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Two-sided Exact Tests and Matching
Confidence Intervals for Discrete Data
by Michael P. Fay

Abstract There is an inherent relationship
between two-sided hypothesis tests and confi-
dence intervals. A series of two-sided hypoth-
esis tests may be inverted to obtain the match-
ing 100(1-α)% confidence interval defined as the
smallest interval that contains all point null pa-
rameter values that would not be rejected at the
α level. Unfortunately, for discrete data there
are several different ways of defining two-sided
exact tests, and the most commonly used two-
sided exact tests are defined one way, while the
most commonly used exact confidence intervals
are inversions of tests defined a different way.
This can lead to inconsistencies where the ex-
act test rejects but the exact confidence interval
contains the null parameter value. The packages
exactci and exact2x2 provide several exact tests
with the matching confidence intervals avoiding
these inconsistencies as much as is possible. Ex-
amples are given for binomial and Poisson pa-
rameters and the paired and unpaired 2 × 2 ta-
bles.

Applied statisticians are increasingly being encour-
aged to report confidence intervals (CI) and param-
eter estimates along with p-values from hypothesis
tests. The htest class of the stats package is ide-
ally suited for these kinds of analyses, because all
the related statistics may be presented when the re-
sults are printed. For exact two-sided tests applied
to discrete data a test-CI inconsistency may occur:
the p-value may indicate a significant result at level
α while the associated 100(1-α)% confidence inter-
val may cover the null value of the parameter. Ide-
ally, we would like to present a unified report (Hirji,
2006), whereby the p-value and the confidence inter-
val match as much as is possible.

A motivating example

I was asked to help design a study to determine if
adding a new drug (albendazole) to an existing treat-
ment regimen (ivermectin) for the treatment of a par-
asitic disease (lymphatic filariasis) would increase
the incidence of a rare serious adverse event when
given in an area endemic for another parasitic dis-
ease (loa loa). There are many statistical issues re-
lated to that design (Fay et al., 2007), but here con-
sider a simple scenario to highlight the point of this
paper. A previous mass treatment using the existing
treatment had 2 out of 17877 experiencing the seri-

ous adverse event (SAE) giving an observed rate of
11.2 per 100,000. Suppose the new treatment was
given to 20,000 new subjects and suppose that 10
subjects experienced the SAE giving an observed rate
of 50 per 100,000. Assuming Poisson rates, an exact
test using poisson.test(c(2,10),c(17877,20000))
from the stats package (throughout we assume Ver-
sion 2.11.0 for the stats package) gives a p-value
of p = 0.0421 implying significant differences be-
tween the rates at the 0.05 level, but poisson.test
also gives a 95% confidence interval of (0.024,1.050)
which contains a rate ratio of 1, implying no signifi-
cant differences. We return to the motivating exam-
ple in the ‘Poisson two-sample’ section below.

Overview of two-sided exact tests

We briefly review inferences using the p-value func-
tion for discrete data. For details see Hirji (2006) or
Blaker (2000). Suppose you have a discrete statistic t
with random variable T such that larger values of T
imply larger values of a parameter of interest, θ. Let
Fθ(t) = Pr[T ≤ t;θ] and F̄θ(t) = Pr[T ≥ t;θ]. Suppose
we are testing

H0 : θ ≥ θ0

H1 : θ < θ0

where θ0 is known. Then smaller values of t are more
likely to reject and if we observe t, then the proba-
bility of observing equal or smaller values is Fθ0(t)
which is the one-sided p-value. Conversely, the one-
sided p-value for testing H0 : θ ≤ θ0 is F̄θ0(t). We
reject when the p-value is less than or equal to the
significance level, α. The one-sided confidence inter-
val would be all values of θ0 for which the p-value is
greater than α.

