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The package ipdmeta provides methods for conducting a complete patient-level analysis and a
mixed-level meta-analysis when the primary endpoint is a time-to-event. The setting assumed is
where the studies to be combined are randomized controlled intervention trials. For the mixed-
level meta-analysis, aggregate-data trials are multivariate survival estimates (points along a KM
plot) within-intervention, within-trial. In this vignette, extended examples with explanations are
provided for the analytical functions coxmcem and mlma, for a full IPD and mixed-level meta-
analysis, respectively.
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1 Estimation for Cox Mixed Effects Model: coxmcem

1.1 Description

The Cox mixed effects model is an extension of the standard Cox regression model for censored
data (1; 2). It suitable for censored data where the unit of analysis is clustered in some way, for
example, children within households. It builds on frailty models by allowing for more complex
random effects structures corresponding to more complex grouping, for example, twins among
siblings within household. The general framework has also been described as a proportional hazards
mixed model or multivariate frailty model.

Estimation approaches have included approximate and sampling methods. Approximate meth-
ods are based on a Laplace approximation to the marginal log-likelihood (3). This is implemented
by the package coxme of Therneau (4). It is well-known that the loss of information with the
approximation results in an underestimation of the parameter standard errors (5).

Sampling methods take an expectation-maximization approach which has the advantage of
retaining all information on the model parameters. Sampling is required at the E-step. Vaida and
Xu (2000) propose a Gibbs adaptive rejection sampling method to sample the posterior frailties
given a multivariate-normal prior (6). This approach is implemented with the package phmm (7).
Ripatti, Larsen and Palmgren (2002) suggest a rejection sampler; the author is not aware of any
software for this strategy (8). The difficulty with sampling approaches is that convergence has to
be checked at the E-step and is a challenge to automate.

The coxmcem uses importance sampling to obtain averages for the multivariate frailties at the
E-step. Booth and Hobert (1999) give a description of the general approach for generalized linear
mixed models (9). The appeal of an importance-sample is that it obviates the need for con-
vergence to the target distribution while retaining all information about the model parameters.
The proposal density for the coxmcem implementation is a multivariate T whose location is the
maximum-likelihood estimate of the frailties at the current EM iteration. Monitoring the MC error
and parameter estimates follows the procedure outlined by Ripatti et al. (2002).

1.2 Usage

I illustrate the use of coxmcem. An often used test case for frailty models is a data set of time to
tumor occurrence for 50 litters of rats (10, chapter 9), with one of three rats in each litter randomly
selected to recieve a carcinogen exposure (11). This is the data that will be used for the case study.
The first few rows are given below

library(ipdmeta)

data(cancer.rats)

head(cancer.rats)

litter rx time event

1 1 1 101 0

2 1 0 49 1

3 1 0 104 0

4 2 1 104 0

5 2 0 102 0

6 2 0 104 0

1.2.1 Model

The PHMM model for time-to-tumor occurence for the cancer.rats data is
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λ(t) = λ0(t)exp{xrx,iβ + bk(i)} (1)

where xrx,i is the ith rat’s indicator for carcinogen exposure and bk is the kth litter frailty with ith
subject litter membership k(i). All K = 50 frailties share the normal distribution bk ∼ N(0, σ2).

1.2.2 Implementation

PHMM (2) with importance sampling is implemented as follows

set.seed(123321)

fit <- coxmcem(

Surv(time,event)~rx,

random=~(1|litter),

n.groups=50,

data=cancer.rats,

max.iter=20,

min.sample=500,

mc.step=2,

est.delta=1/100,

df=30

)

The formula for the survival object is the same as would be supplied to any of the models of
survival. The random formula indicated the frailty structure. Here I specifiy a baseline frailty by
litter. The number of groups is the number of clusters in the data set. In this case clustering is
by litter and there are 50 total litters. Next, I indicate the name of the data frame containing the
variables described in the model formulas.

The remaining arguments determine the stopping rule for the EM importance sampling proce-
dure. The argument min.sample indicates the number of draws from the joint T distribution for
the frailties that are generated at each E step. The sample determines the number of frailties in
the Monte Carlo estimate of the averages for the complete log-likelihood. It is typical to begin with
a small number while the model estimates are far from the MLE and increase the sample with the
algorithm iterations. In this case I specify a starting sample size of 1000. Because the algorithm
will run more slowly with a larger sample size, it is best to begin with a small number, say 200, if
suitable choices for some of the arguments, i.e. df, are still being worked out.

