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Abstract

This paper is a version of Fay and Shaw (2010) published in the Journal of Statistical
Software, and the versions are essentially the same except formating and changes to initfit
defaults which may change some timings.

For right-censored data perhaps the most commonly used tests are weighted logrank
tests, such as the logrank and Wilcoxon-type tests. In this paper we review several
generalizations of those weighted logrank tests to interval-censored data and present an R
package, interval, to implement many of them. The interval package depends on the perm
package, also presented here, which performs exact and asymptotic linear permutation
tests. The perm package performs many of the tests included in the already available coin
package, and provides an independent validation of coin. We review analysis methods
for interval-censored data, and we describe and show how to use the interval and perm
packages.
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1. Introduction

In their original paper introducing the logrank test, Peto and Peto (1972) outlined how to
perform permutation-based logrank tests for interval-censored data. Later, Finkelstein (1986)
studied the application of the logrank test to interval-censored data in detail using a grouped
continuous model. These logrank tests are appropriate for comparing treatment groups when
the response is time to an event and time may only be known to fall into an interval. An
example is time to progression-free survival (see e.g., Freidlin, Korn, Hunsberger, Gray,
Saxman, and Zujewski 2007), where patients are monitored intermittently and progression is
known to have occurred only to within the time since the last visit.

A naive approach, if one has interval-censored data, is to simply impute the mid-point of the
intervals and perform the usual right-censored weighted logrank tests. Law and Brookmeyer
(1992) studied this naive approach (Law and Brookmeyer 1992, use the term ‘doubly censored
observations’ to mean interval-censored observations), and showed through simulation that
when the censoring mechanism is different between the two groups, the type I error of a
nominal 0.05 test was in one case estimated to be as high as 0.19. Thus, there is clearly a
need for the tests specifically designed for interval-censored data.
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Despite the demonstrated need for these methods and despite the development of several
methods for generalizing the logrank test to interval-censored data, these tests are rarely
used in the medical literature. This may be due to lack of knowledge about the interval-
censored methods, but it also may be due to the lack of widely available software to test
interval-censored data nonparametrically.

In this paper we describe an R package, called interval, to perform weighted logrank tests
(WLRT) (including a generalization of the Wilcoxon-Mann-Whitney test) for interval-censored
data. The open source freeware R (R Development Core Team 2010) easily accommodates
packages, and all R packages mentioned in this paper are available from the Comprehensive
R Archive Network at http://CRAN.R-project.org/.

For each type of rank score (e.g., logrank-type or Wilcoxon-type) the interval package allows
three methods for creating tests: (1) score tests, (2) permutation tests derived from the score
statistics in the grouped continuous model (GCM), both described in Fay (1999a), and (3)
multiple imputation tests as described in Huang, Lee, and Yu (2008). The p-values from
the permutation tests may be calculated either asymptotically using a permutational central
limit theorem or exactly using either complete enumeration, a network algorithm (for the
two-sample case only), or Monte Carlo resampling. We know of no readily available software
to perform these tests (or other different generalizations of the WLRTs to interval-censored
data), except for the S-PLUS functions (written by the first author) upon which the interval
package is based (Fay 1999b).

In Section 2 we give a brief background on the analysis of interval-censored data, with empha-
sis on nonparametric maximum likelihood estimation of the distribution and generalizations
of the WLRTs for interval-censored data. We review different forms of the likelihood as well
as the different methods for carrying out the WLR tests. This section reviews what is known
about the asymptotic validity of these tests for different interval-censoring settings. With this
background, we hope to give intuition on the methods for users primarily familiar with the
usual right-censored logrank tests and also provide information to guide the applied researcher
to make an appropriate choice for the test for their setting of interest.

The mathematical formulation of the WLRTs used in interval package are outlined in Sec-
tion 3. Section 4 provides step-by-step instructions for how to use the interval package to
perform data analysis. This application section demonstrates the use of two main functions
of interval: icfit which provide nonparametric maximum likelihood estimators (NPMLEs)
of the survival distribution and ictest which performs weighted logrank tests.

As explained in Section 2, all implementations of the WLRTs require first fitting an NPMLE
of the overall survival distribution and, for some kinds of inferences, permutation methods
may be used. Because of this latter fact, the interval depends on the perm package which
performs exact and asymptotic linear permutation tests. Note that this package is mostly
redundant because nearly all of the tests performed by perm are available in the package
coin (Hothorn, Hornik, van de Wiel, and Zeileis 2006, 2008), and the exact tests are generally
faster in coin. The redundancy provides independent software to check the results from perm.
In Section 5 we go into detail about the design of the perm package and how it differs from the
coin package. In Section 6 we detail the design of the interval package. The interval package
uses an expectation-maximization (EM) style algorithm to find the NPMLE of the overall
distribution where the initial estimator of the distribution may come from a function from
another package. The default initial estimate uses a function whose main calculation engine
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uses the computeMLE function from MLEcens, an available package for bivariate interval-
censored data that is also applicable for univariate interval-censored data (Maathuis 2010).
Additionally, the Icens package may be used to calculate an initial distribution estimate, and
we have designed the interval package to be able to input NPMLEs from the Icens package
(Gentleman and Vandal 2010), using the class structure designed there. Further, we show
how the wlr_trafo function of the interval package may be called seamlessly from within
coin to perform exact permutation tests on interval-censored data possibly more quickly than
using the default perm package.

2. Background on interval-censored data analysis methods

2.1. Censoring assumptions

Interval censored data arise when the response of interest is a time-to-event variable, but
instead of the response time, we only observe whether or not the event has yet occurred
at a series of assessment times. For example, suppose the event is time until first disease
occurrence, and we can assume that this disease will not spontaneously be cured without
treatment (e.g., HIV). The response data may be a series of assessment times on the individual
corresponding to times when blood samples used for detecting the disease were taken, and at
each blood sample we determine if the disease is detected or not. Typically, we do not keep
information about all the assessment times, but only record the last disease-free assessment
time and the first assessment time where the disease was detected. When all the assessment
times (not just the two that we keep information about) are independent of the event time we
say that the censoring is non-informative. In the example, the censoring is non-informative
if the subjects are not more or less likely to get a blood sample taken if they have the
disease. More difficult situations where the assessment times may depend on the event can
cause informative censoring and are not discussed in this paper or handled by the software
described here. See Zhang, Sun, Sun, and Finkelstein (2007) and the references therein for
methods for informative interval-censoring.

2.2. Nonparametric estimation of survival distributions

With right-censored data often we will plot the NPMLE of the survival function which in
that case is called the Kaplan-Meier or product-limit estimator (see Kalbfleisch and Prentice
1980). The Kaplan-Meier estimator is typically called “undefined” after the last observation
if that observation is right-censored. This is because the NPMLE is not unique in that space,
as changes in the survival distribution after that last censored observation do not effect the
likelihood of the observed data.

A similar and much more common non-uniqueness problem occurs with interval-censored
data. Consider a simple case where every subject is assessed at day 0, day 7, day 14, and so
on, for every 7 days until the study ends at 20 weeks and suppose that at least one failure
is observed every week. Then no information about the survival time between days 0 and 7
is available and if two survival functions match at days 0, 7, 14, etc. they will give the same
likelihood value. For this case, we represent the class of NPMLEs of the survival function
by the probability mass associated with the intervals (0, 7], (7, 14], . . ., (133, 140]. This class
does not represent one unique survival function, but any survival function within the class
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will maximize the likelihood. The interval package represents the class of NPMLEs of the
survival distribution by putting gray rectangles in the area where the function is not unique
(see Section 4). This type of non-uniqueness is called representational non-uniqueness by
Gentleman and Vandal (2002). For ease of exposition (and in line with most of the literature)
we will call the class of NPMLEs of the distribution ‘the’ NPMLE of the distribution.