We list 3 ways to define the two-sided p-value for
testing H0 : θ = θ0, which we denote pc, pm and pb
for the central , minlike , and blaker methods, re-
spectively:

central: pc is 2 times the minimum of the one-sided
p-values bounded above by 1, or mathemati-
cally, pc = min

{
1,2 ∗ min

(
Fθ0(t), F̄θ0(t)

)}
. The

name central is motivated by the associated
inversion confidence intervals which are cen-
tral intervals, i.e., they guarantee that the lower
(upper) limit of the 100(1-α)% confidence in-
terval has less than α/2 probability of being
greater (less) than the true parameter. This is
called the TST (twice the smaller tail method)
by Hirji (2006).
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minlike: pm is the sum of probabilities of outcomes
with likelihoods less than or equal to the ob-
served likelihood, or

pm = ∑
T: f (T)≤ f (t)

f (T)

where f (t) = Pr[T = t;θ0]. This is called the PB
(probability based) method by Hirji (2006).

blaker: pb combines the probability of the smaller
observed tail with the smallest probability of
the opposite tail that does not exceed that ob-
served tail probability. Blaker (2000) showed
that this p-value may be expressed as

pb = Pr [γ(T) ≤ γ(t)]

where γ(T) = min
{

Fθ0(T), F̄θ0(T)
}

. The
name blaker is motivated by Blaker (2000)
which comprehensively studies the associated
method for confidence intervals, although the
method had been mentioned in the literature
earlier, see e.g., Cox and Hinkley (1974), p. 79.
This is called the CT (combined tail) method by
Hirji (2006).

There are other ways to define two-sided p-values,
such as defining extreme values according to the
score statistic (see e.g., Hirji (2006, Chapter 3), or
Agresti and Min (2001)). Note that pc ≥ pb for all
cases, so that pb gives more powerful tests than pc.
On the other hand, although generally pm < pc it is
possible for pm > pc.

If p(θ0) is a two-sided p-value testing H0 : θ = θ0,
then its 100(1 − α)% matching confidence interval is
the smallest interval that contains all θ0 such that
p(θ0) > α. To calculate the matching confidence in-
tervals, we consider only regular cases where Fθ(t)
and F̄θ(t) are monotonic functions of θ (except per-
haps the degenerate cases where Fθ(t) = 1 or F̄θ(t) =
0 for all θ when t is the maximum or minimum).
In this case the matching confidence intervals to the
central test are (θL,θU) which are solutions to:

α/2 = F̄θL(t)

and
α/2 = FθU (t)

except when t is the minimum or maximum at which
case the limit is set at the appropriate extreme of
the parameter space. The matching confidence in-
tervals for pm and pb require a more complicated al-
gorithm to ensure precision of the confidence limits
(Fay, 2010).

If matching confidence intervals are used then
test-CI inconsistencies will not happen for the
central method, and will happen very rarely for the
minlike and blaker methods. We discuss those rare
test-CI inconsistencies in the ‘Unavoidable Inconsis-
tencies’ section later, but the main point of this article

is that it is not rare for pm to be inconsistent with the
central confidence interval (Fay, 2010) and that par-
ticular test-CI combination is the default for many
exact tests in the stats package. We show some exam-
ples of such inconsistencies in the examples below.

Binomial: one-sample

If X is binomial with parameters n and θ, then the
central exact interval is the Clopper-Pearson con-
fidence interval. These are the intervals given by
binom.test . The p-value given by binom.test is pm.
The matching interval to the pm was proposed by
Stern (1954) (see Blaker (2000)).

When θ0 = .5 we have pc = pm = pb, and there is
not a chance of a test-CI inconsistency even when the
confidence intervals are not inversions of the test as
is done in binom.test . When θ0 ̸= 0.5 there may be
problems. We explore these cases in the two-sample
Poisson case below, since the associated tests reduce
through conditioning to one-sample binomial tests.

Note that there is a theoretically proven set of
shortest confidence intervals for this problem. These
are called the Blyth-Still-Casella intervals in StatXact
(StatXact Procs Version 8). The problem with these
shortest intervals is that they are not nested, mean-
ing that one could have parameter values that are in-
cluded in the 90% confidence intervals but not in the
95% confidence intervals (see Theorem 2 of Blaker
(2000)). In contrast, the matching intervals of the
binom.exact function of the exactci will always give
nested intervals.

Poisson: one-sample

If X is Poisson with mean θ, then poisson.test
from stats gives the exact central confidence in-
tervals (Garwood, 1936), while the p-value is pm.
Thus, we can easily find a test-CI inconsistency:
poisson.test(5,r=1.8) gives a p-value of pm =
0.036 but the 95% central confidence interval of
(1.6,11.7) contains the null rate of 1.8. As θ gets large
the Poisson distribution may be approximated by the
normal distribution and these test-CI inconsistencies
are more rare.

