
R Package hypred: Simulation of Genomic Data

in Applied Genetics

Frank Technow∗

package version 0.1

1 Introduction

The package hypred (the name stands for hybrid prediction) is intended for

simulating high density genomic data. Its focus is on genomic applications in

applied genetics, namely genomic prediction and selection [a] in hybrid maize

breeding , but it should be useful in related fields as well.

The function hypredGenome is used to define the genome parameters: num-

ber and length of chromosomes, and number of SNP loci. It also simulates a

genetic map. This functions returns an object that is of class hypredGenome.

The function hypredNewMap is used to modify the genetic map, and the func-

tion hypredNewQTL to assign QTL. The function hypredFounder will create two

homozygous founder lines according to the object returned by hypredGenome.

The meiosis is simulated by the function hypredRecombine. This function takes

two haploid chromosome sets (as found in a sex cell) and returns a recombined

haploid chromosome set (i.e. the gamete). The meiosis is simulated according to

the count-location model, simulation of mutations is possible as well. The func-

tions hypredTruePerformance and hypredTpGenomeSpecific return the true

genotypic values of individuals given their genotypes. hypredTruePerformance

uses the QTL effects found in the hypredGenome object, hypredTpGenomeSpe-

cific allows to specify new and genome specific effects. Various types of design

matrices (to be used in modeling algorithms) are created from the genotypes

by the function hypredCode. All functions mentioned above are generic, with

methods defined for the hypredGenome object.

∗University of Hohenheim, Institute of Plant Breeding, Seed Science and Population Ge-
netics, Stuttgart, Germany

1

2 Basic concepts, possibilities and limitations

2.1 Genome

Chromosomes Only diploid genomes are supported. An arbitrary number of

chromosomes, with individual lengths, can be simulated. All distances are

genetic distances with unit Morgan (M).

Marker loci An arbitrary number of marker loci can be assigned to the chro-

mosomes (and with arbitrary I mean 1, 2, 3, . . .� 10,000). However,

the number of marker loci needs to be equal for each chromosome. The

markers are treated as bi-allelic single nucleotide polymorphisms (SNP)

with alleles 1 and 0. The genetic map of the markers can be generated

randomly (via a uniform distribution over the chromosome) or explicitly

set by the user.

QTL Quantitative trait loci (QTL) can be assigned to marker loci. The QTL

alleles are treated as identical apart from one causative SNP (the one the

QTL is assigned to). These causative SNP can be unobserved (i.e. not

included into the set of markers available for analysis) or observed (i.e.

perfect markers). The QTL can have additive effects (a) or additive and

dominance effects (d). The effects are defined according to the Falconer

scale [b], where a is half the difference between the homozygous genotypes

(0-0 and 1-1) and d is the deviation of the heterozygous genotypes (0-1

and 1-0) from the mean of the two homozygous genotypes. Genotypic

values are expressed as deviations from the “lower” homozygot (0-0), so

that the genotypic value of the genotype (1-1) would be 2a, for example.

The number of QTL with additive effect only, the number of QTL with

additive and dominance effect and the number of perfect markers, must be

the same for all chromosomes. If the number of QTL needs to be different

per chromosome, a workaround is to assign effects of a = d = 0 to some

of the QTLs.

Only QTL for one trait can be considered at once. However, multiple

traits can be simulated by modifying the numbers, positions and effects of

QTL.

2

Meiosis The meiosis is simulated according to the count-location model that

assumes no interference and agrees with the Haldane mapping function.[c]1

Here the number of crossing over on a random meiotic product of a chro-

mosome is Poisson distributed with parameter λ = L (L being the length

of the chromosome in Morgan). The locations of the crossing over follow

a uniform distribution over the interval (0, L).

Mutations The occurrence of mutations, µ denoting the mutation rate, is sim-

ulated according to a simple count-location model as well. The number

of observed SNP mutations in the gamete follows a Poisson distribution

with parameter λ = µ times the number of loci on a chromosome times

the number of chromosomes. Then each SNP-loci has an equal chance of

being mutated, irrespective on whether mutations occurred in its vicinity.

A mutation event always changes a 1 allele to a 0 allele and vice versa (i.e.

