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Abstract

This is an continuation of the FAViR paper “Bayesian Claim Severity with Mixed
Distributions”. The application is the same: the actuary is trying to produce a claim
severity distribution and has a prior Dirichlet over mixed exponential distribution that
s/he wants to update with observed claim data.

However, in this paper the data is allowed to have a flat severity trend, and the
claim data may be truncated or censored. Instead of a custom Gibbs sampler, JAGS
is used to compute the posterior parameters.

1 Introduction

The earlier FAViR paper “Bayesian Claim Severity with Mixed Distributions” (Escoto) de-
rived a claim severity distribution from observed claim amounts using traditional Bayesian
updating. There, each claim had a mixed exponential severity distribution, conditional on
“parameter risk” which was represented by a Dirichlet distribution.

Under these conditions, the marginal distribution of each claim was also a mixed exponen-
tial. Thus, an actuary could start with a prior mixed exponential severity distribution (from
ISO or some other source) and refine it with available claim data. The resulting marginal
distribution would be the correct credibility-weighted mixture of the prior distribution and
the claim data, but would still be mixed exponential in form.

This paper is a continuation of “Bayesian Claim Severity with Mixed Distributions”. The
basic probabilistic model is the same: a mixed exponential severity with Dirichlet parameters.
Unlike that paper however, here we handle three complications often seen in practice:

1. censored data (policy limits),

2. truncated data (deductibles), and
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3. severity trend.

Trend parameter risk (represented by a gamma distribution) is added to the model be-
cause trend credibility needs to be estimated simultaneously with severity. For instance,
increasing average claim severity in the most recent years may indicate a high severity trend;
or maybe a few huge losses happened to occur recently. Bayesian statistics properly weighs
these possibilities.

To compute the posterior distribution, this paper uses Just Another Gibbs Sampler
(JAGS), a cross-platform general purpose open source MCMC engine, while the previous
paper used a custom Gibbs sampler. As a result, this paper is slower and has more de-
pendencies, but is also easier to modify, assess for convergence, and run in parallel chains.
Knowledge of MCMC theory is not necessary to use this paper.

2 Required input data

This section displays all the initial data required by this paper. The initial inputs can
be grouped into four categories: the observed claim data, the prior means and weights of
the mixed exponential severity distribution, the prior severity uncertainty (represented by a
Dirichlet distribution), and the prior trend mean and standard deviation.

2.1 Claim Data

The claim data used is shown in figure 1. For each claim we need to know its severity,
whether or not it was censored at policy limits, its deductible (truncation threshold), and
the age of the claim.

Amount Age Deductible Capped?

33,750 3 0 No
1,000,000 1 0 Yes

22,707 1 0 No
54,135 1 0 No

174,524 3 0 No
19,661 2 0 No

140,735 2 0 No
1,000,000 3 0 Yes

1,127 1 0 No
316,483 2 0 No

Figure 1: Observed Claim Data
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2.2 Mixed Exponential

Figure 2 shows the means and weights of a mixed exponential distribution. This determines
the model’s marginal claim severity prior to conditionalization on the claim data (i.e. the
severity distribution you’d expect for the very next claim if no detailed claim data were
available).

Weights
(%) Means

30.0 50,000
25.0 100,000
25.0 500,000
10.0 1,500,000
7.0 5,000,000
3.0 20,000,000

Avg 1,265,000

Figure 2: Prior Means and Weights

2.3 Dirichlet Uncertainty

Although the means and weights of the mixed exponential distribution determine the margin
severity distribution, we also need to know how certain we are that these parameters are
accurate. Are they just a rough estimate, and may be far off, or are we sure that the true
distribution is very similar? This uncertainty can be summarized as α0, the sum of the
Dirichlet parameters. Here we picked a value of 20.

See section 4.1 for guidance on choosing this parameter.

2.4 Trend

Finally, we need a prior distribution over the trend rate. The trend is applied to each claim
by age. For instance, if the trend rate is 7%, then claims of age 2.5 are expected to be
1.07−2.5 times as severe as claims of age 0.

We assume trend is constant over time, but the parameter uncertainty is modeled as a
gamma distribution, shifted so that the zero point indicates –100% trend. Choosing a mean
and standard deviation sufficies to determine the gamma parameters. In this paper, the
trend mean is 0.05 and the trend standard deviation is 0.01.
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3 Results

This section presents the results of conditionalizing the Bayesian model on the observed
claim data using MCMC. A total of 30000 samples were computed. Figure 3 shows the
prior and posterior marginal weights.

Prior to Data Posterior to Data

Weight (%) Mean Weight (%) Error (%) Mean

30.0 50,000 30.9 0.10 50,000
25.0 100,000 25.6 0.10 100,000
25.0 500,000 23.4 0.09 500,000
10.0 1,500,000 9.6 0.06 1,500,000
7.0 5,000,000 7.2 0.05 5,000,000
3.0 20,000,000 3.2 0.04 20,000,000

Avg 1,265,000 Avg 1,307,445

Figure 3: Prior vs Posterior Exponential Weights

The error column is an estimate of the standard error of the MCMC method. This can
be decreased through running more simulations. Because the error is estimated using time-
series methods, it takes autocorrelation into account. The other exhibits assume this error
is acceptably small and can be ignored. The coda package is compatible with JAGS and
includes more tools for MCMC error-testing and diagnostics; a few sample commands are
given in the source code to this paper.

