Fig. 6a shows the normal log-
likelihood function for µ given these data. The func-
tion is maximized at 10.79 which is the value of the
arithmetic mean. Figure 6b shows a normal distribu-
tion with ML estimates for parameters, i.e. the nor-
mal distribution whose mean fit the data best. Ani-
mation clearly shows that the product of the densi-
ties (lengths of lines in Fig. 6b) provides likelihood,
while the sum of the logged densities provides log-
likelihood. The log-likelihood given MLEs (-14.85;
Fig. 6b) is, of course, the height of the log-likelihood
function at its maximum (Fig. 6a).

X<-c(11.2,10.8,9.0,12.1,10.3,12.4,10.4,10.6,9.3,
11.8);p<-seq(6,15,.01)
loglik.plot(X,parameter="mu",dist="norm",poss=p,
ylim=c(-60,-7),xlim=c(6.5,15))
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Figure 6: Output from the function loglik.plot for
the P. oederi data (a) Normal log-likelihood function,
(b) normal distribution using MLEs with data densi-
ties superimposed.

It is interesting to observe the effect of sample size
on the likelihood function. For instance if we delete
the first five observations from the Pedicularis oederi
dataset we have:

X2<-c(12.4,10.4,10.6,9.3,11.8)
loglik.plot(X2,dist="norm",parameter="mu",poss=p,
ylim=c(-60,-7),xlim=c(6.5,15))

As we decrease sample size, less information is
contained in the likelihood function and the function
attains a platykurtotic (flat) appearance (Fig. 7).

Figures 6 and 7 also demonstrate that, unlike
valid pdfs, likelihood functions need not integrate to
unity or any other any particular value. The area un-
der the likelihood curve shown in Fig. 6a will be less
than the area under the curve in Fig. 7a, and the area
of neither will equal one.
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Figure 7: Output from the function loglik.plot
for a reduced P. oederi dataset (n = 5) (a) Normal
log-likelihood function, (b) normal distribution us-
ing MLEs with data densities superimposed.

The same concepts hold for discrete pdfs (e.g. bi-
nomial, Poisson). As a biological example of Pois-
son likelihood we use Dobson (2001) who described
the number of chronic medical conditions for women
visiting general practitioners in New South Wales.
All of the women lived urban locations, were age 70-
75, had the same socioeconomic status, and reported
to general practitioners three or fewer times in 1996.

X<-c(2,0,3,0,0,1,1,1,1,0,0,2,2,1,2,0,0,1,1,1,0
,2,2)
loglik.plot(X,"poi")

The MLE for λ is equal to the sample mean (Fig.
8a).

mean(X)
[1] 1

As with continuous pdfs, likelihood is the product
of densities (lengths of lines in Fig. 8b) while log-
likelihood is the sum of the log densities.
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Figure 8: Output from the function loglik.plot
for the New South Wales dataset (a) Poisson log-
likelihood function, (b) data densities for a Poisson
distribution using the MLE for λ.

A Bayesian view of likelihood

The goal of most Bayesian computations is to find the
posterior distribution. That is, to find P(θ|data) in:

P(θ|data) =
P(data|θ)P(θ)

P(data)
. (8)
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The denominator in Eq. 8 is a normalizing con-
stant that scales the posterior distribution to the
range [0, 1]. Dropping the denominator simplifies
Eq. 8 to:

P(θ|data) ∝ P(data|θ)P(θ),

or, more explicitly:

P(θ|data) = cP(data|θ)P(θ), (9)

where c is an arbitrary constant of proportionality
that absorbs the denominator, P(data), and those
parts of the sample and prior distributions that
do not involve θ. In Bayesian analyses, the term
cP(data| θ) is called the likelihood function (Gelman
et al., 2003). Specifically, L(θ|data) is proportional
to P(data|θ) up to an arbitrary constant (Edwards,
1972).

An additional perspective into likelihood is pro-
vided by this definition. Consider a pdf that de-
scribes the probability of sample data given the pa-
rameter θ, i.e. P(data| θ). A likelihood statement
concerning θ provided by the entire pdf will be iden-
tical (in information content) to one provided by only
that part of the pdf involving θ. The rest of the pdf
can be apportioned to the arbitrary constant c in the
likelihood function, cP(data| θ).

For instance, consider a binomial variable in
which 10 successes and 5 failures are observed. Like-
lihood information about θ gained by varying θ in

f1(θ) =
(

15
5

)
θ5 (1− θ)10 is identical to that pro-

vided by varying θ in f2(θ) = θ5 (1− θ)10.
This can be illustrated in loglik.plot by specify-

ing dist="custom", and calling a function represent-
ing f2(θ) in the func argument. This can then be be
compared to the full binomial pdf, f1(θ) (Fig. 9).

X<-c(rep(1,5),rep(0,10))
loglik.plot(X,poss=seq(0,1,.01),dist="bin",
plot.density=FALSE,xlab=expression(theta),
ylab=expression(paste(f[1],"(",theta,")")))
f2<-function(X=NULL,p)p^5*(1-p)^10
loglik.plot(X=NULL,func=f2,seq(0,1,.01),
dist="custom",xlab=expression(theta),
ylab=expression(paste(f[2],"(",theta,")")))
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Figure 9: Likelihood functions using a) the entire bi-
nomial pdf, and b) only that part of the pdf that in-
cludes the binomial parameter, θ.

Changing the value of the constant, c, results only in
a change of the units of measurement in the ordinate
(Fig. 9). Both likelihood functions are maximized at
the ML estimator for θ, which once again is x̄.

While it is not obvious at first glance, a Bayesian
conception of likelihood corresponds to the frequen-
tist description given in earlier examples. The two
approaches provide the same information about θ
which is derived in the same way, by varying θ (or
θ̂ in a frequentist paradigm), while holding the data
constant. The distinction is that Bayesian methods
then require that the likelihood function be multi-
plied by priors, while non-Bayesian likelihood-based
methods (e.g. information theoretic approaches) do
not.

Summary

This paper presents simple animated functions from
package asbio for conceptualizing sampling distri-
butions, and illustrating ML estimation, and like-
lihood calculation. Along with demonstrations of
functions I have tried to impart some of my own ap-
proaches for teaching these concepts. I hope that this
information will be useful to both educators and stu-
dents of statistics.
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