0 to 1; 1 to 0). During one meiosis, a given SNP-loci can only be mutated

twice if the number of mutations exceeds the total number of SNP. This

should rarely happen and is included only for computational reasons. µ

can be different for marker loci and QTL.

Since all the simulated loci are treated as SNP, µ should be interpreted as

µ per base-pair per meiosis.

2.2 Working concepts

This section concerns mainly the central, workhorse function hypredRecombine,

which simulates the recombination.

Low level approach hypredRecombine is as low level as it can get. It just

takes two haploid chromosome sets (as can be found in a sex cell) and re-

turns a single gamete. To create populations, loops have to be constructed

in which the function is called (examples follow). Hence, basic to interme-

diate proficiency in R is required to perform more complex simulations.

This is a low level package on purpose. The low level nature gives the

user full flexibility to do whatever he wants, and, I confess, not including

functions like “hypredCreateNCIII_designBC” makes life easier for me.

1This fact was used to validate the algorithm because observed recombination frequencies
could be compared with expected frequencies as calculated by the inverse of the Haldane
mapping function from the map distances.

3

In a sense, the function hypredRecombine follows some of the UNIX“Soft-

ware tools” programming principles. Namely the “do one thing well” prin-

ciple and that the input and output data should be the same. The idea

is that this function is used as a building block in larger programs for

simulating very complex populations.

Sex cell - gamete approach This is of course just the consequence of the

low level thing. As mentioned, function hypredRecombine just takes two

haploid chromosome sets (as can be found in a sex cell) and returns a

single gamete. So when trying to create a population, one has to think

and work in terms of sex cells and gametes. This means that one also

needs to have some basic knowledge of population genetics, because one

needs to know how to get from a sex cell or single gamete to some complex

population.

low level data A gamete, i.e. the in- and output of hypredRecombine and

most other functions, is simply an one row integer matrix that represents

the genotype as elements of 1 and 0 (corresponding to the 1 and 0 alle-

les). An advantage of this is that the data is easily accessible, designing

a gamete with a special genotype, for example, just involves creating a

matrix accordingly. A disadvantage is that there is more responsibility

at the user side to assure that the data is valid. However, the functions

include many validity checks and using only unmodified data produced by

functions from the package should guaranty validity.

The accessibility of the in- and output data and of the hypredGenome

object allows the users to quickly write their own extractor and modifier

functions respectively to adapt the ones provided. Hence, intermediate to

advanced users of R should find it very simple to include some epistatic

interactions into function hypredTruePerformance, for example.

computing efficiency The computations for simulating the meiosis are per-

formed by a C routine that is called through hypredRecombine. Still,

having to extensively use loops in R might be somewhat inefficient, mainly

in terms of computing time. However, my experience shows that even for

simulation of high volume data (> 50,000 loci, many hundreds of individ-

uals and hundreds of generations of random mating), the computations

are reasonably fast, even on a computer that is mediocre at best.

4

And, of course, the C source code is available to everyone. So when com-

puting time is really an absolutely critical factor, one could just use the

underlying C function (which is used in basically the same way as the

calling R function), to write a customized C routine.

3 Demonstration

In this last part, usage of the package will be demonstrated. This is done by a

session in which the following szenario is simulated:

1. 250 F2 individuals from two founder lines are created

2. this population is then random mated for 50 generations

3. after this, the best individual is selected according to its phenotype (h2 =

0.5)

4. a DH population is then generated from this selected individual

5. this DH population is the training population for some genomic selection

algorithm, hence the final step is to generate the phenotypes and a design

matrix

The simulated genome is defined as follows:

� two chromosomes, of length 1M each

� 100 loci per chromosome, of these, five are QTL (three with purely ad-

ditive effect, two with dominance effect as well). One of the QTL on a

chromosome is a perfect (observed) marker. Hence there are 96 markers

per chromosome.

The simulated data is not quite “high density”, the package can do allot

more than 200 loci/marker. However, this is supposed to be an introduction

and demonstration, so I want to keep the amount of data that is created low.

The interested user can easily run the example with, say, 5000 loci, without

experiencing a serious hike in computing time and RAM requirement.