Convergence of the algorithm is judged by the relative change of the model paramters. Denote
the set of fixed effects and frailty variance parameters as θ. In this example θ consists of the fixed
effects estimate for the treatment effect rx and univariate frailty variance vcov = σ2. The relative
change in each parameter from the previous iteration is determined. If the maximum change among
all parameters is less than est.delta, for three consecutive iterations, then the algorithm stops.
With a setting for est.delta of 1

100 this would mean that a less than 1% relative change for all
parameters is required for three iterations in a row in order to stop. For this reason, the minimum
number of iterations for any implementation is three.

If max.iter is reached before the convergence threshold has been met, the algorithm stops.
The argument mc.step determines how the E-step frailty sample size is increased. When the

coefficient of variation of the relative change of the parameters is large, this suggests that the MC
error is too large and the sample size should be increased. Thus, when the three most recent relative
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change between consecutive EM estimates have a coefficient of variation greater than unity, the
current sample size of N is increased by

N = N +
1

mc.step
N

1.2.3 Summary

First I review the algorithm properties to see if enough iterations and MC samples have been
obtained.

fit[1:5]

$max.weight

[1] 0.01193944 0.01176729 0.01087182

$mc.samples

[1] 500 500 500

$est.converge

[1] 0.006424424 0.009711094 0.001660967

$loglik

[1] -177.5236 -177.7699 -177.8148

$sd.loglik

[1] 9.276321 8.759723 8.369623

The algorithm stopped after 3 iterations, the minimum possible, so that the MC sample size
never exceeded the initial starting value. The maximum weights are the maximum weights among
all importance weights for the given iteration. These will each be a value between (0,1) since the
sum of all importance weights are 1, their being normalized. For a sample size of N, each iteration
draws N joint frailties, in this case 500 vectors of 50 frailties. Averages of the frailties are the
importance-weighted average of the N-size sample. No single set of frailties should dominate this
average so it needs to be checked that the weights are fairly evenly distributed. If the weights were
all equal, each would be 1

N . A maximum weight much greater than this would suggest that some
adjustments were needed in the model of T proposal distribution settings. Here I see that no single
draw contributed greater than approximately 1% to the average so the algorithm settings seem to
be fine.

The standard deviation of the log-likelihood can complement the interpretation of the impor-
tance weights. These are the standard deviations of the conditional log-likelihood of the PHMM
conditional on each sample frailty of the given iteration. There should be enough variation in the
frailties to be sure that the full support is represented. However, large variation could produce great
imbalances in the importance weights. So if the max.weights seem large, and the standard devi-
ation of the log-likelihoods are large relative to the MLE log-likelihood values, this would suggest
that the T proposal settings need to be modified or that the model has been poorly specified. For
example, one way to reduce variation in the frailty proposal would be to lower the df. In general,
a good starting place might be to set df to the number of clusters in the data set, approximately.

Regarding the model estimates, I find that the final iteration stopped with a relative maximal
change of 0.17%, meaning that both the coef and vcov estimates had less than 0.2% change from
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the previous iteration values. By specifying a est.delta of 1%, I required that the algorithm
proceed until three consecutive relative changes had maximum differences of 1% or less. This was
met after the minimum three iterations in this case.

Being satisfied with the convergence properties of the MCEM I now consider the findings. The
fixed effect estimates are the list element coef and the frailty variance parameters vcov.

> fit$coef

rx

0.910061

> fit$vcov

[,1]

[1,] 0.4316714

Variances for each of these parameters are contained in the list var. A large-sample 95% CI for
the hazard ratio of tumor occurrence given carcinogen exposure can be obtained with the following
code. I show the do-it-yourself way then a version which makes use of the confidence interval
function ci.

> exp(fit$coef+c(-2,2)*sqrt(fit$var$coef))

[1] 1.300951 4.744692

> ci(1,fit$coef,fit$var$coef)

low point.est high

1.317909 2.484474 4.683640

The interpretation is that there is a 2.5 increased risk to developing a tumor for rats exposed
to the carcinogen which can be stated with 95% confidence.