For studies with irregular assessment times between individuals, we also represent the NPMLE
of the survival distribution as a vector of probability masses and a set of intervals on which the
masses are distributed; however, the determination of that set of intervals is not as obvious.
Turnbull (1976) showed that the NPMLE of the survival distribution is only unique up to
a set of intervals, which may be called the innermost intervals (these intervals are known
also as the Turnbull intervals, or the regions of the maximal cliques, see Gentleman and
Vandal 2001). Turnbull (1976) showed how the NPMLE can then be found by the self-
consistent algorithm, which is a special case of the E-M algorithm. Convergence of the E-M
algorithm does not guarantee convergence to the global maximum (see e.g., Tanner 1996);
however, Gentleman and Geyer (1994) showed that for interval-censored data, a self-consistent
estimate (i.e., an estimate that results at convergence of the self-consistent algorithm) is
the NPMLE if it meets certain conditions, the Kuhn-Tucker conditions. Gentleman and
Geyer (1994) proposed a “polishing algorithm” whereby we provisionally set the estimated
probability mass in some intervals to zero if they are below some bound, then check the
Kuhn-Tucker conditions to make sure that those values are truly zeros at the NPMLE. If
those conditions are not met then a small probability is added back on and the E-M iterations
continue. Convergence may be defined when the maximum reduced gradient is less than
some minimum error, and the Kuhn-Tucker conditions are met (see Gentleman and Geyer
1994). For univariate interval-censored data, once the innermost intervals (i.e., regions of the
maximal cliques) are determined, the probability assigned to those intervals which maximizes
the likelihood is unique (see e.g., Gentleman and Vandal 2002, Lemma 4). For bivariate
interval-censored data, this uniqueness of probabilities may not hold and that situation is
called mixture non-uniqueness (see Gentleman and Vandal 2002).

There are many other algorithms for calculating the NPMLE, and the Icens package provides
many of the different algorithms described in Gentleman and Vandal (2001). The default
calculation of the NPMLE in the interval uses the E-M algorithm with the polishing algorithm
of Gentleman and Geyer (1994) after calculating an initial estimator of the NPMLE using the
computeMLE function of the MLEcens package. Although MLEcens was designed for bivariate
interval-censored data, once the data are reduced to the set of maximal cliques, the calculation
is the same as for the univariate interval-censored case. The optimization step (going from
the set of maximal cliques to the NPMLE) in MLEcens uses the support reduction algorithm
of Groeneboom, Jongbloed, and Wellner (2008). The advantage of the initial estimator is
speed, and for completeness in interval the Kuhn-Tucker conditions are checked.

2.3. Overview of weighted logrank tests

For right-censored data, the logrank test is a score test for the equality of survival distributions
under the proportional hazards model, thus it is an efficient test when the proportional hazards
assumption holds. There are several different versions of the logrank test that have been
developed (see Kalbfleisch and Prentice 1980). In particular, the likelihood could be the
marginal likelihood of the ranks, the partial likelihood, or the grouped continuous model.



Michael P. Fay, Pamela A. Shaw 5

Further, the variance could be estimated by the Fisher’s information from the likelihood, by
martingale methods (see Fleming and Harrington 1991) or by permutation methods. The
differences between the several different versions of the logrank test are often not a focus of
applied statisticians; however, in this paper since we are emphasizing validation of software,
these slight differences need to be considered to avoid confusion and will be discussed in detail
in later sections (see e.g., Callaert 2003).

In addition to the logrank test, which is a WLRT with constant weight of 1 (or approximately
1), an important WLRT is the one that generalizes the Wilcoxon-Mann-Whitney test. We
will call these latter tests Wilcoxon-type tests, but they are known by other names (e.g.,
Prentice-Wilcoxon test, proportional odds model, Harrington-Fleming Gρ class with ρ = 1).
Similar to the logrank test, the Wilcoxon-type tests also have been derived using different
likelihoods and using different variances. The important point for the applied researcher is
that the Wilcoxon-type tests emphasize early differences in distributions (when there are more
people at risk) more than the later differences (when there are fewer people at risk), while the
logrank test gives constant (or near constant) weights when the test is written in the weighted
logrank form (see Equation 6), which implies comparatively more weight to later differences
than the Wilcoxon-type test.

We now summarize the next two subsections which detail the extension of logrank tests
to interval-censored data. Both likelihoods that may be applied to interval-censored data,
the likelihood under the grouped continuous model (LGCM) and the marginal likelihood
of the ranks (MLR), should give similar answers. The permutation form of the tests are
generally preferred over the score test forms when using the LGCM, since permuting allows
exact inference when the censoring is not related to the covariate (e.g., treatment), and the
permutation results avoid theoretical problems of the score test (see below and Fay 1996).
When the censoring is related to treatment and there are few inspection times compared to
the number of subjects, the usual score test is recommended since it is asymptotically valid
in this case. Now we give some more details on the different tests for interval-censored data.

2.4. Choosing the likelihood for WLR tests

There has not been a single obvious approach for creating a likelihood to use for interval-
censored data. Self and Grosman (1986) used the marginal likelihood of the ranks (MLR).
This has the advantage that we need not estimate the baseline distribution (or equivalently
the baseline hazard). The disadvantage of the MLR is that it is difficult to calculate. Note
that even in the right-censored case with ties, the likelihood is usually only approximated
(see Kalbfleisch and Prentice 1980, pp. 74–75). Satten (1996) introduces a stochastic ap-
proximation to the MLR using Gibbs sampling for the proportional hazards model and it is
generalized to proportional odds and other models by Gu, Sun, and Zuo (2005).

Finkelstein (1986) (see also Fay 1996, 1999a) used the likelihood under the grouped continuous
model (LGCM). In the LGCM, we estimate a baseline distribution, which is a monotonic
function estimated at each observation point, and the function’s value at each of those points is
a nuisance parameter that must be estimated. Because there are so many nuisance parameters
and the number of them may depend on the sample size, the standard likelihood-based tests
(i.e., score test, Wald test, and likelihood ratio test) may not follow the usual theory (see
Fay 1996). Note, however, that the permutation test formed from the scores of the LGCM is
theoretically justified and is known to be a valid test when the censoring is unrelated to the
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covariate (see the following section). We discuss the computational issues of the LGCM in
the next section. For the non-censored case, Pettitt (1984) studied the two likelihoods and
showed that both likelihoods give asymptotically equivalent score tests as long as either the
number of categories of response is fixed, or the number of categories does not increase too
quickly compared to the total sample size. Pettitt concluded (see Pettitt 1984, section 5.1)
that the score test for the MLR was more efficient (i.e., had greater power) than the score
test for the LGCM; however, Pettitt did not consider the permutation form of the test using
the LGCM.

Finally, when imputation methods are used then martingale methods may be used (see Huang
et al. 2008, and below).

The interval package allows the user to choose between the LGCM and imputation/martingale
likelihood methods through the score option within ictest, as will be demonstrated in section
4. The MLR is not supported within the interval package at this time.

2.5. Choosing the inferential method for WLR tests

Once the likelihood is chosen, and the associated efficient score (the first derivative of the
loglikelihood with respect to the parameter of interest evaluated under the null, i.e., the U in
Equation 5 below) is calculated, then the distribution of that score under the null must be
estimated so that the p-value corresponding to the test statistic can be calculated. There are
several methods for doing this, but the three most common are using asymptotic methods
with the observed Fisher’s information, which is commonly known as the score test, using
permutation methods, or using multiple imputation (Huang et al. 2008).

When the censoring mechanism is the same for all treatment groups, the permutation test is
known to be valid for either the MRL or the LGCM. In this case of equal censoring, the score
test is only known to be asymptotically valid using the MRL; using the LGCM we require
the additional assumption that the number of observation times remains fixed as the sample
size goes to infinity (see Fay 1996, for a discussion of this issue).

When there is unequal censoring then the theory for the permutation method is not formally
met. Thus, we have previously suggested that with unequal censoring the score variance is
better (see e.g., Fay 1996, p. 820 for the interval-censoring case). Further work needs to
be done to explore unequal interval-censoring; however, we can get some assurance for the
practical use of the permutation method from the special case of right-censored data, where
it has been shown through simulation that the permutation method usually controls the
type I error except in extreme cases of unequal censoring and very unbalanced sample sizes
between groups (Heinze, Gnant, and Schemper 2003). Heinze et al. (2003) also developed an
imputation method that controlled the type I simulated error for all cases, and we discuss
other related imputation methods applied to interval-censored data next.