The exactci package contains the poisson.exact
function, which has options for each of
the three methods and gives p-values with
matching confidence intervals. The code
poisson.exact(5,r=1.8,tsmethod="central")
gives a confidence interval the same as
above, but a p-value of pc = 0.073; while
poisson.exact(5,r=1.8,tsmethod="minlike")
gives the p-value the same as pm above, but a
95% confidence interval of (2.0,11.8). Finally, us-
ing tsmethod="blaker" we get pb = 0.036 (it is not
uncommon for pb to equal pm) and a 95% confidence
interval of (2.0,11.5). We see that there is no test-CI
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inconsistency when using the matching confidence
intervals.

Poisson: two-sample

For the control group, let the random variable of the
counts be Y0, the rate be λ0 and the population at
risk be m0. Let the corresponding values for the
test group be Y1, λ1 and m1. If we condition on
Y0 + Y1 = N then the distribution of Y1 is binomial
with parameters N and

θ =
m1λ1

m0λ0 + m1λ1

This parameter may be written in terms of the ratio
of rates, ρ = λ1/λ2 as

θ =
m1ρ

m0 + m1ρ

or equivalently,

ρ =
m0θ

m1 (1 − θ)
. (1)

Thus, the null hypothesis that λ1 = λ0 is equivalent
to ρ = 1 or θ = m1/(m0 + m1), and confidence inter-
vals for θ may be transformed into confidence inter-
vals for ρ by equation 1. So the inner workings of
the poisson.exact function when dealing with two-
sample tests simply use the binom.exact function
and transform the results using equation 1.

Let us return to our motivating example (i.e.,
testing for differences between the observed rates
2/17877 and 10/20000). As in the other sections,
the results from poisson.test output pm but the
95% central confidence intervals which as we have
seen give a test-CI inconsistency. The poisson.exact
function avoids this test-CI inconsistency in this case
by giving the matching confidence interval, here are
the results of the three tsmethod options:

tsmethod p-value 95% confidence interval
central 0.061 (0.024, 1.050)
minlike 0.042 (0.035, 0.942)
blaker 0.042 (0.035, 0.936).

Analysis of 2 × 2 tables, unpaired

The 2 × 2 table may be created from many differ-
ent designs, consider first the designs where there
are two groups of observations with binary obser-
vations. If all the observations are independent,
even if the number in each group is not fixed in
advance, proper inferences may still be obtained by
conditioning on those totals (Lehmann and Romano,
2005). Fay (2010) studies the 2 × 2 table case
with independent observations, so we only briefly
give his motivating example here. The usual two-
sided application of Fisher’s exact test given by

fisher.test(matrix(c(4,11,50,569),2,2)) gives
pm = 0.032 using the minlike method, but 95% confi-
dence interval on the odds ratio of (0.92,14.58) using
the central method. As with the other examples,
the test-CI inconsistency disappears when we use ei-
ther the exact2x2 or fisher.exact function from the
exact2x2 package.

Analysis of 2 × 2 tables, paired

The case not studied in Fay (2010) is when the data
are paired, the case which motivates McNemar’s test.
For example, suppose you have twins randomized to
two treatment groups (Test and Control) then tested
on a binary outcome (pass or fail). There are 4 pos-
sible outcomes for each pair: (a) both twins fail, (b)
the twin in the control group fails and the one in the
test group passes, (c) the twin on the test group fails
and the one in the control group passes, or (d) both
twins pass. Here is a table where the numbers of sets
of twins falling in each of the four categories are de-
noted a,b,c and d:

Test
Control Fail Pass
Fail a b
Pass c d

In order to test if the treatment is helpful, we use
only the numbers of discordant pairs of twins, b and
c, since the other pairs of twins tell us nothing about
whether the treatment is helpful or not. McNemar’s
test statistic is

Q ≡ Q(b, c) =
(b − c)2

b + c

which for large samples is distributed like a chi-
squared distribution with 1 degree of freedom. A
closer approximation to the chi-squared distribution
uses a continuity correction:

QC ≡ QC(b, c) =
(|b − c| − 1)2

b + c

In R this test is given by the function mcnemar.test .
Case-control data may be analyzed this way as

well. Suppose you have a set of people with some
rare disease (e.g., a certain type of cancer); these are
called the cases. For this design you match each case
with a control who is as similar as feasible on all
important covariates except the exposure of interest.
Here is a table:

