
Knowledge Space Theory

Christina Stahl

2008-06-18

Abstract

This document explains algorithms and basic operations of knowledge structures and
knowledge spaces available in R through the kst package.

Knowledge Space Theory (Doignon and Falmagne, 1999) is a set-theoretical framework, which
proposes mathematical formalisms to operationalize knowledge structures in a particular domain.
The most basic assumption of knowledge space theory is that every knowledge domain can be
represented in terms of a set of domain problems or items. Moreover, knowledge space theory
assumes dependencies between these items in that knowledge of a given item or a subset of items
may be a prerequisite for knowledge of another, more difficult or complex item. These prerequisite
relations are realized by surmise relations, which create a quasi-order between different items.
One advantage of these surmise relations is that they reduce the quantity of all possible solution
patterns to a more manageable amount of knowledge states. Each of these knowledge states
represents the subset of items an individual is capable of solving. The collection of all knowledge
states captures the organization of the domain and is referred to as knowledge structure.

1 Knowledge Structures

The kstructure() function in package kst is the basic constructor for knowledge structures.
It takes an endorelation representing a surmise relation or a set of sets each representing one
knowledge state (e.g., one clause of a surmise system) and returns the corresponding knowledge
structure:

> kst <- endorelation(graph = set(tuple(1, 1), tuple(2, 2), tuple(3,

+ 3), tuple(4, 4), tuple(2, 1), tuple(3, 1), tuple(4, 1), tuple(3,

+ 2), tuple(4, 2)))

> kstructure(kst)

{{"3"}, {"4"}, {"2", "3", "4"}, {"1", "2", "3", "4"}}

> kst <- kstructure(set(set("a"), set("a", "b"), set("a", "c"),

+ set("d", "e"), set("a", "b", "d", "e"), set("a", "c", "d",

+ "e"), set("a", "b", "c", "d", "e")))

> kst

{{"a"}, {"a", "b"}, {"a", "c"}, {"d", "e"}, {"a", "b", "d", "e"}, {"a",
"c", "d", "e"}, {"a", "b", "c", "d", "e"}}

Note that by default the quotes indicate the fact that the items are represented by characters.
For displaying purposes, these quotes may be turned off:

> sets_options("quote", FALSE)

> kst

1

{{a}, {a, b}, {a, c}, {d, e}, {a, b, d, e}, {a, c, d, e}, {a, b, c, d,
e}}

On the resulting knowledge structure several operations can be performed. Firstly, the knowl-
edge domain of the knowledge structure can be determined by means of the kdomain() function:

> kdomain(kst)

{a, b, c, d, e}

Secondly, the atoms of the knowledge structure can be determined by means of the katoms()
function. For any item of the knowledge domain, an atom is a minimal knowledge state containing
the respective item, where minimal refers to the fact that the respective knowledge state is not
the union of any other knowledge states:

> katoms(kst, items = set("a", "b", "c"))

$a
{{a}}

$b
{{a, b}}

$c
{{a, c}}

Thirdly, the notions of the knowledge structure can be determined by means of the knotions()
function. A notion is a set of items always jointly contained in some knowledge states. Conse-
quently, these items carry the same information and may therefore be considered equivalent:

> knotions(kst)

{{a}, {b}, {c}, {d, e}}

Finally, the trace of the knowledge structure can be determined by means of the ktrace()
function. The trace of a knowledge structure on a set of items is the substructure of the knowledge
structure on these items, i.e., the substructure resulting from restricting the knowledge structure
to the specified item(s):

> ktrace(kst, items = set("c", "d", "e"))

{{}, {c}, {d, e}, {c, d, e}}

Apart from these basic operations, the kst package also provides plotting functionalities for
knowledge structures. The plot() method takes an arbitrary knowledge structure and plots a
Hasse Diagram of the respective knowledge structure (see Figure 1):

> plot(kst)

In order to allow for plotting the surmise relation underlying a knowledge structure, the kst
package provides the as.relation() method, which computes its underlying surmise relation, i.e.,
the set of item pairs corresponding to the knowledge dependencies. Antisymmetric and transitive
surmise relations may then be plotted as a Hasse diagram:

> as.relation(kst)

A binary relation of size 5 x 5.