The variability between litters in baseline risk was

sqrt(fit$vcov)

[,1]

[1,] 0.657017

> ci(1,0,fit$vcov,alpha=.3)

low point.est high

0.5061337 1.0000000 1.9757625

suggesting that there is a roughly 30% chance that otherwise equivalent rats with respect to exposure
could have a relative hazard outside of the interval (0.51, 1.98), with 30% probability, which seems
a substantial level of heterogeneity.

A Wald test for the significance of the fixed effects can be obtained by computing the Wald
test-statistics using the variances of the coef.

> fit$coef/sqrt(get.diag(fit$var$coef))

rx

2.813322

> p.value <- pnorm(abs(fit$coef/sqrt(get.diag(fit$var$coef))),lower=FALSE)

5



> p.value

rx

0.002451630

Testing of the random effect is more challenging because of the asymptotic properties of common
tests when the variance parameter is near the boundary, that is, the null hypothesis that the variance
is zero. A Wald test can be a useful exploratory tool but a likelihood ratio test is generally preferred
(12).

> fit$vcov/sqrt(fit$var$vcov)

[,1]

[1,] 1.868417

This gives support for the inclusion of the baseline litter random effect.

1.2.4 Recognizing a Poorly Specified Model

I now consider how to identify a poorly fit model when the random effect and fixed effects structures
have been misspecified. I do this be introducing an unrelated variable into the model. The ‘noise’
term is included as a fixed and random effect.

λ(t) = λ0(t)exp{xrx,iβ1 + xnoise,iβ2 + bk(i),1 + bk(i),2xnoise,i} (2)

with (
bk,1

bk,2

)
∼MVN(0,

(
θ1 θ3
θ3 θ2

)
)

And the implemenation is given by

set.seed(456654)

cancer.rats$noise <- runif(150)

fit <- coxmcem(

Surv(time,event)~rx+noise,

random=~(1+noise|litter),

n.groups=50,

data=cancer.rats,

max.iter=10,

min.sample=300,

mc.step=2,

est.delta=1/100,

df=30

)

Since I am initially unsure about the fit of this model, I do a trial run with a smaller initial
sample size and fewer iterations. Monitoring the relative change in estimates I note some cases of
high change. One way in which this could occur is when a parameter of the model is close to zero,
so that small absolute changes in estimates result in large relative changes.
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I also note some iterations with high max.weight and sd.loglik. Looking at the fixed effect es-
timates, I conclude that the noise term is not contributing any information to the tumor-occurrence
outcome and that the large relative changes in the parameters (large est.delta) was due to the
noise coefficient being near to zero.

> fit$coef/sqrt(get.diag(fit$var$coef))

rx noise

3.019627 0.642682

2 Mixed-level Meta-analysis: mlma

Mixed-level meta-analysis (MLMA) describes a quantitative summary of evidence at disparate levels
with some trials providing individual-level data and other trials summary data. The mlma function
performs MLMA estimation when the outcome is a time-to-event and aggregate data is in the form
of a set of survival estimates within treatment group, within study.

The individual patient data (IPD) model is a proportional hazards mixed model (PHMM)
allowing a general random effects structure with multivariate normal frailties. The study-level
model is a multivariate mixed model on the complementary-log-log of the study-specific survival
estimates. This study-level model is the implied linear relation based on the assumption that all
outcomes follow the PHMM at the patient level.

Through combined likelihood maximization, both evidence levels contribute to the estimation
of shared fixed effects and the frailty variance structures. The estimation uses an MCEM approach
with importance sampling following the same procedure are for the PHMM analysis implemented
by coxmcem. Separation of the patient-level and study-level effects is also possible if there is concern
of non-equivalence in the risk associations at the aggregate level versus the subject level.

2.1 Usage

Consider a mixed-level dataset consisting of 8 IPD and 2 study-level RCTs. The model for the
PHMM has treatment main effect. A bivariate frailty for baseline and treatment effect by trial is
the random component.

See example(ipd.data) and example(meta.data) for a quick visual display of the nature of
the mixed-level data for this example.