Exposed
Not Exposed Control Case
Control a b
Case c d

For this case as well we can use Q or QC to test
for no association between cases/control status and
exposure status.
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For either design, we can estimate the odds ratio
by b/c, which is the maximum likelihood estimate
(see Breslow and Day (1980), p. 165). Consider some
hypothetical data (chosen to highlight some points):

Test
Control Fail Pass
Fail 21 9
Pass 2 12

When we perform McNemar’s test with the con-
tinuity correction we get p = 0.070 while without the
correction we get p = 0.035. Since the inferences are
on either side of the traditional 0.05 cutoff of signifi-
cance, it would be nice to have an exact version of the
test to be clearer about significance at the 0.05 level.
From the exact2x2 package using mcnemar.exact we
get the exact McNemar’s test p-value of p = .065. We
now give the motivation for the exact version of the
test.

After conditioning on the total number of dis-
cordant pairs, b + c, we can treat the problem as
B ∼ Binomial(b + c,θ), where B is the random vari-
able associated with b. Under the null hypothesis
θ = .5. We can transform the parameter θ into an
odds ratio by

Odds Ratio ≡ ϕ =
θ

1 − θ
(2)

(Breslow and Day (1980), p. 166). Since it is easy
to perform exact tests on a binomial parameter, we
can perform exact versions of McNemar’s test inter-
nally by using the binom.exact function of the pack-
age exactci then transform the results into odds ra-
tios via equation 2. This is how the calculations are
done in the exact2x2 function when paired=TRUE .
The alternative and the tsmethod options work in
the way one would expect. So although McNemar’s
test was developed as a two-sided test testing the
null that θ = 0.5 (or equivalently ϕ = 1), we can eas-
ily extend this to get one-sided exact McNemar-type
Tests. For two-sided tests we can get three differ-
ent versions of the two-sided exact McNemar’s p-
value function using the three tsmethod options, but
all three are equivalent to the exact version of Mc-
Nemar’s test when testing the usual null that θ = 0.5
(see the Appendix in vignette("exactMcNemar") in
exact2x2). If we narrowly define McNemar’s test as
only testing the null that θ = 0.5 as was done in the
original formulation, there is only one exact McNe-
mar’s test; it is only when we generalize the test to
test null hypotheses of θ = θ0 ̸= 0.5 that there are
differences between the three methods. Those dif-
ferences between the tsmethod options become ap-
parent in the calculation of the confidence intervals.
The default is to use central confidence intervals so
that they guarantee that the lower (upper) limit of the
100(1-α)% confidence interval has less than α/2 prob-
ability of being greater (less) than the true parame-
ter. These guarantees on each tail are not true for the

minlike and blaker two-sided confidence intervals;
however, the latter give generally tighter confidence
intervals.

Graphing P-values

In order to get intuition about why these test-CI in-
consistencies occur, we can plot the p-value func-
tion. This type of plot explores one data realiza-
tion and its many associated p-values on the vertical
axis representing a series of tests modified by chang-
ing the point null hypothesis parameter (θ0) on the
horizontal axis. There is a default plot command
for binom.exact , poisson.exact , and exact2x2 that
plots the p-value as a function of the point null hy-
potheses, draws vertical lines at the confidence lim-
its, draws a line at 1 minus the confidence level, and
adds a point at the null hypothesis of interest. Other
plot functions (exactbinomPlot , exactpoissonPlot ,
and exact2x2Plot ) can be used to add to that plot
for comparing different methods. In Figure 1 we cre-
ate such a plot for the motivating example. Here is
the code to create that figure:

x<-c(2,10)
n<-c(17877,20000)
poisson.exact(x,n,plot=TRUE)
exactpoissonPlot(x,n,tsmethod="minlike",dopoints=TRUE,

doci=TRUE,col="black",cex=.25,newplot=FALSE)
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Figure 1: Graph of p-value functions for motivat-
ing two-sample Poisson example. Gray is central
method, black is minlike method. Vertical lines are
95% confidence limits, black circle is central p-value
at null rate ratio of 1.