Another strategy to create WLRT for interval-censored data is to impute right-censored data
from the interval-censored data and then properly adjust the variance. Huang et al. (2008)
improved on some earlier attempts at this variance adjustment after imputation. This ap-
pears to be a reasonable strategy, and provides an independent check on the other methods.
Since this imputation method is closely related to the within-cluster resampling of Hoffman,
Sen, and Weinberg (2001), we use ‘wsr’ (for within subject resampling) to label these meth-
ods in the interval package. On each imputation Huang et al. (2008) only considered the
usual martingale derived variance (use method = "wsr.HLY" in ictest), while the interval
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package additionally allows for permutational variance (method = "wsr.pclt") and Monte
Carlo estimation within each imputation (method = "wsr.mc").

2.6. Regression in interval-censored data

This section is provided for completeness, but these methods are not a part of the interval
package.

For parametric methods, it is straightforward to form the likelihood for interval-censored
data under the accelerated failure time model and standard likelihood based methods may
be applied (see Equation 1). These methods are provided in the survival package using the
survreg function (Therneau and Lumley 2009). For right-censored data a more common
regression method is the semi-parametric Cox proportional hazards regression. In this model
the baseline hazard function is completely nonparametric, but does not need to be estimated.
The score test from this model is the logrank test. The generalization of the model to interval-
censored data typically uses the marginal likelihood of the ranks (see Satten 1996; Goggins,
Finkelstein, and Zaslavsky 1999). The only available software for doing these models of which
we are aware is an S function (which calls a compiled C program requiring access to a SPARC
based workstation) to perform a Monte-Carlo EM algorithm for proportional hazards models
described in Goggins et al. (1999) (Goggins 2007). Another approach to semi-parametric
modeling is to specifically estimate the non-parametric part of the model with a piecewise
constant intensity model (see Farrington 1996; Carstensen 1996). This is the approach taken
with the Icens function in the Epi package (Carstensen, Plummer, Laara, and et. al. 2010).

3. Mathematical formulation of the scores for the WLRT

In this section, we provide the general form of rank invariant score test on the grouped
continuous model, and for each of the three main rank scores available within ictest: those
from the logistic (Sun 1996), the group proportional hazards (Finkelstein 1986), and the
generalized Wilcoxon Mann Whitney (Fay 1996) models. In the details that follow, we briefly
describe the underlying survival model (or hazard model) and the mathematical form of the
individual scores. Further details on the derivation of the tests are given in Fay (1996) and
Fay (1999a). The other rank scores available in interval are also described briefly.

Suppose we have n subjects. For the ith subject, use the following notation:

xi is the time to event, Xi is the associated random variable.

Li is the largest observation time before the event is known to have occurred.

Ri is the smallest observation time at or after the event is known to have occurred. In
other words, we know that xi ∈ (Li, Ri]. (Note that interval allows the endpoints of
each interval to be either included or excluded using Lin and Rin options, but for ease
of explanation we assume the pattern just described.) We allow Ri = ∞ to denote
right-censoring.

zi is a k × 1 vector of covariates.

Let the ordered potential observation times be 0 = t0 < t1 < t2 < · · · < tm < tm+1 = ∞.
Partition the sample space by creating (m+ 1) intervals, with the jth interval denoted Ij ≡
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(tj−1, tj ]. For simplicity, we assume that Li, Ri ∈ {t0, . . . , tm+1}. Let

αij =

{
1 if Li < tj ≤ Ri
0 otherwise

We write the general model of the survival for the ith individual as

Pr(Xi > tj |zi) = S(tj |z>i β, γ)

where β is a k × 1 vector of treatment parameters, and γ is an m × 1 vector of nuisance
parameters for the unknown survival function.

In the interval package, there are several different ways we can model S(tj |z>i β, γ). Most of
these ways use a model closely related to the accelerated failure time (AFT) model. Thus, we
begin by defining the AFT model, where the time to event for the ith subject, Xi, is modeled
as

log(Xi) = µ+ z>i β + σεi (1)

where µ and σ are location and scale parameters and the distribution of εi is known to be F .
In the grouped continuous model, we replace the log transformation with g(·), an unknown
monotonic transformation that absorbs the µ and σ parameters, to get:

g(Xi) = z>i β + εi (2)

where here also εi ∼ F and F is some known distribution (e.g., logistic, normal). Then the
model of the survival distribution at time t is

S(t|z>i β, γ) = 1− F{g(Xi)− z>i β} (3)

and in the grouped continuous model, g(·) is described at all the places where the likelihood
may change (i.e., at t1, . . . , tm) by the vector of nuisance parameters, γ.

The grouped continuous likelihood for interval-censored data is

L =
n∏
i=1

m+1∑
j=1

αij
[
S(tj−1|z>i β, γ)− S(tj |z>i β, γ)

]
=

n∏
i=1

[
S(Li|z>i β, γ)− S(Ri|z>i β, γ)

]
(4)

To form the score statistic we take the derivative of log(L) with respect to β and evaluate
it at β = 0. The MLE of the nuisance parameters when β = 0 (in terms of the baseline
survival) are the NPMLE of survival, Ŝ(tj), j = 1, . . . ,m. For convenience, let Ŝ(t0) = 1 and
Ŝ(tm+1) = 0, even though these values are known by assumption.

We can write the efficient score vector for the parameter β (see Fay 1996, 1999a) as

U =
n∑
i=1

zi

(
Ŝ′(Li)− Ŝ′(Ri)
Ŝ(Li)− Ŝ(Ri)

)
≡

n∑
i=1

zici (5)

where Ŝ′(t) is the derivative with respect to β evaluated at β = 0 and at g(t) = F−1(1− Ŝ(t)),

i.e., Ŝ′(t) = f
[
F−1

{
1− Ŝ(t)

}]
and f and F−1 are the density and quantile functions of F

respectively.
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When zi is an k × 1 vector of indicators of k treatments, we can rewrite the `th row of U as

U` =
m∑
j=1

wj

[
d∗j` −

n∗j`d
∗
j

n∗j

]
, (6)

where

wj =
Ŝ(tj)Ŝ

′(tj−1)− Ŝ(tj−1)Ŝ
′(tj)

Ŝ(tj)
[
Ŝ(tj−1)− Ŝ(tj)

] ,

and d∗j` represents the expected value under the null of the number of deaths in Ij for the
`th treatment group, d∗j represents the expected value under the null of the total number of
deaths in Ij , similarly n∗j` and n∗j represent the expected number at risk.

We now give the values for ci (from Equation 5) and wi (from Equation 6) for some different
survival models provided in ictest. Although not developed first, we present the model
of Sun (1996) first because it is the generalization of the logrank test most commonly used
for right-censored data. Sun (1996) modeled the odds of discrete hazards as proportional to
exp(z>i β) (see Fay 1999a), leading to the more complicated survival function:

S(tj |zi, γ) =
j∏

k=1

{
1 +

(
S(tk−1|γ)− S(tk|γ)

S(tk|γ)

)}−1
.

Here and in the other two models, S(tj |γ) is a estimator of survival that does not depend on
the covariates zi, and S(tj |γ) is nonparametric because the γ is m× 1 and there are only m
unique time points observed in the data. Denote its estimator S(t|γ̂) ≡ Ŝ(t), which is the
NPMLE of the survival function of all the data ignoring covariates. Under the model of Sun
(1996) we get,

ci =
Ŝ(Li) log S̃(Li)− Ŝ(Ri) log S̃(Ri)

Ŝ(Li)− Ŝ(Ri)
(7)

where S̃(tj) = exp
(
−
∑j
`=1 λ̂`

)
, and λ` =

{
Ŝ(t`−1)− Ŝ(t`)

}
/Ŝ(t`−1), and

wj = 1.

This model is called from the interval package by the option scores = "logrank1".