To obtain the MLMA estimates, I specify model formula for the study- and individual-level
models. The individual-level model is a hazard-based model and takes a formula like that for
survfit or coxph. The study-level model is based on aggregated survival proportions with their
squared standard errors (sigma2). The random component uses indicated the frailty structure using
the same form as for coxme or lme. The argument study.group.interaction is the factor that is
the cluster, here group, and the treatment group indicator. This factor identifies the membership to
the within treatment, within study groups for which separate survival estimates have been collected.

To gain some guidance in selection of the fixed effects model I can make use of a less computa-
tionally intense analysis with the patient-level data.

> fit.coxph <- coxph(Surv(time,event)~trt*x,ipd.data)

> fit.coxph

Call:

coxph(formula = Surv(time, event) ~ trt * x, data = ipd.data)
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coef exp(coef) se(coef) z p

trt -0.45666 0.633 0.0583 -7.832 4.8e-15

x 0.02494 1.025 0.0291 0.856 3.9e-01

trt:x -0.00906 0.991 0.0419 -0.216 8.3e-01

Likelihood ratio test=70.3 on 3 df, p=3.66e-15 n= 1600

This suggests that the candidate covariate is not important. I can verify this with a trial run
of mlma. The model components are as follows.

The patient-level PHMM model is

λi(t|b) = λ0(t)exp{xtrt,iβ1 + xiβ2 + bk(i),1 + bk(i),2xtrt,i}

where k(i) is the study membership for the ith subject. Each bk is a bivariate normal frailty with
general variance structure.

The study-level model for each KM survival estimate provided by study is

g(si|b̃) = log(ti) + x̃trt,iβ1 + x̃iβ2 + b̃j(i) + b̃j(i),2x̃trt,i + εi

Here g(x) = log(−log(x)) and εi ∼ N(0, σ2
i ) where σ2

i is considered known. The residual variance
is determined by the standard error for the KM estimate and applying the delta method for the
complementary-log-log transform. When there are multiple estimates from the same study, the
variance structure accounts for correlation within treatment group, within trial. The methodology
is in keeping with (13).

The covariates for the study-level model are grouped which is why I have used the notation x̃
to distinguish them from the patient-level model. Thus, the patient level factor x when aggregated
into the cluster sample means is denoted as x̃.

Implementation of the model proceeds as follows:

set.seed(123321)

data(ipd.data)

data(meta.data)

fit <- mlma(

Surv(time,event)~trt+x,

surv~-1+log(time)+trt+x,

random=~(1+trt|group),

ipd.groups=8,

meta.groups=2,

ipd.data=ipd.data,

meta.data=meta.data,

sigma2=meta.data$sigma2,

study.group=meta.data$sub.group,

max.iter=10,

est.delta=.01,

min=300

)
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> #WALD TEST FOR FIXED EFFECTS

> fit$coef

trt x log(time)

-0.63023004 0.00326478 1.04518270

> fit$coef/sqrt(diag(fit$var$coef))

trt x log(time)

-6.45590592 0.09845826 10.47860368

> sqrt(fit$vcov)

[,1] [,2]

[1,] 0.6430685 0.3374159

[2,] 0.3374159 0.3759782

>

> #WALD TEST FOR FRAILTY VARIANCES

> sqrt(diag(fit$vcov))

[1] 0.6430685 0.3759782

> diag(fit$vcov)/sqrt(fit$var$vcov)

[,1]

[1,] 2.062913

[2,] 1.849326

There is no evidence of a significant effect for the covariate x so I remove this factor and re-fit
with just the treatment effect. I examine the estimates with the revised fit.

> fit$coef

trt log(time)

-0.5352532 1.0558993

> fit$coef/sqrt(diag(fit$var$coef))

trt log(time)

-6.125604 10.800622

> sqrt(diag(fit$vcov))

[1] 0.6342262 0.3850056

> diag(fit$vcov)/sqrt(fit$var$vcov)

[,1]

[1,] 2.067657

[2,] 1.987731

All of the model parameters contribute important information to survival outcomes.

> fit$est.con[(fit$iter-5):fit$iter]

[1] 0.09792774 0.09908291 0.06861460 0.07117281 0.05336713 0.12839772

The convergence criterion was not met, however, so I will want to adjust the number of MC
samples of the number of iterations before drawing firm conclusions from fit.

