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1 Purpose and Motivation

1.1 Motivation

This package came about because of work I was doing with Moodle
http://www.moodle.org. Specifically I made a Moodle question type plugin
that allows R to be integrated directly into Moodle questions. In brief, the
Moodle server sends the question to a remote server for processing. This
server does stuff to the question, and can process chunks of it however it
pleases. I have a server doing this with R.

Each Moodle question has a collection of answers with associated feed-
back and grades. When a student submits an answer to a Moodle question,
Moodle iterates through the answers to find a match. The student then gets
the appropriate feedback and grade for that question. The Moodle question
type can grade single value numerical answers, but it can’t do anything more
complicated than that.

My solution was to build in a remote grading option into the question
type. If remote grading is enabled, the Moodle server sends the student’s
answer back to the remote server for grading. This raises issues of text
processing and ’answer’ matching. This is what the grade package provides.

1.2 The Problem

We want to be able to grade questions from within the question type,
with minimal amount of work from the question writer. A simple example
of a question would be:

Question: Given that < data > follows a normal distribution with standard
deviation < sdev >, find a 95% confidence interval for the mean.
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answer: grade.interval(x.bar +s.dev ∗ qnorm(0.975)∗ c(−1, 1), studentans)

So the remote server needs to evaluate each possible answer and return
a binary true/false decision back to Moodle. This involves calculating the
correct answer, converting the student’s answer from text to the appropriate
form, and deciding if they match. grade provides functions to do this.

2 Usage

Usage is intended to be very simple, and hopefully it is. Each grading
function follows the same basic format:

grade.function(correctans, studentans)

The grading function returns TRUE if studentans is correct, and FALSE
otherwise.
correctans is the ’correct’ answer. studentans is the student answer. Al-
though you are not required to use them in that order, it is a good idea.
Functions typically enforce stricter requirements on correctans. E.g. grade.interval
requires that correctans have length 2 and errors if it does not. grade.interval
does not error if studentans does not have length 2, though the answer will
be incorrect.

There are 5 options in common as well:

� tolerance Either a numeric or a string representing a numeric (NOT
INF or NA). Usage varies by grading function, but is typically a com-
ponent wise tolerance.

� useeval TRUE/FALSE. Defaults to TRUE. If TRUE text elements
are evaluated using eval. If FALSE text elements are coerced with
as.numeric.

� usena TRUE/FALSE. Defaults to FALSE. If TRUE, NA is an accepted
value, if FALSE NA is not considered to be valid.

� useinf TRUE/FALSE. Defaults to FALSE. If TRUE, Inf and -Inf are
accepted values. If FALSE, Inf and -Inf are not considered to be valid.

� quiet TRUE/FALSE. Defaults to TRUE. If TRUE, functions output as
little extra information as possible. If FALSE there are more warning
messages. Can be use full for debugging or tracing failures.
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2.1 Simple Examples

First some intervals. Note the usage of ’usena’, and ’useinf’.

> library(grade)

> x <- c(1, 2)

> grade.interval(x, "[1,2]")

[1] TRUE

> grade.interval(x, "[1,2.02]")

[1] FALSE

> grade.interval(x, "[1,2.02]", tolerance = 0.03)

[1] TRUE

> grade.interval("[NA, 1]", c(NA, 1), usena = T)

[1] FALSE

> grade.interval(c(1, Inf), c(1, Inf))

[1] FALSE

> grade.interval(c(1, Inf), c(1, Inf), useinf = T)

[1] TRUE

To grade sets there are grade.set and grade.orderedset, the only difference is
that grade.orderedset requires the sets to be in the same order.

> set1 <- "[1,2,3,5]"

> set2 <- "[5,3,2,1]"

> grade.orderedset(set1, set2)

[1] FALSE

> grade.set(set1, set2)

[1] TRUE

3



> set3 <- c(NA, Inf, pi)

> grade.orderedset(set3, set3)

[1] FALSE

> grade.orderedset(set3, set3, usena = T, useinf = T)

[1] TRUE

It can be used to verify that a student’s answer could be a discrete probability
dist.

> grade.discreteprobability(NULL, c(0, 1/2, 1/2, 0), checkcorrect = FALSE)

[1] TRUE

> grade.discreteprobability(NULL, c(-1, 1/2, 1/2, 1), checkcorrect = FALSE)

[1] FALSE

And to check against a target distribution, order is enforced if ordered=TRUE,
and not enforced if ordered=FALSE:

> correct <- c(0, 1/2, 1/4, 1/4)

> sans <- "[0, 1/4, 1/4, 1/2]"

> grade.discreteprobability(correct, sans)

[1] TRUE

> grade.discreteprobability(correct, sans, ordered = T)

[1] FALSE

Lastly, we have a function to check if a number is negative, and one to
compare a single value.

> grade.negative(NULL, -1)

[1] TRUE

> grade.negative(NULL, -Inf)

[1] FALSE
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> grade.negative(NULL, -Inf, useinf = T)

[1] TRUE

> grade.number(1, 1)

[1] TRUE

> grade.number(3.141, "pi", tolerance = 0.002)

[1] TRUE

2.2 Parsing Input

There are 4 functions involved in parsing input, grade.isscalar, grade.parse,
grade.parsechunk and grade.parseset. Generally, you will just want to use
grade.parse. These functions return a vector of values if all checks are passed,
NULL otherwise.

> grade.parse("[1, 2, 3]")

[1] 1 2 3

> grade.parse("NA")

NULL

> grade.parse("NA", usena = T)

[1] NA

> grade.parse("[-Inf, Inf]")

NULL

> grade.parse("[-Inf, Inf]", useinf = T)

[1] -Inf Inf

Note that you can pass R objects in as well. These need to conform to
whatever requirements you pass to the parse function:

> grade.parse(c(1, 2, 3))
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[1] 1 2 3

> grade.parse(NA)

NULL

> grade.parse(c(-Inf, Inf), useinf = T)

[1] -Inf Inf

Checks are made with the grade.isscalar function:

> grade.isscalar(c(1, 2))

[1] FALSE

> grade.isscalar(Inf, useinf = T)

[1] TRUE

2.3 eval vs as.numeric

Using eval to parse input that is coming from random sources can be
a problem, but the grade.parse functions will not eval text containing
parenthesis or assignment operators. It is unlikely that anything ma-
licious can slip through.

> x <- NULL

> grade.parse("x <- 1")

NULL

> x

NULL

> grade.parse("rm(list=ls())")

NULL

> ls()

[1] "correct" "sans" "set1" "set2" "set3" "x"
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> eval(parse(text = "rm(list=ls())"))

> ls()

character(0)

Using eval should generally be safe. It does have a significant advantage
over as.numeric:

> grade.parse("1")

[1] 1

> grade.parse("1", useeval = F)

[1] 1

> grade.parse("pi")

[1] 3.141593

> grade.parse("pi", useeval = F)

NULL

> grade.parse("1/2")

[1] 0.5

> grade.parse("1/2", useeval = F)

NULL

I recommend that you use eval, which is why it’s the default.
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