The second model we consider was actually developed first, it is the grouped proportional
hazards model introduced by Finkelstein (1986), where the survival function is modeled as

S(tj |z>i β, γ) = S(tj |γ)exp(z
>
i β). This comes from the model of Equation 2 when F is the

extreme minimum value distribution. Under this grouped proportional hazards model, the ci
values are:

ci =


Ŝ(Li) log Ŝ(Li)−Ŝ(Ri) log Ŝ(Ri)

Ŝ(Li)−Ŝ(Ri)
for Ri < tm+1

log Ŝ(Li) for Ri = tm+1 ≡ ∞
(8)

and

wj =
Ŝ(tj−1)

[
log Ŝ(tj−1)− log Ŝ(tj)

]
Ŝ(tj−1)− Ŝ(tj)

.
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Note that because this model makes a proportional hazards assumption, we call the resulting
test a logrank test also and the model is called by scores = "logrank2" in the interval
package. When Ŝ(tj−1)/Ŝ(tj) ≈ 1 then wj ≈ 1.

Next, consider the model proposed by Peto and Peto (1972) (see Fay 1996) giving the
Wilcoxon-type test, where the odds are proportional to exp(−ziβ) so that the survival function
is

S(tj |zi, γ) =

{
1 +

(
1− S(tj |γ)

S(tj |γ)

)
exp(ziβ)

}−1
and we get

ci = Ŝ(Li) + Ŝ(Ri)− 1

and

wj = Ŝ(tj−1)

This comes from the model of Equation 2 when F is the logistic distribution. Since in the
absence of censoring the resulting test reduces to the Wilcoxon-Mann-Whitney test, we call
this model from the interval package by the option scores = "wmw".

Other scores are possible (but less often used) from the model of Equation 2 by choosing
different distributions for F . The user may specify that F is normal with scores = "normal",
or may supply an arbitrary distribution by using scores = "general" and specifying the
function, f

{
F−1(·)

}
(see Equation 5), using the dqfunc option.

For illustrative purposes, we now give the form of the three most often used scores in the
special case of right-censoring. For this, we introduce new notation. Suppose that there are
m∗ observed failure times, t∗1 < t∗2 < · · · < t∗m∗ . In other words there are m∗ subjects for
which xi = Ri is known, so that Li = limε→0Ri− ε ≡ Ri− 0. Let nj and dj be the number of
subjects who are at risk or fail respectively at t∗j . Then the Kaplan-Meier survival estimate
is (see e.g., Kalbfleisch and Prentice 1980)

Ŝ(t) =
∏
j|t∗j≤t

(
nj − dj
nj

)
.

In Table 1 we summarize the formulation of the scores for the three model (score) choices in
interval, as described above, for ordinary right-censored data.

4. Application

The calls to the interval package are designed to be in the same format as in the survival
package. As noted in the previous section, the icfit and ictest functions will also work on
right-censored data (see demo("right.censored.examples")).

We demonstrate the two main functions in interval, icfit and ictest, with the commonly
used interval-censored breast cosmesis data set of Finkelstein and Wolfe (1985). The data are
from a study of two groups of breast cancer patients, those treated with radiation therapy
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Test Score (ci) for Observed Score (ci′) for Right-censored
(Model) failure at t∗h observation at t∗h′

Logrank1 1−
∑h
`=1

d`
n`

−
∑h
`=1

d`
n`

(Logistic, Sun)

Logrank2 nh
dh

{
− log

(
nh−dh
nh

)}
+ log Ŝ(t∗h) log

{
Ŝ(t∗h′)

}
(Group Proportional
Hazards, Finkelstein)

Generalized WMW Ŝ(t∗h−1) + Ŝ(t∗h)− 1 Ŝ(t∗h′)− 1
(Proportional Odds)

Table 1: Scores for right-censored data.

with chemotherapy (treatment = "RadChem") and those treated with radiation therapy alone
(treatment = "Rad"). The response is time (in months) until the appearance of breast
retraction, and the data are interval-censored between the last clinic visit before the event
was observed (left) and the first visit when the event was observed (right) (or Inf if the event
was not observed). The following provides the first few observations of the data set.

R> library("interval")

R> data("bcos", package = "interval")

R> head(bcos)

left right treatment

1 45 Inf Rad

2 6 10 Rad

3 0 7 Rad

4 46 Inf Rad

5 46 Inf Rad

6 7 16 Rad

4.1. Survival estimation

First, we calculate the NPMLE for each treatment group in the breast cosmesis data sepa-
rately.

R> fit1 <- icfit(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos)

R> summary(fit1)

treatment=Rad:

Interval Probability

1 (4,5] 0.0463

2 (6,7] 0.0334

3 (7,8] 0.0887

4 (11,12] 0.0708

5 (24,25] 0.0926
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6 (33,34] 0.0818

7 (38,40] 0.1209

8 (46,48] 0.4656

treatment=RadChem:

Interval Probability

1 (4,5] 0.0433

2 (5,8] 0.0433

3 (11,12] 0.0692

4 (16,17] 0.1454

5 (18,19] 0.1411

6 (19,20] 0.1157

7 (24,25] 0.0999

8 (30,31] 0.0709

9 (35,36] 0.1608

10 (44,48] 0.0552

11 (48,60] 0.0552

The Surv function is from the survival package, and the type = "interval2" treats the
variables left and right as the left and right endpoints of the interval. The assumption is
that the left interval is excluded but the right one is included, except that if both are equal
then both are included, and values of left may be 0 and values of right may be Inf. One can
change the inclusion/exclusion defaults by using the Lin and Rin options.

These results match those calculated from Icens, an available package for computing the
NPMLE for censored and truncated survival data (see Gentleman and Vandal 2001). The
summary function applied to an “icfit” object gives the intervals with positive probability for
the NPMLE of the survival distribution function, i.e. where the estimated survival distribution
drops; however, there are infinitely many functions which drop exactly the same increment
within those intervals. The NPMLE is only unique outside of the intervals which are listed
from the summary of the fit. For example, there are infinitely many survival functions for
the treatment = "Rad" group, that have S(4) = 1 and S(5) = 1 − 0.0463 = 0.9537. Thus,
as has been done in the Icens package, when plotting the NPMLEs we denote the areas
with the indeterminate drops with grey rectangles. The function which linearly interpolates
the survival within these indeterminate regions is also displayed on the graph. We plot the
NPMLE for each treatment group using plot(fit1) to get Figure 4.1.

4.2. Two-sample weighted logrank tests

There are five score tests available in ictest, which are selected by setting the scores argu-
ment to be one of "logrank1", "logrank2", "wmw", "normal", or "general". As stated in
Section 3, the two forms of the logrank scores are those associated with Finkelstein (1986) and
those associated with Sun (1996). Although Finkelstein (1986) are perhaps more natural for
interval-censored data, we make those of Sun (1996) the default (scores = "logrank1" or
equivalently rho = 0) since these scores reduce to the usual logrank scores with right-censored
data. The default method is the permutation test, and since the sample size is sufficiently
large we automatically get the version based on the permutational central limit theorem:

R> icout <- ictest(Surv(left, right, type = "interval2") ~
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Figure 1: Non-parametric maximum likelihood survival from breast cosmesis data.

+ treatment, data = bcos)

R> icout

Asymptotic Logrank two-sample test (permutation form),

Sun's scores

data: Surv(left, right, type = "interval2") by treatment

Z = -2.6684, p-value = 0.007622

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

To pick which of the rank score methods is best, one may plot for each treatment group
the NPMLE of the distribution transformed by the inverse of the error distribution from the
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Figure 2: Complementary log-log transformation of distribution from breast cosmesis data.
If parallel then proportional hazards is a good model.

grouped continuous model (see Fay 1996). In generalized linear models these transformations
are known as links. For example, the proportional hazards is motivated by the extreme value
error distribution whose inverse is the complementary log-log link, which is the default. In
Figure 2 we plot this using the fit1 “icfit” object which contains the NPMLE for each
treatment group using the code: plot(fit1, dtype = "link"). Other links besides the
default complementary log-log link are possible: dlink = qlogis or dlink = qnorm for the
fit of the proportional odds and normal model, respectively. Fay (1996) presents those plots
for these data and none of the models looks clearly better than the others.