3.1 Genome definition

After loading the package,

5

R> library(hypred)

the first step in a simulation will usually be the definition of the the genome

parameters and the creation of the hypredGenome object. This is done with the

function hypredGenome2. The argument num.chr gives the number of chromo-

somes, len.chr, their lengths in Morgan and num.snp the number of SNP loci

per chromosome.

R> genome <- hypredGenome(num.chr = 2,

len.chr = c(1.0, 1.0),

num.snp = 100)

This creates an object of class hypredGenome which serves as a storage container

for all the information about the genome that is needed by the other functions.

Please refer to the help page of the object for details on its expected content.

There are methods for the functions summary and show that will both print the

same short information about the genome (summary also invisibly returns a list

with the displayed parameters).

R> summary(genome)

The defined genome is characterized as follows:

2 chromosomes of lengths 1 1 M

100 SNP markers plus 0 perfect SNP markers per chrom.

0 QTL with additive effect per chrom.

Of these, 0 also have (has) a dominance effect

The function hypredGenome by default simulates a genetic map of the loci

on the chromosome, where the positions of the loci are uniformly distributed.

R> slot(genome, "pos.snp")[1:5] ## pos. of first 5

[1] 0.001008298 0.009211126 0.014266673 0.025416604 0.032722956

This map can be modified with the function hypredNewMap which takes only

one argument appart from the object3. This argument is new.map and takes a

2Notice that all function, that are intended to be called by the user, are prefixed with
“hypred” to avoid naming clashes with other packages. Notice further that the argument
names usually follow the pattern: aspect-of-thing-of-interesst then thing-of-interesst.
Whenever reasonable, the arguments are in small case, only the first three letters of the word
are used, words are separated by a dot and articles and prepositions are not used. So for
example, the argument for the “number of chromosomes” is num.chr.

3The hypredGenome object is usually the first argument in every function

6

numeric vector that gives the map position of all the loci. In this case there

are 100 loci per chromosome, so there need to be 200 elements in the vector.

The elements [1:100] give the positions of the loci on chromosome 1, elements

[101:200] the positions of the loci on chromosome 2. On the new map, the loci

are arranged evenly and in equal distance.

R> map <- rep(seq(0, 0.99, by = 0.01), 2)

R> genome <- hypredNewMap(genome,

new.map = map)

R>

R> slot(genome, "pos.snp")[1:5] ## pos. of first 5

[1] 0.00 0.01 0.02 0.03 0.04

There is a convenience function, called hypredSNPdist, that returns the genetic

distance (d) and the expected recombination frequency (r) between two loci on

a chromosome. The arguments are self explaining.

R> hypredSNPdist(genome,

chromosome = 1,

SNP1 = 1,

SNP2 = 3)

[,1]

d 0.02000000

r 0.01960528

Until now, there are no QTL assigned and all loci are markers. Assignment

of QTL is done with the function hypredNewQTL. Apart from the object, there

are five additional arguments to it. Arguments new.id.add, new.id.dom and

new.id.per.mar give the IDs of the loci which are assigned QTL with addi-

tive effects, QTL with dominance effects and perfect markers. Since all QTL

must have an additive effect, new.id.add actually gives the IDs of all QTL and

new.id.dom must be a subset of it. The ID of a loci is its index in the vector

of all loci in the object. If, as in this example, the object holds 200 loci, then

the ID of the locus with lowest map postion of chromosome 1 is 1, the next has

ID 2 and so on. The ID of the locus with lowest map position of chromosome

2 is 101. Note that the number of QTL, QTL with dominance effect and the

number of perfect markers must be the same on each chromosome.

7

The five QTL per chromosome will be assigned to the 1st, 20th, 40th, 60th

and 80th locus on each chromosome.

R> qtl.ids <- c(1, 20, 40, 60, 80, ## chr. 1

101, 120, 140, 160, 180) ## chr. 2

The third of these is the one that has a dominance effect as well.

R> qtl.dom.ids <- c(40, ## chr. 1

140) ## chr. 2

The second will be the perfect marker

R> per.mar.ids <- c(20, ## chr. 1

120) ## chr. 2

The remaining two arguments to hypredNewQTL are new.eff.add and new.eff.dom.