Figures 4, 5, and 6 show the prior and posterior expected loss in layer, trend, and ILFs.
The ILFs are based solely on expected loss costs and do not take into account risk loads,
expenses, etc. In these figures, each boxplot shows the 10th, 25th, 50th, 75th, and 90th
percentiles of the corresponding distribution.

4 Probabilistic Model

Here is the formal description of the Bayesian hierarchical claim severity model. It can be
divided into process and parameter risk.

Process risk:
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Figure 4: Prior vs Posterior Loss in Layer
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Figure 5: Trend Results
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Figure 6: Prior vs Posterior ILF Distribution

xi|bi ∼ g(Exponential(
1

µbid
ti

))

bi|w1, . . . , wm ∼ Categorical(w1, . . . , wm)

Parameter risk:

w1, . . . , wm ∼ Dirichlet(α1, . . . , αm)

d ∼ Gamma(k, θ)

The function g above represents censoring and/or truncation. The index i ranges over
the number of observed claims. The means of the mixed exponential are µ1, . . . , µm and t
is the age of the claim. See “Bayesian Claim Severity with Mixed Distributions” for more
information.

Mathematically, the only distinction between parameter and process parts of the model
is that all the claims are assumed to have the same parameter risk variables but the process
risk parameters vary per claim. For example, there is one the trend parameter d which
affects all claims, but each claim will get its own instance of x and b. Conditional on d and
w1, . . . , wm, the distribution of each claim is independent.
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4.1 Choosing α0

In the input data section, the paramater α0 was used to summarize our uncertainty around
the mixed exponential prior distribution. Intuitively, this parameter can be thought of
the number of claim observations encapsulated by the prior mixed exponential. So, after
we observe α0 claims, the resulting distribution will depend equally on our prior and the
observed data. Because intuition is not of much help in selecting a particular value, we will
use this result:

IfX is a mixed exponential distribution (with fixed means) depending on weights w1, . . . , wm,
and g(x) is a real function, then

Var[E[g(x)|w1, . . . , wm]] = Var[
m∑
j=1

wjE[g(x)|b = j]] = Var[
m∑
j=1

wjgj] (1)

=
m∑
j=1

g2jVar[wj] +
∑
j 6=k

gjgkCov[wj, wk] (2)

=
m∑
j=1

g2j
aj(1− aj)
α0 + 1

+
∑
j 6=k

gjgk
−ajak
α0 + 1

(3)

therefore

α0 = σ−2(
m∑
j=1

g2jaj(1− aj)−
∑
j 6=k

gjgkajak)− 1

where gj = E[g(x)|b = j], aj =
αj
α0

, and (3) follows from the properties of the Dirichlet
distribution (see “Bayesian Claim Severity with Mixed Distributions” for more about the
Dirichlet distribution).

Suppose the actuary may feel that the expected value of the true claim distribution
capped at $1M may be $50,000 off from the expected capped value implied by the prior

mixed distribution. Then by setting g(X) = min(X, 1Mil), gj = µj(1− e
1e6
µj ) and the above

result can be used to calculate α0.
In this paper, we set α0 = 20, which implies that the standard deviation of loss in the

first million layer is 65770.

5 Computation

The posterior distribution of the probabilistic model specified in section ?? is probably not
analytically soluable. The version of the model in “Bayesian Claim Severity with Mixed
Distributions” (which had no trend parameter) actually could be solved analytically, but the
solution was not tractable.
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In these situations, Monte Carlo Markov Chain (MCMC) techniques are extremely useful.
They have revolutionized Bayesian statistics in the last few decades. One MCMC algorithm
is called Gibbs sampling. The earlier paper implemented its own Gibbs sampler. However,
there are now dedicated software packages such as WinBUGS which allow users to specify
custom Bayesian hierarchical models in an intuitive modelling language, and then solve those
models using using Gibbs sampling and other MCMC algorithms.

This paper uses JAGS (Just Another Gibbs Sampler), which is an improved version of
WinBUGS that is open source and cross platform. See Plummer (2003) for more information.
JAGS can be used seamlessly from R through the runjags package. The JAGS model
description for this paper takes about a dozen lines of code.

Compared to custom code, JAGS (and WinBUGS) are easier to use and modify, but
much slower. On my computer (Intel Core 2 Duo 6600 running Linux), the model takes
about 10 minutes to process 600 claims. A tuned MCMC algorithm written in a low-level
language like C would probably be 10–50 times faster. Also, MCMC techniques are highly
parallelizable, so more cores increase speed almost linearly.

6 Conclusion

This paper credibility weighs prior beliefs about claim severity with observed claim data.
The actuary starts with a prior mixed exponential severity distribution (perhaps from an
external source such as ISO) and uses standard Bayesian conditionalization on the claim
data to arrive at a posterior weights distribution. Complications such as trend, censoring,
and truncation are handled.

This method may be practical whenever there is a shortage of claim data. If a huge
number of relevant claims were available, there would be no need for Bayesian statistics—
the actuary could simply use the (possibly smoothed) empirical distribution. But when
the number of data points is insufficient for non-parametric statistics, actuaries frequently
turn to maximum likelihood methods. If prior distributions are available, Bayesian methods
such as the one presented here are superior to maximum likelihood methods because they
incorporate that information.
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freely distributable under the GNU General Public License. See http://www.favir.net for
more information on FAViR or to download the source code for this paper.

Copying and distribution of this paper itself, with or without modification, are permitted
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This paper is offered as-is, without any warranty.

This paper is intended for educational purposes only and should not be used to violate
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