Because a major part of the calculation of the test statistic is estimating the NPMLE under
the null hypothesis (i.e., for the pooled treatment groups), this NPMLE is saved as part of
the output (icout$fit, in the above example) so that we can calculate this NPMLE once
and reuse it for the calculation of the other two score tests. Here is code for the Finkelstein
logrank formulation, which takes advantage of a precalculated NPMLE:

R> ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, initfit = icout$fit, scores = "logrank2")
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Asymptotic Logrank two-sample test (permutation form),

Finkelstein's scores

data: Surv(left, right, type = "interval2") by treatment

Z = -2.6839, p-value = 0.007277

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.944182

treatment=RadChem 48 9.944182

* like Obs-Exp, positive implies earlier failures than expected

Notice how the two different logrank tests give very similar results, p close to 0.007 in both
cases. We demonstrate the third score test, the generalization of the Wilcoxon-Mann-Whitney
scores to interval-censored data, and also demonstrate the ictest function in default mode:

R> L <- with(bcos, left)

R> R <- with(bcos, right)

R> trt <- with(bcos, treatment)

R> ictest(L, R, trt, scores = "wmw", initfit = icout$fit)

Asymptotic Wilcoxon two-sample test (permutation form)

data: {L,R} by trt

Z = -2.1672, p-value = 0.03022

alternative hypothesis: survival distributions not equal

n Score Statistic*

Rad 46 -5.656724

RadChem 48 5.656724

* like Obs-Exp, positive implies earlier failures than expected

4.3. K-sample and trend tests

We can perform k-sample tests using the ictest function. We create fake treatment as-
signments with four treatment groups for the individuals in the breast cosmesis data set to
demonstrate.

R> fakeTrtGrps <- sample(letters[1:4], nrow(bcos), replace = TRUE)

R> ictest(L, R, fakeTrtGrps)

Asymptotic Logrank k-sample test (permutation form),

Sun's scores

data: {L,R} by group

Chi Square = 1.3685, p-value = 0.7129
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alternative hypothesis: survival distributions not equal

n Score Statistic*

d 27 -0.7520431

b 24 1.8821766

c 20 -2.8048270

a 23 1.6746934

* like Obs-Exp, positive implies earlier failures than expected

When scores = "wmw" and the responses are all non-overlapping intervals then this reduces
to the Kruskal-Wallis test.

The function ictest performs a trend test when the covariate is numeric. The one-sided
test with alternative = "less" rejects when the correlation between the generalized rank
scores (e.g., WMW scores or logrank scores) and the covariate are small. Below, a continuous
covariate z that is uncorrelated to the outcome is created for individuals in the cosmesis
dataset to illustrate the trend test.

R> fakeZ <- rnorm(nrow(bcos))

R> ictest(L, R, fakeZ, alternative = "less")

Asymptotic Logrank trend test(permutation form), Sun's

scores

data: {L,R} by fakeZ

Z = 0.068, p-value = 0.5271

alternative hypothesis: higher fakeZ implies earlier event times

n Score Statistic*

[1,] 94 0.4421144

* postive so larger covariate values give earlier failures than expected

4.4. Exact permutation tests

We can also estimate the exact permutation p-value for any score choice in ictest using the
exact argument. Here the logrank test using Sun (1996) scores is redone as an exact test:

R> ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, exact = TRUE, scores = "logrank1")

Exact Logrank two-sample test (permutation form), Sun's

scores

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.006

alternative hypothesis: survival distributions not equal
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n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from 999 Monte Carlo replications

99 percent confidence interval on p-value:

0.0002072893 0.0184986927

The exact argument automatically chooses between an exact calculation by network algo-
rithm or an approximation to the exact p-value by Monte Carlo through the methodRuleIC1

function. In this case the network algorithm was expected to take too long and the Monte
Carlo approximation was used. If a more accurate approximation to the exact p-value is
needed then more Monte Carlo simulations could be used and these are changed using the
mcontrol option. Additionally, if icout is an“ictest”object created by the ictest function,
then icout$scores will give the vector of rank scores, ci, which may be imputed into other
software (e.g., StatXact) to create an exact permutation test. A more seamless interaction is
possible with the coin package (see Section 5.3).

4.5. Other test options

All of the above are permutation based tests, but we may use other methods. Here are the
results from the usual score test for interval-censored data:

R> ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, initfit = icout$fit, method = "scoretest",

+ scores = "logrank2")

Asymptotic Logrank two-sample test (score form),

Finkelstein's scores

data: Surv(left, right, type = "interval2") by treatment

Chi Square = 7.8749, p-value = 0.005012

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.944182

treatment=RadChem 48 9.944182

* like Obs-Exp, positive implies earlier failures than expected

where in this case the nuisance parameters are defined after calculation of the NPMLE as
described in Fay (1996). The results agree exactly with Fay (1996) and are similar to those
in Finkelstein (1986). The very small differences may be due to differing convergence criteria
in the NPMLE. The imputation method of Huang et al. (2008) may also be employed (note
that scores = "logrank2", "normal", or "general" are not available for this method):

R> icoutHLY <- ictest(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, initfit = icout$fit,
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+ method = "wsr.HLY", mcontrol = mControl(nwsr = 99),

+ scores = "logrank1")

R> icoutHLY

Asymptotic Logrank 2-sample test(WSR HLY), Sun's scores

data: Surv(left, right, type = "interval2") by treatment

Chi Square = 7.1047, p-value = 0.007688

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 46 -9.141846

treatment=RadChem 48 9.141846

* like Obs-Exp, positive implies earlier failures than expected

p-value estimated from Monte Carlo replications

These results agree with Huang et al. (2008) within the error to be expected from such an
imputation method (Huang et al. 2008, had p = 0.0075).

For the breast cosmesis data, if we can assume that the assessment times are independent of
treatment arm, then the assumptions needed for the permutation methods and the imputation
methods are met. The assumptions for the theoretical use of the score function do not hold
because the NPMLE is on the boundary of the parameter space since some masses were set
to zero in the calculation of the NPMLE (although the ad hoc adjustment appears to give
reasonable results). When some of these masses are set to zero then the anypzero element of
the “icfit” object will be TRUE, as we see here:

R> icoutHLY$fit$anypzero

[1] TRUE

If we cannot assume independence of assessment times and treatment arm then the exchange-
ability assumption needed for the permutation method is not met, and the imputation method
may be used. Further research is needed on the practical ramifications of the violation of any
of these assumptions.

5. The perm package

The default method for inference in the interval package is the permutation test. The perm
package presented here is a stand-alone R package that performs linear permutation tests.
The tests that can be done in perm can also be done in the existing coin package; however,
there are slight differences in the calculations and presentation, as outlined below.

5.1. Overview of methods

The perm package does linear permutation tests, meaning permutation tests where the test
statistic is either of the form,

T (y,x) =
n∑
i=1

cizi (9)
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as in Equation 5, or of a quadratic version of T (y,x) (e.g., see k-sample tests below). We
consider only the case where ci is a scalar and zi is either a scalar or a k× 1 vector (although
more general cases are studied in Sen 1985; Hothorn et al. 2006). Following Sen (1985),
we can write the mean and variance of T under the permutation distribution (i.e., permute
indices of c1, . . . , cn and recalculate T , where there are n! different permutations with each
equally likely) as,

U = EP (T ) = nc̄z̄

V = VARP (T ) =
1

n− 1

{
n∑
i=1

(ci − c̄)2
}

n∑
j=1

(zi − z̄)(zi − z̄)>
 ,

where c̄ and z̄ are the sample means.

In the perm package, if zi is a scalar we define the one-sided p-value when alternative =

"greater" as

pG =

∑n!
i=1 I(Ti ≥ T0)

n!
,

where I(A) = 1 when A is true and 0 otherwise, Ti is the test statistic for the ith of n! possible
permutations, and T0 is the observed value of T . When alternative = "less" then the p-
value, say pL, is given as above except we reverse the direction of the comparison operator in
the indicator function. Note that if you add or multiply by constants which do not change
throughout all permutations then the one-sided p-values do not change. Thus, a permutation
test on T can represent a test on the difference in means in the two-sample case, and can
represent a test on the correlation when zi is numeric. When alternative = "two.sided",
then there are two options of how to calculate the p-value defined by the tsmethod option of
the control variable. When tsmethod = "central", the two-sided p-value is p2, twice the
minimum one-sided p-value (i.e., p2 = min(1, 2 min(pL, pG))), and when tsmethod = "abs"

then the two-sided p-value is

p2A =

∑n!
i=1 I(|Ti − U | ≥ |T0 − U |)

n!
.