We see from Figure 1 that the central method
has smoothly changing p-values, while the minlike
method has discontinuous ones. The usual confi-
dence interval is the inversion of the central method
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(the limits are the vertical gray lines, where the dot-
ted line at the significance level intersects with the
gray p-values), while the usual p-value at the null
that the rate ratio is 1 is where the black line is 1. To
see this more clearly we plot the lower right hand
corner of Figure 1 in Figure 2.
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Figure 2: Graph of p-value functions for motivat-
ing two-sample Poisson example. Gray is central
method, black is minlike method. Vertical lines are
upper 95% confidence limits, solid black circles are
the respective p-values at null rate ratio of 1.

From Figure 2 we see why the test-CI inconsis-
tencies occur, the minlike method is generally more
powerful than the central method, so that is why
the p-values from the minlike method can reject a
specific null when the confidence intervals from the
central method imply failing to reject that same
null. We see that in general if you use the match-
ing confidence interval to the p-value, there will not
be test-CI inconsistencies.

Unavoidable Inconsistencies

Although the exactci and exact2x2 packages do pro-
vide a unified report in the sense described in Hirji
(2006), it is still possible in rare instances to obtain
test-CI inconsistencies when using the minlike or
blaker two-sided methods (Fay, 2010). These rare in-
consistencies are an unavoidable problem due to the
nature of the problem and not to any deficit in the
packages.

To show the rare inconsistency problem using
the motivating example, we consider the unreal-
istic situation where we are testing the null hy-
pothesis that the rate ratio is 0.93 at the 0.0776
level. The corresponding confidence interval
would be a 92.24% = 100 ∗ (1 − 0.0776) inter-
val. Then using poisson.exact(x, n, r=.93,

tsmethod="minlike", conf.level=1-0.0776) we
reject the null (since pm = 0.07758 < 0.0776) but
the 92.24% matching confidence interval contains
the null rate ratio of 0.93. In this situation, the
confidence set that is the inversion of the series of
tests is two disjoint intervals ( [0.0454,0.9257] and
[0.9375,0.9419]), and the matching confidence inter-
val fills in the hole in the confidence set. This is an
unavoidable test-CI inconsistency. Figure 3 plots the
situation.
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Figure 3: Graph of p-value functions for motivat-
ing two-sample Poisson example. Gray is central
method, black is minlike method. Circles are p-
values, vertical lines are the upper 92.24% confidence
limits, solid black circle is minlike p-value at null
rate ratio of 0.93.

Additionally, the tsmethod="minlike" or
"blaker" options can have other anomalies (see
Vos and Hudson (2008) for the single sample bino-
mial case, and Fay (2010) for the two-sample bino-
mial case). For example, the data reject, but fail to
reject if an additional observation is added regard-
less of the value of the additional observation. Thus,
although the power of the blaker (or minlike ) two-
sided method is always (almost always) greater than
the central two-sided method, the central method
does avoid all test-CI inconsistencies and the previ-
ously mentioned anomalies.

Discussion

We have argued for using a unified report whereby
the p-value and the confidence interval are calcu-
lated from the same p-value function (also called the
evidence function or confidence curve). We have
provided several practical examples. Although the
theory of these methods have been extensively stud-
ied (Hirji, 2006), software has not been readily avail-
able. The exactci and exact2x2 packages fill this
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need. We know of no other software that provides
the minlike and blaker confidence intervals, except
the PropCIs R package which provides the Blaker
confidence interval for the single binomial case only.

Finally, we briefly consider closely related soft-
ware. The rateratio.test R package does the two-
sample Poisson exact test with confidence intervals
using the central method. The PropCIs R package
does several different asymptotic confidence inter-
vals, as well as the Clopper-Pearson (i.e. central )
and Blaker exact intervals for a single binomial pro-
portion. The PropCIs package also performs the
mid-p adjustment to the Clopper-Pearson confidence
interval which is not currently available in exactci.
Other exact confidence intervals are not covered in
the current version of PropCIs (Version 0.1-6). The
coin and perm R packages give very general meth-
ods for performing exact permutation tests, although
neither perform the exact matching confidence inter-
vals for the cases studied in this paper.

I did not perform a comprehensive search of
commercial statistical software; however, SAS (Ver-
sion 9.2) (perhaps the most comprehensive commer-
cial statistical software) and StatXact (Version 8) (the
most comprehensive software for exact tests) both do
not implement the blaker and minlike confidence
intervals for binomial, Poisson and 2x2 table cases.
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