2

Partial Order

{a}

{a, b} {a, c}{d, e}

{a, b, d, e} {a, c, d, e}

{a, b, c, d, e}

Figure 1: Knowledge Structure

In those cases where individuals’ response patterns are available, they may be used to assess
individuals or validate a knowledge structure.

The kassess() function assigns individuals to their corresponding knowledge state in a knowl-
edge structure. Currently only “deterministic” assessment is implemented. Assessing individuals
based on a deterministic procedure starts by determining an item a, which is contained in approx-
imately half of the available knowledge states. If the individual being assessed has successfully
solved the respective item a, all knowledge states that do not contain item a are removed from the
set of potential knowledge states of the individual. If, on the other hand, the individual has not
solved the respective item a, all knowledge states that do contain item a are removed from the set
of potential knowledge states of the individual. From the remaining knowledge states an item b,
which again is contained in approximately half of the still available knowledge states, is selected.
If the individual has successfully solved the respective item b, all knowledge states that do not
contain item b are removed from the set of potential knowledge states of the individual. If, on the
other hand, the individual has solved the respective item b, all knowledge states that do contain
item b are removed from the set of potential knowledge states of the individual. This procedure
is repeated until only one knowledge state is left. This is the knowledge state the individual is
currently located in.

> rp <- data.frame(a = c(1, 1, 0, 1, 1, 1, 1, 0, 0, 0), b = c(0,

+ 1, 0, 1, 0, 1, 0, 1, 0, 0), c = c(0, 0, 0, 0, 1, 1, 1, 0,

+ 1, 0), d = c(0, 0, 1, 1, 1, 1, 0, 0, 0, 1), e = c(0, 0, 1,

+ 1, 1, 1, 0, 0, 0, 0))

> kassess(kst, rpatterns = rp)

$Respondent1
{a}

$Respondent2
{a, b}

$Respondent3
{d, e}

3

$Respondent4
{a, b, d, e}

$Respondent5
{a, c, d, e}

$Respondent6
{a, b, c, d, e}

$Respondent7
{a, c}

$Respondent8
{a, b}

$Respondent9
{a, c}

$Respondent10
{d, e}

The kvalidate() function on the other hand calculates validity coefficients for prerequisite
relations and knowledge structures. The γ-Index (Goodman and Kruskal, 1972) validates the
prerequisite relation underlying a knowledge structure and assumes that not every response pattern
is represented by a prerequisite relation. For this purpose it compares the number of response
patterns that are represented by a prerequisite relation (i.e., concordant pairs) with the number
of response patterns that are not represented by a prerequisite relation (i.e., discordant pairs).
Formally, the γ-Index is defined as

γ =
Nc −Nd

Nc +Nd

where Nc is the number of concordant pairs and Nd the number of discordant pairs. Generally, a
positive γ-value supports the validity of prerequisite relations.

The validation method percent likewise validates prerequisite relations and assumes that more
difficult or complex items are solved less frequently than less difficult or complex items. For this
purpose it calculates the relative solution frequency for each of the items in the domain.

The Violational Coefficient (Schrepp, Held, and Albert, 1999) also validates prerequisite re-
lations. For this purpose, the number of violations (i.e., the earlier mentioned discordant pairs)
against a prerequisite relation are calculated. Formally, the VC is defined as

V C =
1

n(|S| −m)

∑
x,y

vxy

where n denotes the number of response vectors, |S| refers to the number of pairs in the relation,
m denotes the number of items, and vxy again refers to the number of discordant pairs. Generally,
a low VC supports the validity of prerequisite relations.

In contrast to the other three indices, the Distance Agreement Coefficient (Schrepp, 1999)
validates the resulting knowledge structure. For this purpose it compares the average symmetric
distance between the knowledge structure and respone patterns (referred to as ddat) to the aver-
age symmetric distance between the knowledge structure and the power set of response patterns
(referred to as dpot). By calculating the ratio of ddat and dpot, the DA is determined. Generally, a
lower DA-value indicates a better fit between a knowledge structure and a set of response patterns.