When zi is a k × 1 vector, we consider only the alternative = "two.sided" (in this case
both tsmethod options give the same result), and the Wald-type test statistic Q = (T −
U)>V −(T − U) is calculated, where V − is the generalized inverse of V .

To calculate the exact p-values, one may use complete enumeration, but this quickly becomes
intractable and other algorithms are needed. One algorithm supplied is the network algorithm
(see e.g., Agresti, Mehta, and Patel 1990). Monte Carlo approximations to the exact p-
values may also be performed. Finally, the perm allows asymptotic methods such as the
permutational central limit theorem (PCLT). Sen (1985) reviews the PCLT which shows that
under the permutation distribution with standard regularity conditions on the ci and zi,
V −1/2(T −U) is asymptotically approximately multivariate normal with mean 0 and variance
the identity matrix.

Note that because of the way exact p-values are defined, minuscual differences in the way
the computer treats ties between T0 and the Ti can lead to non-negligible differences in the
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calculated exact p-values for small samples. This is a problem for all permutation test software,
but because of the generality of the perm package (i.e., the Ti can be any values) it can be a
particularly difficult one. The solution taken by perm and by coin (Versions 1.0-8 or later) is
to round so that differences between Ti and T0 that are close to zero become zero. In perm
this is done with the digits option, which by default rounds the Ti to the nearest 12 digits.
This can particularly be a problem for WLRTs, as is shown by the example in Section 6.3.

5.2. Design and implementation

The three main functions in perm perform the two-sample (permTS), k-sample (permKS), and
trend (permTREND) tests. To demonstrate the package we will use the ChickWeight data set
in the datasets package which is part of the base distribution of R. The data are from an
experiment on chicks fed one of four diets. We use only the weight in grams of the chicks at
day 21 (i.e., Time == 21) as the response. For the two-sample examples that follow, we use
only the chicks given diets 3 and 4.

R> data("ChickWeight", package = "datasets")

R> head(ChickWeight)

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

3 59 4 1 1

4 64 6 1 1

5 76 8 1 1

6 93 10 1 1

The package uses the S3 methods, which allow object-oriented programming. The evaluation
of any of the three main functions is determined by the class of the first object in the function
call. This is similar to the calls to the analogous functions in the stats package. For example,
as is possible using t.test or wilcox.test from the stats package, we can call the test using
the formula structure, which automatically uses the permTS.formula function. The formula
is weight~Diet where the ith element of weight represents ci and the ith element of Diet
represents zi in Equation 9. We also use the data and subset variables to name the data set
and pick out only the Day 21 weights of those chicks who got Diets 3 or 4.

R> permTS(weight ~ Diet, data = ChickWeight, subset = Diet %in%

+ c(3, 4) & Time == 21)

Permutation Test using Asymptotic Approximation

data: weight by Diet

Z = 1.1412, p-value = 0.2538

alternative hypothesis: true mean Diet=3 - mean Diet=4 is not equal to 0

sample estimates:

mean Diet=3 - mean Diet=4

31.74444
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Equivalently, we can define the responses explicitly and do the same test, with the default
structure,

R> y3 <- with(subset(ChickWeight, Time == 21 & Diet ==

+ 3), weight)

R> y4 <- with(subset(ChickWeight, Time == 21 & Diet ==

+ 4), weight)

R> permTS(y3, y4)

Permutation Test using Asymptotic Approximation

data: y3 and y4

Z = 1.1412, p-value = 0.2538

alternative hypothesis: true mean y3 - mean y4 is not equal to 0

sample estimates:

mean y3 - mean y4

31.74444

The permTS uses a function (determined by the option methodRule) to automatically choose
the method used in the permutation test. Since in this case the exact network method is not
expected to give an quick answer, the default methodRule automatically chooses to use the
PCLT. If the sample sizes are small enough, then exact methods are done automatically. For
example, using only the first 5 chicks on each diet, then the methodRule function chooses the
network algorithm:

R> permTS(y3[1:5], y4[1:5])

Exact Permutation Test (network algorithm)

data: y3[1:5] and y4[1:5]

p-value = 0.1825

alternative hypothesis: true mean y3[1:5] - mean y4[1:5] is not equal to 0

sample estimates:

mean y3[1:5] - mean y4[1:5]

60.6

Note that the network algorithm is written entirely in R code, so efficiency gains may be
possible by translating portions of the code into C code (see e.g., Chambers 2008).

In addition to the pclt and exact.network methods, the two-sample test additionally has
both a complete enumeration exact algorithm (method = "exact.ce"), which is useful for
simulations involving a small number of observations in each group, and a Monte Carlo
approximation to the exact p-value (method = "exact.mc"). The user may supply their own
methodRule function, which must have three input values: the numeric vectors c = [c1, . . . , cn]
and z = [z1, . . . , zn] (see Equation 9), and the logical variable exact given by the option of
the same name. For the two-sample test the output of a methodRule function should be
a character vector which is one of "pclt", "exact.network", "exact.ce", or "exact.mc".
The logical variable exact causes the default methodRule for permTS to choose from among
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the three exact algorithms based on the estimated speed of the calculations (see help for
methodRuleTS1).

All methods except "exact.mc" produce an “htest” object, which is a list with elements
described in the help for permTS and printed according to the print method from the stats
package. The "exact.mc" method creates an “mchtest” object, which additionally prints out
confidence intervals on the p-value based on the Monte Carlo replications to help the users
determine if the p-value would change much if the Monte Carlo procedure was repeated with
a different random seed. Note that even if the confidence interval on the p-value is large, the
given p-value from the "exact.mc" method (i.e., the quantity one plus the number of Monte
Carlo replications that are equal to or more extreme than the observed test statistic divided
by the quantity one plus the number of replications) is always a valid p-value (see e.g., Fay,
Kim, and Hachey 2007, equation 5.3).

For the k-sample test the calls may also be made by formula structure,

R> permKS(weight ~ Diet, data = ChickWeight, subset = Time ==

+ 21)

K-Sample Asymptotic Permutation Test

data: weight by Diet

Chi Square = 11.1786, df = 3, p-value = 0.01080

or by explicit definition of the response (c) and group (z) vectors,

R> y <- ChickWeight[ChickWeight$Time == 21, "weight"]

R> g <- ChickWeight[ChickWeight$Time == 21, "Diet"]

R> permKS(y, g)

K-Sample Asymptotic Permutation Test

data: y and g

Chi Square = 11.1786, df = 3, p-value = 0.01080

The methodRule function works the same way as for permTS except a different default
methodRule function is used since the exact.network method is not available for the k-
sample test.

If we can assume for illustration that the diets are inherently ordered, then we may want to
use the trend test. For the trend test (i.e., when zi is a scalar) the calls may also be made by
formula structure (not shown), or the default,

R> permTREND(y, as.numeric(g))

Permutation Test using Asymptotic Approximation

data: y and COVARIATE

Z = 2.7879, p-value = 0.005305
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alternative hypothesis: true correlation of y and COVARIATE is not equal to 0

sample estimates:

correlation of y and COVARIATE

0.4202893

Similar methodRule functions may be used (see help for permTREND).

Options for the algorithm methods are controlled by the variable control, and the function
permControl allows changing of only a subset of the options. The output from permControl

is a list of all the options. Most of the options pertain to the "exact.mc" method: nmc gives
the number of Monte Carlo replications, p.conf.level gives the confidence level calculated
on the p-value, seed gives the random number seed, and setSEED is a logical telling whether
or not to set the seed. Other options are: digits adjusts the rounding of the test statistics
to decide on which to call ties (see Section 6.3), tsmethod gives two options for the two-sided
method for calculating the p-values (see Section 5.1 above). The last option is cm and is used
in the following scenario. Suppose one wanted to do a simulation on data of the same size
as the example. Then one could calculate the complete enumeration matrix once (using the
chooseMatrix function), and then each simulation could reuse that matrix. This will save
time as illustrated below on the ChickWeight data:

R> system.time(cm19c10 <- chooseMatrix(length(y3) +

+ length(y4), length(y3)))

user system elapsed

5.35 0.00 5.34

R> system.time(PC <- permControl(cm = cm19c10))

user system elapsed

0.16 0.01 0.17

R> system.time(permTS(y3, y4, method = "exact.ce", control = PC))

user system elapsed

0.08 0.00 0.07

R> system.time(permTS(y3, y4, method = "exact.network"))

user system elapsed

4.82 0.00 4.83

In a simulation, the first calculation only needs to be done once.