They give the additive and dominance effects. These are assigned to the QTL

according to the corresponding element in the vectors given to new.id.add re-

spectively new.id.dom. So the second additive effect in the vector given to

new.eff.add would be assigned to the QTL with ID 20. For simplicity, the

additive effects are 1 and the dominance effects are 0.5.

R> genome <- hypredNewQTL(genome,

new.id.add = qtl.ids,

new.id.dom = qtl.dom.ids,

new.id.per.mar = per.mar.ids,

new.eff.add = rep(1, 10),

new.eff.dom = c(0.5, 0.5)

)

After assigning QTL, the printed summary changes accordingly, and now

includes summary statistics of the effects (not very usefull in this example,

though).

R> summary(genome)

The defined genome is characterized as follows:

2 chromosomes of lengths 1 1 M

95 SNP markers plus 1 perfect SNP markers per chrom.

8

5 QTL with additive effect per chrom.

Of these, 1 also have (has) a dominance effect

Summary of distribution of additive effects:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

Summary of distribution of dominance effects:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5 0.5 0.5 0.5 0.5 0.5

The definition of the genome is thereby complete. Note that the map, as

well as the QTL can be modified later on at any point.

3.2 F2 base population

The gametes of two founder lines that differ at each locus can be created by

the function hypredFounder. The only additional argument to it is prob.snp

which gives the probability that founder line 1 has the 1 allele at any locus. For

simplicity, this is set to 1, so that line 1 has all the 1 alleles and line 2 all the 0

alleles. The output is a two row matrix, with the gamete of line 1 in row 1 and

the gamete of line 2 in row 2. Because the lines are assumed to be absolutely

homozygous, each can have only one distinct gamete.

R> founder1 <- hypredFounder(genome,

prob.snp = 1)[1,]

R> founder2 <- hypredFounder(genome,

prob.snp = 1)[2,]

As mentioned in the beginning, genotypes are stored as one row matrices:

R> founder1[1:5] ## first 5 loci

1 2 3 4 5

1 1 1 1 1

R> founder2[1:5] ## first 5 loci

9

1 2 3 4 5

0 0 0 0 0

These matrices could have been created directly, hypredFounder is just a con-

venience function.

To recombine these parental genomes, the workhorse function hypredRecom-

bine is used. This is the central function of the package, see its help page, as well

as the descriptions in section 2 for details. The two haploid parental chromo-

some sets in a sex cell that are to be recombined, are given as one row matrices

via the arguments genomeA and genomeB. Which set is given to which doesn’t

matter. Because the two founder lines are homozygous, it follows that this is

the sex cell of a F1 individual.

The mutation rate for both SNP marker and QTL is set to 2.5 · 10−5, hap-

lotype blocks are not used.

R> set.seed(114)## to see a recomb. event

R> new.gamete <- hypredRecombine(genome,

genomeA = founder1,

genomeB = founder2,

mutate = TRUE,

mutation.rate.snp = 2.5 * 10^-5,

mutation.rate.qtl = 2.5 * 10^-5,

block = FALSE)

The output is again a one row matrix with the recombined gamete.

R> new.gamete[1:20] ## first 20 loci

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

To create a F2 population with size N = 250, 500 such gametes have to be

produced. This is best done in a loop. For this a matrix is pre-allocated that

has as many rows as gametes and as many columns as loci.

R> N <- 250 ## number of individuals

R> F2 <- matrix(nrow = N * 2,

ncol = 200)

Then hypredRecombine is called within the loop and the gametes are assigned

to subsequent rows.

10

R> for(i in 1:(N*2))

{

F2[i,] <- hypredRecombine(genome,

genomeA = founder1,

genomeB = founder2,

mutate = TRUE,

mutation.rate.snp = 2.5 * 10^-5,

mutation.rate.qtl = 2.5 * 10^-5,

block = FALSE)

}

The rows 1 and 2 represent the two chromosome sets of F2 individual 1, the

rows 3 and 4 represent the two chromosome sets of F2 individual 2 and so on.