When the converged estimates have been obtained I can compare the baseline hazard implied
by each model, which is another check of the consistency between the patient-level and study-level
data (Figure 1).
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H <- bas.haz(

Surv(time,event)~trt,

~-1+log(t),

ipd.data,

fit$coef,

fit$var$coef,

)

#PATIENT-LEVEL BASELINE HAZARD

plot(H$ipd.survfit,fun="cumhaz",ylab="H(t)",bty="n")

#STUDY-LEVEL BASELINE HAZARD WITH 95\% CI

lines(x=H$meta.bas.haz$time,y=H$meta.bas.haz$lower,type="l",lty=2)

lines(x=H$meta.bas.haz$time,y=H$meta.bas.haz$est,type="l",col="blue")

lines(x=H$meta.bas.haz$time,y=H$meta.bas.haz$upper,type="l",lty=2)

legend("topleft",legend=c("Study-level","Patient-level"),lty=1,col=c("blue","black"))

If a fixed effects model was wanted, I can obtain it through the fixed argument.

fit.fixed <- mlma(

Surv(time,event)~trt,

surv~-1+log(time)+trt,

random=~(1+trt|group),

ipd.groups=8,

meta.groups=2,

ipd.data=ipd.data,

meta.data=meta.data,

sigma2=meta.data$sigma2,

study.group=meta.data$sub.group,

fixed=TRUE

)

> fit.fixed$coef

trt log(time)

-0.476680 1.127154

This provides a means of constructing a likelihood ratio test for the frailty variances, compared
the fixed effects model likelihood to the mixed effects model.

> #LIKELIHOOD RATIO TEST STATISTIC

> -2*(fit.fixed$loglik-fit$loglik[fit$iter])

[,1]

[1,] 659.4629

Comparing this statistic to a χ2(3) for the 3 variance parameters of the general covariance-
variance structure for the frailties of the mixed model gives some guidance on the presence of
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significant intercluster variation. In this case, there is strong evidence of heterogeneity among
outcomes.

2.2 Ecological Bias

If I were concerned that my conclusions about the covariate x were mislead by the presence of a
study-level bias, I can separate the parameterization for each evidence-level. I do this by introducing
a centered covariate into the individual level model. Note that the model formulae have to have
the same term label for all shared effects.

The patient-level PHMM model changes to

λi(t|b) = λ0(t)exp{xtrt,iβ1 + (xi − x∗i )β2 + x∗iβ3 + bk(i),1 + bk(i),2xtrt,i}

where x∗i is the k(i) sample average of the covariate, the grouped effect. Thus, β2 is the patient-level
effect while β3 is the study-level effect. Accordingly, the study-level model is

g(si|b̃) = log(ti) + x̃trt,iβ1 + x̃∗iβ3 + b̃j(i),1 + b̃j(i),2x̃trt,i + εi

where the notation of the covariate has changed to correspond with the patient-level model, but
the elements are still the study-level sample averages for the covariate x.

n <- table(ipd.data$group)

ipd.data$x.star <- rep(tapply(ipd.data$x,ipd.data$group,mean),n)

names(meta.data)[which(names(meta.data)=="x")] <- "x.star"

fit.bias <- mlma(

Surv(time,event)~trt+I(x-x.star)+x.star,

surv~-1+log(time)+trt+x.star,

random=~(1+trt|group),

ipd.groups=8,

meta.groups=2,

ipd.data=ipd.data,

meta.data=meta.data,

sigma2=meta.data$sigma2,

study.group=meta.data$sub.group,

max.iter=20,mc=1.3,

est.delta=.01,

df=25,

min=500

)

> fit.bias$coef

trt I(x - x.star) x.star log(time)

-0.553248425 0.006493564 0.306708999 1.073181569

> ci(c(0,-1,1,0),fit.bias$coef,fit.bias$var$coef,f=function(x){x})

low point.est high

0.2795519 0.3002154 0.3208790

11



I obtain the 95% CI for the contrast between the study- and patient-level effect for the covariate
x.star. There is evidence that a positive relation at the study-level is present, while no individual-
level relation is demonstrated.
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Figure 1: Baseline hazard estimated by study-level and patient-level models of mixed-level meta-
analysis. Dotted lines denote the 95% CI.
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