5.3. Comparison with coin package

This section compares the two permutation packages, coin (version 1.0-8) and perm (version
1.0-0.0).
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The primary motivation for the creation of the perm package is for an independent, within R,
validation of the coin package. All checks between coin and perm have shown no differences
(see perm.coin.check.R in the test directory). In many ways, coin is the more comprehensive
and general package of the two. For example, coin allows the following not supported in
perm: user supplied transformations on the responses and covariates, other (nonlinear) test
statistics, stratification, and multiple responses and covariates. Further, the exact algorithms
in coin are faster than those in perm.

Here are some minor ways that perm is different from coin. First, the print method for
coin prints a standardized Z statistic to show direction of the effect, while the print method
for perm prints the difference in means and only additionally prints the Z statistic when
the PCLT is used. Second, the perm package allows methodRule functions, as previously
described, to automatically choose the calculation method. No similar feature is offered in
coin. Third, when using the Monte Carlo approximation to the exact (method = "exact.mc"

in perm and distribution = approximate() in coin), then perm prints confidence intervals
automatically with the print method, while coin prints them only when using the pvalue

function. Fourth, the perm package allows the "exact.ce" method, which does complete
enumeration. If a simulation is desired for the two-sample test on a small sample size, then
using the "exact.ce" method with the cm variable fixed by the control option (so that
it does not need to be recalculated for each simulation) may give faster results than other
algorithms. Fifth, the perm package allows two types of two-sided p-values (see permControl:
option tsmethod = "central" (default) and tsmethod = "abs"), while the coin allows only
one type of alternative (denoted tsmethod = "abs" in perm). We emphasize that these
differences are minor and when the two packages do the same analysis, both are similar.

Further extensibility of the perm package may not be needed since many of the ways it may
be expanded are covered by the coin package.

6. The interval package

We have already given some examples of how to use the interval package. In this section, we
give more details on the structure of the package.

6.1. Design and implementation

The interval package uses S3 methods. The two main functions are the icfit function and
the ictest function. Both functions allow a formula as well as a default implementation,
and both implementation styles were presented in Section 4. Although the typical response
for the formula will be of the “Surv” class, from the survival package, we also allow numeric
responses and these are treated as exactly observed values.

The icfit function outputs an object of class “icfit” which is a list with the elements
described in the help, and with most elements exactly as in the “icsurv” class of the Icens
package. The “icfit” class is different from the “icsurv” class primarily because it allows
the NPMLE of the distributions for multiple strata to be stored as one “icfit” object as is
possible in the “surv” class of the survival package. For example, if the right hand side of the
formula contains a factor object with k factors then the resulting “icfit” object will contain
k separate NPMLEs, one for each factor. In that case the strata element will be a numeric
vector of size k giving the number of elements in each strata, and the other objects (e.g.,
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the vector of probability masses, pf) will be larger to include all the separate NPMLEs. The
NPMLEs are separated by stratum when either the summary or plot methods are applied to
the “icfit” objects.

The available methods for “icfit” objects are print, summary, "[" and plot. The print

method prints as a list except the ‘A’ matrix (described below) is not printed, only its dimen-
sions are given. The summary and plot methods have been shown in Section 4 and they either
print or plot on one graph the NPMLE for each stratum. The "[" method allows picking out
the ith stratum from an “icfit” object.

Here are some details on the calculations in icfit. The icfit function calls a separate
function, Aintmap, that calculates an ‘A’ matrix and the ‘intmap’. The A matrix is an n×m
matrix of zeros and ones with the ijth element being an indicator of whether the interval
associated with the ith observation contains the jth interval of the intmap. The intmap is a
matrix which gives left and right endpoints of the intervals associated with the columns of A,
and the attributes of the intmap tell whether the endpoints are included or not as determined
by the Lin and Rin options. The default is to exclude the left interval and include the right
(i.e., (L,R]), except when either L = R (then the intervals are treated as exact, i.e., [R,R])
or R =∞ which is not included. Differences in the inclusion of the endpoints can change the
results (see Ng 2002). When the intervals of the intmap are regions of maximal cliques then
the A matrix is the transpose of the incidence or clique matrix defined in Gentleman and
Vandal (2002). The Aintmap is called internally by the icfit function, and the innermost
intervals (i.e., regions of maximal cliques) are calculated to possibly reduce the number of
columns of the A matrix.

Once an A matrix is calculated and reduced to represent only innermost intervals, the initial
estimate of the survival distribution is needed for the E-M algorithm. The initfit option
controls that initial estimate. An allowable option for initfit is to provide an initial NPMLE
estimate as an object of either class “icfit” or “icsurv”. Another option for initfit is a
character vector giving the name of a function to calculate an initial fit. This function must
have as inputs any or all of five variables (L, R, Lin, Rin, and/or A), and must output a
vector of probability masses estimating the distribution and optionally it may output the
corresponding intmap. The default for initfit is initcomputeMLE, a function that calls
computeMLE from the MLEcens package. Note that if the initfit function, such as the
initcomputeMLE function, gives an error then the icfit ignores this calculation, gives a
warning, and calculates a very simple initial distribution. In the control option of icfit,
other values may be passed to the initfit function through the initfitOpts element of
control, and initfitOpts must be a named list of options.

Once the initial distribution is calculated, it is used as the starting value in a modified E-M
algorithm that allows ‘polishing’ elements to zero, then subsequently checking the Kuhn-
Tucker conditions (see Gentleman and Geyer 1994). If the initial distribution is very close
to the NPMLE, then convergence may happen on the first iteration. On the other hand, the
initial distribution need not be very close to the NPMLE but convergence can still happen.
If the initial distribution has some intervals set to zero that should not be, then the Kuhn-
Tucker conditions will not be met and the message value of the resulting “icfit” object (e.g.,
fit$message) will state this fact.

We test in demo("npmle") that the NPMLE estimates from the Icens package match those
from the icfit function. In that file we compare the NPMLE from the two packages for the
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cosmesis data. Additionally in the demo, we simulate 30 other data sets and show that the
NPMLEs match for all the simulated data sets (data not shown).

The ictest function outputs an object of class “ictest” for which there is a print method,
modeled after the print method for the “htest” class used in the stats package that comes
with base R. Objects of class “ictest” are lists with many objects (see ictest help).

There are four choices for a predefined type of rank score: "logrank1" (scores described
in Sun 1996), "logrank2" (scores described in Finkelstein 1986), "wmw" and "normal" (the
WMW scores or normal scores described in Fay 1996). Additionally, the option "general"

allows general scores for arbitrary error distributions on the grouped continuous model (see
Fay 1996). To show the general scores we consider the logistic error distribution. We can
show that these scores are equivalent to the Wilcoxon-type scores (within computation error):

R> icout <- ictest(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, scores = "wmw")

R> wmw.scores <- icout$scores

R> logistic.scores <- ictest(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, icFIT = icout$fit, scores = "general",

+ dqfunc = function(x) {

+ dlogis(qlogis(x))

+ })$scores

R> max(abs(wmw.scores - logistic.scores))

[1] 5.551115e-16

There are many inferential methods available for ictest as described in Section 2.5 and
the method may be either explicitly stated as a character vector or may be the result of
a methodRule function. The methodRule function works similarly as in the perm package,
except the input must be three objects: the vector of rank scores, the vector of group member-
ship values, and exact, a logical value coming from the object of the same name in the input.
Other methodRule functions may be created to automatically choose the method based on a
function of these three objects, but the default is methodRuleIC1 (see help for that function
for details). Note that permutation inferences are available for all types of rank scores, but
other types of inferences are not available for all the scores; see Section 2.5 and the ictest

help for details.