> kvalidate(kst, rpatterns = rp, method = "gamma")

4

[1] 0.4

> kvalidate(kst, rpatterns = rp, method = "percent")

%
a 60
b 40
c 40
d 50
e 40

> kvalidate(kst, rpatterns = rp, method = "VC")

[1] 0.075

> kvalidate(kst, rpatterns = rp, method = "DA")

$ddat
[1] 0.3

$ddat_dist
Distances
0 1
7 3

$dpot
[1] 1

$dpot_dist
Distances
0 1 2
7 18 7

$DA
[1] 0.3

Apart from these kst-specific functions, the kst package also provides general set-related meth-
ods. In particular, these include methods pertaining to the closure and reduction of sets.

The closure() method for objects of class kstructure() performs the closure of a knowledge
structure by computing the union or intersection of any two knowledge states. union is also used
as a basis for the kspace() function (see next section).

> closure(kst, operation = "union")

{{a}, {a, b}, {a, c}, {d, e}, {a, b, c}, {a, d, e}, {a, b, d, e}, {a,
c, d, e}, {a, b, c, d, e}}

The reduction() method performs the reduction of a knowledge structure by computing the
minimal subset having the same closure as the knowledge structure. Additionally, it allows for
computing the discriminative reduction of a knowledge structure. Such a discriminative reduction
is a knowledge structure in which each notion contains a single item.

> reduction(kst, operation = "discrimination")

{{a}, {de}, {a, b}, {a, c}, {a, b, de}, {a, c, de}, {a, b, c, de}}

5

2 Knowledge Spaces

Apart from knowledge structures, knowledge space theory also suggests the concept of knowledge
spaces. A knowledge structure is considered a knowledge space if it includes one state for the empty
set {}, one state for the full set of domain items, and a state for the union of any two knowledge
states (i.e., the closure under union). The basic constructor for creating knowledge spaces is
the kspace() function. It takes an arbitrary knowledge structure and returns the corresponding
knowledge space:

> ksp <- kspace(kst)

> ksp

{{}, {a}, {a, b}, {a, c}, {d, e}, {a, b, c}, {a, d, e}, {a, b, d, e},
{a, c, d, e}, {a, b, c, d, e}}

In order to test for the space property of a knowledge structure, the kst package provides the
function kstructure_is_space():

> kstructure_is_kspace(ksp)

[1] TRUE

Apart from the functions described in the previous section, which can likewise be performed
on knowledge spaces, the package kst provides the additional function kbase(), which is only
applicable to knowledge spaces. The kbase() function takes an arbitrary knowledge space and
computes its base. A base for a knowledge space is a minimal family of knowledge states spanning
the knowledge space, i.e., the base includes the minimal states sufficient to reconstruct the full
knowledge space. A knowledge structure has a base only if it is a knowledge space.

> kbase(ksp)

{{a}, {a, b}, {a, c}, {d, e}}

References

J.-P. Doignon and J.-C. Falmagne. Knowledge Spaces. Springer Verlag, Heidelberg, 1999.

L. A. Goodman and W. H. Kruskal. Measures of association for cross classification. Journal of the
American Statistical Association, 67:415–421, 1972.

M. Schrepp. An empirical test of a process model for letter series completion problems. In D. Albert and
J. Lukas, editors, Knowledge Spaces: Theories, Empirical Research, Applications. Lawrence Erlbaum
Associates, 1999.

M. Schrepp, T. Held, and D. Albert. Component-based construction of surmise relations for chess problems.
In D. Albert and J. Lukas, editors, Knowledge Spaces: Theories, Empirical Research, Applications.
Lawrence Erlbaum Associates, 1999.

6

Index

as.relation, 2
closure, 5
kassess, 3
katoms, 2
kbase, 6
kdomain, 2
knotions, 2
kspace, 6
kstructure_is_space, 6
kstructure, 1
ktrace, 2
kvalidate, 4
plot, 2
reduction, 5

7

	Knowledge Structures
	Knowledge Spaces