3.3 Random mating

Random mating is done according to the following algorithm:

1. create two matrices with dimension [2N, l] (l is the no. loci) and call them

random.mate.pop and random.mate.pop.temp

2. store the genotypes of all the individuals in random.mate.pop

3. create two recombined gametes from each individual in random.mate.pop

and store them in random.mate.pop.temp at the same position as the

parental chromosome sets in random.mate.pop

4. randomly permutate the rows of random.mate.pop.temp, thats one gen-

eration of random mating

5. repeat 2 to 4 for a particular number of generations

This algorithm is implemented below with two nested loops (outer for gen-

erations, inner for individuals).

R> G <- 50 ## number of generations

R> random.mate.pop <- F2 ## identical to the F2 at start

R> random.mate.pop.temp <- matrix(nrow = N*2, ncol = 200)

R> for(generation in 1 : G) ## loop over generations

{

gameteIndex1 <- 1 ## indexing variables

11

gameteIndex2 <- 2

for(indiv in 1 : N) ## loop over individuals

{

gamete 1

random.mate.pop.temp[gameteIndex1,] <-

hypredRecombine(genome,

genomeA = random.mate.pop[gameteIndex1,],

genomeB = random.mate.pop[gameteIndex2,],

mutate = TRUE,

mutation.rate.snp = 2.5 * 10^(-5),

mutation.rate.qtl = 2.5 * 10^(-5),

block = FALSE)

gamete 2

random.mate.pop.temp[gameteIndex2,] <-

hypredRecombine(genome,

genomeA = random.mate.pop[gameteIndex1,],

genomeB = random.mate.pop[gameteIndex2,],

mutate = TRUE,

mutation.rate.snp = 2.5 * 10^(-5),

mutation.rate.qtl = 2.5 * 10^(-5),

block = FALSE)

increment to next individual

gameteIndex1 <- gameteIndex1 + 2

gameteIndex2 <- gameteIndex2 + 2

} ## end for N

permutate

random.mate.pop <- random.mate.pop.temp[sample(1 : (N * 2)),]

} ## end for G

The matrix random.mate.pop now contains the random mated population.

3.4 Selection

The genotypic values of the individuals can be obtained by the function hypredTruePer-

formance. This function takes two further arguments: genotypes, to which the

matrix that stores the genotypes is given and DH which is TRUE or FALSE, de-

12

pending on whether the matrix contains DH individuals or not. This argument

needs to be set to FALSE in this case, the implications of DH = TRUE will be

discussed later on.

R> g.value <- hypredTruePerformance(genome,

random.mate.pop,

DH = FALSE)

R> summary(g.value)

V1

Min. : 3.00

1st Qu.: 9.00

Median :10.50

Mean :10.58

3rd Qu.:12.00

Max. :18.00

Note that the expected value (assuming that all QTL are in linkage equilib-

rium (LE), p denoting the frequency of the 1 allele and q the frequency of the

0 allele) would be 10.601 [b] ∑
l

2p(a+ dq)

which is in good agreement with the observed mean of 10.5844.

The observed variance of the genotypic values is 4.862, which is as well in

good agreement5 with the expectation under perfect LE, which would be 4.747

[b]. ∑
l

2pq
(
a+ d(q − p)

)2
+ (2pq)2

In order to obtain h2 ≈ 0.5, a normaly distributed random variable, with mean

0 and the same variance is added to arrive at the phenotypic values.

R> var.env <- var(g.value)

R> phen.value <- g.value + rnorm(250, 0, sqrt(var.env))

4The computations for the expectations are included into the .Rnw file, but are not echoed.
They are of course available in the source.

5The good agreement between observed and expected values implies that 50 generations of
random mating were enough to dissipate the coupling phase linkage and bring the QTL into
LE.

13

Individual number 42 has the highest phenotypic value and thus is selected. The

two rows (chromosome sets) in random.mate.pop that correspond to it are 83

and 84. A new matrix (called selected) is created that stores only the genotype

of this individual.