Here is an overview of the calculation functions used in ictest. First, unless icFIT is given,
the NPMLE of the distribution for all individuals is calculated using the icfit function.
Any options used with the icfit function may be passed from the ictest call by using
the icontrol option. Using the resulting NPMLE from the icfit call, the rank scores are
calculated using the wlr_trafo function.

Similar to the ictest function, wlr_trafo is an S3 function with a default method and
one for “Surv” objects, but additionally there is a method for “data.frame” objects. In the
“data.frame”method, there must be only one variable which has either a“Surv”or“numeric”
class. The purpose of the “data.frame” method is to properly interact with the coin package
(see Section 6.2 below). Once the rank scores are calculated, then other functions are called
depending on the inferential method chosen: the icScoreTest function for the score test, the
icWSR function for the imputation approach, and the functions from perm for the permutation
approaches.



Michael P. Fay, Pamela A. Shaw 27

6.2. Interacting with the coin package

The coin package allows different transformations for the response variables and we can use
the wlr_trafo function as a transformation function within coin.

R> library("coin")

R> independence_test(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, ytrafo = wlr_trafo)

Asymptotic General Independence Test

data: Surv(left, right, type = "interval2") by treatment (Rad, RadChem)

Z = -2.6684, p-value = 0.007622

alternative hypothesis: two.sided

This repeats the asymptotic results from the method = "pclt" of ictest. The usefulness of
coin are the fast algorithms for exact permutation calculations. Even these fast methods are
still intractable for the full breast cosmesis data set, but we show here how the method may
be applied quickly to a subset of that data.

R> SUBSET <- c(1:5, 50:65)

R> independence_test(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, subset = SUBSET, ytrafo = wlr_trafo,

+ distribution = exact())

Exact General Independence Test

data: Surv(left, right, type = "interval2") by treatment (Rad, RadChem)

Z = -1.0722, p-value = 0.2899

alternative hypothesis: two.sided

R> ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, subset = SUBSET, method = "exact.network")

Exact Logrank two-sample test (permutation form), Sun's

scores

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.2861

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 5 -1.514936

treatment=RadChem 16 1.514936

* like Obs-Exp, positive implies earlier failures than expected

The p-values are different since, as discussed in Section 5.3, the default two-sided method is
different for the coin package (corresponding to control option tsmethod = "abs" in perm)



28 Weighted Logrank Tests for Interval Censored Data

than the perm package (default uses tsmethod = "central") and hence also the interval
package. When we use tsmethod = "abs" then we reproduce the results from coin:

R> ictest(Surv(left, right, type = "interval2") ~ treatment,

+ data = bcos, subset = SUBSET, method = "exact.network",

+ mcontrol = mControl(tsmethod = "abs"))

Exact Logrank two-sample test (permutation form), Sun's

scores

data: Surv(left, right, type = "interval2") by treatment

p-value = 0.2899

alternative hypothesis: survival distributions not equal

n Score Statistic*

treatment=Rad 5 -1.514936

treatment=RadChem 16 1.514936

* like Obs-Exp, positive implies earlier failures than expected

Note that the algorithms in coin can be considerably faster. To show this consider a larger
subset of the breast cosmesis data:

R> SUBSET2 <- c(1:12, 47:58)

R> system.time(independence_test(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, subset = SUBSET2, ytrafo = wlr_trafo,

+ distribution = exact()))

user system elapsed

0.06 0.00 0.06

R> system.time(ictest(Surv(left, right, type = "interval2") ~

+ treatment, data = bcos, subset = SUBSET2, method = "exact.network",

+ mcontrol = mControl(tsmethod = "abs")))

user system elapsed

2.75 0.00 2.75

6.3. On handling ties for exact permutation implementation

In implementing the exact version of permutation tests, the way ties are handled may change
the resulting p-values by non-negligible amounts. In this section we detail a simple artificial
example to show how the handling of ties is difficult, in terms of reliably reproducing results,
and we show that the ictest function gives the correct results.

Consider the data set with:
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(L R] probability

2 3 2/7
5 6 2/7
9 10 3/14
10 12 3/14

Table 2: NPMLE for example1.

R> L <- c(2, 5, 1, 1, 9, 8, 10)

R> R <- c(3, 6, 7, 7, 12, 10, 13)

R> group <- c(0, 0, 1, 1, 0, 1, 0)

R> example1 <- data.frame(L, R, group)

R> example1

L R group

1 2 3 0

2 5 6 0

3 1 7 1

4 1 7 1

5 9 12 0

6 8 10 1

7 10 13 0

In this case we can calculate the NPMLE exactly and give it in Table 2.

We calculate this NPMLE with the interval package as

R> summary(icfit(L, R), digits = 12)

Interval Probability

1 (2,3] 0.285714285714

2 (5,6] 0.285714285714

3 (9,10] 0.214285714286

4 (10,12] 0.214285714286

which matches the exact to at least 12 digits:

R> print(3/14, digits = 12)

[1] 0.214285714286

Usually the fit will not be this close, and the closeness of the fit is determined by the
icfitControl list (see the help).

The problem relates to the numerical precision of the calculated rank scores and subsequent
permutation p-value when there is a small number of permutations and ties in the test statis-
tics with different permutations (for interval-censoring, possibly stemming from overlapping
intervals). While not unique to interval-censored data, this combination of factors may be
more common in this setting.
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We can calculate the exact scores for the Sun method (Equation 7 and scores = "logrank1")
these are [

5

7
,
11

35
,
18

35
,
18

35
,−24

35
,−13

70
,−83

70

]

These scores sum to zero (as do all such scores regardless of the model). There are

(
7
3

)
=

35 unique permutations with equal probability. Note that the difference in means of the
original scores, (with group=[0, 0, 1, 1, 0, 1, 0]), gives equivalent values to the permutation
with group=[1, 1, 0, 0, 0, 1, 0] because the sum of the first and second scores equals the sum of
the third and fourth scores. Thus, we have a tie in the permutation distribution. We need
to make sure the computer treats it as a tie otherwise the p-value will be wrong. Dealing
with ties in computer computations can be tricky (see R FAQ 7.31 Hornik 2010). To see
the details, we completely enumerate all the sums of the scores in one group. We use the
function chooseMatrix from perm to generate the full list of permutations of the original
group variable. We print out only the first 9 of the 35 ordered test statistics, placing the
difference in means in the 8th column, next to the permutation of the group allocation:

R> score1 <- wlr_trafo(Surv(L, R, type = "interval2"))

R> cm <- chooseMatrix(7, 3)

R> T <- ((1 - cm) %*% score1)/4 - (cm %*% score1)/3

R> cbind(cm, T)[order(T), ][1:9, ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1 0 1 1 0 0 0 -1.0166667

[2,] 1 1 1 0 0 0 0 -0.9000000

[3,] 1 1 0 1 0 0 0 -0.9000000

[4,] 0 1 1 1 0 0 0 -0.7833333

[5,] 1 0 1 0 0 1 0 -0.6083333

[6,] 1 0 0 1 0 1 0 -0.6083333

[7,] 1 1 0 0 0 1 0 -0.4916667

[8,] 0 0 1 1 0 1 0 -0.4916667

[9,] 0 1 1 0 0 1 0 -0.3750000

The seventh and eighth largest of the 35 test statistics are tied, and the eighth largest is
equal to the original group assignment, so that the one sided p-value is 8/35 = 0.2286. The
function ictest properly calculates this p-value. The way that perm can directly address
the ties issue is to allow the user to specify numerical precision, i.e. rounding to the nearest
permControl()$digits significant digits; and perm treats values of the permutation distri-
bution that are tied for that many significant digits as true ties.

We have not shown that this method of breaking ties always works properly; however, it
does work in all the cases we have tried. We would like to emphasize that this issue is only
a problem with small sample sizes using exact permutation methods. Additionally, it is a
problem with all permutation tests where the test statistics have a non-zero probability of
creating a tie. Very small differences in the rank scores will only produce correspondingly
small differences in the asymptotic approximation, so as the sample sizes get large and, as
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guaranteed by the permutational central limit theorem, the estimate becomes more accurate,
the way ties are handled effects large sample results minimally.
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