R> index.individual <- which(phen.value == max(phen.value))

R> index.row1 <- index.individual * 2 - 1

R> index.row2 <- index.individual * 2

R> selected <- random.mate.pop[c(index.row1, index.row2),]

3.5 DH population

The DH population is produced similarily to the F2, just that only 1 gamete is

produced per individual.

R> DH <- matrix(nrow = N,

ncol = 200)

R> for(i in 1:N)

{

DH[i,] <- hypredRecombine(genome,

genomeA = selected[1,],

genomeB = selected[2,],

mutate = TRUE,

mutation.rate.snp = 2.5 * 10^-5,

mutation.rate.qtl = 2.5 * 10^-5,

block = FALSE)

}

Note that it is not necessary to explicitely double the gametes. The function

hypredTruePerformance, as well as the function hypredCode, which creates de-

sign matrices, both have an argument named DH. Setting this argument to TRUE,

makes the function assume that the matrix given to the argument genotypes

holds DH individuals with one row representing one individual. This feature

should be used as much as possible, because the matrix then needs to be only

half as big, which in turn saves memory! The mean genotypic value of the DH

population is 18.056. The genotypic value of the of the individual from which

the DH population was derived was 18. This can easily be verified by looking

at its QTL-genotype

14

R> selected[, qtl.ids] ## all QTL

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 1 0 1 1 1 1

[2,] 1 1 1 1 1 1 0 1 1 1

R> selected[, qtl.dom.ids] ## QTL with dominance

[,1] [,2]

[1,] 1 1

[2,] 1 1

R> ## effect a = 1 times the number of 1 alleles

R> sum(selected[, qtl.ids] == 1) +

0.5 if the dominance QTL have genotype 01 or 10 (hence sum = 1)

(sum(selected[, qtl.dom.ids[1]]) == 1)*0.5 +

(sum(selected[, qtl.dom.ids[2]]) == 1)*0.5

[1] 18

It follows also that the expected mean of the DH population (assuming QTL

in LE) must be 18, which is in good agreement with the observed value.

Phenotypic values of the DH population are generated in the same way as

for the random mating population. Note that the same environmental variance

is used, so the heritability will be different.

R> g.value.DH <- hypredTruePerformance(genome,

DH,

DH = TRUE)

R> phen.value.DH <- g.value.DH + rnorm(250, 0, sqrt(var.env))

The last demonstrated step is the creation of a design matrix. This is done

by the function hypredCode. Its additional arguments are: genotypes, DH and

type. The first two have the same meaning as for hypredTruePerformance.

The argument type takes a character string that gives the type of design matrix

to be created. Currently four different types can be created, see ?hypredCode

for details. The one used in this example is type = "012" which means that

element Xij (i indexing the individual, j the locus) will be 0 if the locus is 0-0,

1 if the locus is 1-0 or 0-1 and 2 if the locus is 1-1, i.e. coded is the number of 1

alleles at a locus. This type of design matrix is suitable to estimate substitution

effects.

15

R> design.DH <- hypredCode(genome,

genotypes = DH,

DH = TRUE,

type = "012")

Note that QTL loci that are not designated as perfect markers, are not

included in the design matrices. For example, locus 1 was a QTL, but not a

perfect marker, hence it is removed (the first row of the output are the column

names of the matrix, which correspond to the loci IDs):

R> design.DH[1, 1:5]

2 3 4 5 6

2 0 0 0 0

The QTL assigned to locus 20, was a perfect marker and hence is included:

R> design.DH[1, 17:21]

18 19 20 21 22

2 2 2 0 0

With the phenotypes, genotypic values and the design matrix available, one

can proceed with the actual analysis of this data or with deploying some genomic

selection/prediction method. However, this is out of the scope of this vignette

and package.

References

[a] Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard: Prediction of Total

Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157(4),

1819-1829.

[b] D. S. Falconer: Introduction to Quantitative Genetics. Oliver and Boyd.,

London, 1967.

[c] Wu, R., M. Chang-Xing, G. Casella: Statistical Genetics of Quantitative

Traits. Springer, New York, 2007.

16

	Introduction
	Basic concepts, possibilities and limitations
	Genome
	Working concepts

	Demonstration
	Genome definition
	F2 base population
	Random mating
	Selection
	DH population

