
Package ‘modelcf’
February 2, 2011

Type Package

Version 2.1

Date 2011-02-02

Title Modeling physical computer codes with functional outputs using
clustering and dimensionality reduction

Author Benjamin Auder

Maintainer Benjamin Auder <Benjamin.Auder@gmail.com>

Depends R (>= 2.10.1)

Suggests class, rpart, e1071, kernlab, randomForest, klaR, wmtsa,mlegp, splines

Description Statistical learning with vectorial inputs and smooth 1D
curves as outputs. The main function builds a model from n samples (x_i,y_i).

License GPL (>= 3)

LazyLoad yes

Archs modelcf.so

R topics documented:
classification . 2
clustering . 3
comparts . 5
connexity . 6
dataSets . 7
dimension . 8
errors . 10
kmeans . 10
LPcaML . 12
mixpred . 13
modelcf . 14
modeling . 15
neighbors . 19
orthBasis . 20
predict . 21

1

2 classification

printPlot . 22
redDim . 23
refining . 24
regression . 25
RML . 26

Index 28

classification Building a classifier

Description

learnClassif builds a classifier object (see code for details).

optimParams_classif optimize parameters for the chosen method.

These two methods should not be called directly. Using the specific technique inside its own pack-
age is a better idea.

Usage

learnClassif(x, y, method, params)

optimParams_classif(x, y, method, k, trcv)

Arguments

x matrix of n input vectors in rows. x[i,] is the i-th p-dimensional input

y matrix of n outputs in rows. y[i,] is the i-th m-dimensional output

method classification method, to be chosen between “kNN” (k-nearest-neighbors), “ctree”
(classification trees), “RDA” (Regularized Discriminant Analysis), “rforest” (ran-
dom forests), “SVM” (Support Vector Machines)

params vector of parameters for the chosen method

k fixed number of neighbors at each point to build the training set in cross-validation
procedure

trcv fraction of total examples on which a model is trained during cross-validation
procedure.

Value

learnClassif returns a classifier object (internal specifications).

optimParams_classif returns a vector of optimized parameters for the chosen method.

clustering 3

clustering Main clustering functions

Description

phclust performs R hierarchical cluster (using hclust()) with Ward linkage, and call cutree() after.

This function should not be called directly. Use the following one instead.

gtclusts main function to cluster data according to any method.

findK_gtclusts is a procedure to determine the number of classes (and associate partitioning).

gtclusts_inout calls the previous method one on outputs, and then on each inputs cluster
(main procedure).

Usage

phclust(dissims, K)

gtclusts(method, data, K, d=min(5,ncol(data)), adn="none", knn=0,
symm=TRUE, weight=FALSE, sigmo=FALSE)

findK_gtclusts(x, y, method, d=min(10, ncol(x)), adn="none", knn=0,
symm=TRUE, weight=FALSE, sigmo=FALSE, minszcl=30,
maxcl=Inf, mclass="kNN", taus=0.8, Ns=10, tauc=0.8, Nc=10,
trcv=0.7, nstagn=10)

gtclusts_inout(x, y, method, d=min(10, ncol(x)), redy=FALSE, adn="none",
knn=0, symm=TRUE, weight=FALSE, sigmo=FALSE, minszcl=30,
maxcl=Inf, mclass="kNN", taus=0.8, Ns=10, tauc=0.8, Nc=10,
trcv=0.7, verb=TRUE, nstagn=10)

Arguments

method the clustering method, to be chosen between “HDC” (k-means based on Hit-
ting Times), “CTH” (Commute-Time Hierarchic), “CTKM” (Commute-Time
k-means), “spec” (spectral clustering), “CH” (hierarchical clustering), “PCA”
(PCA-k-means from Chiou and Li ; see references), “KM” (basic k-means)

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

x matrix of n input vectors in rows. x[i,] is the i-th p-dimensional input

y matrix of n discretized outputs in rows. y[i,] is the i-th D-dimensional output

dissims matrix of dissimilarities (can be simple L2 distances, or more complicated like
commute-times)

K expected number of clusters

d estimated (real) outputs dimensionality (should be far less than D) ; useful only
if one of the following parameters is set: redy,adn,method=="ACP". It can
be estimated using functions from dimension file

adn string for adapted point-varying neighborhoods. "none" for no adaptivity, "ad-
bas" for simple local PCA based neighborhoods (see code), "ad1" for the Zhan
et al. method, and "ad2" for Wang et al. method. In short, the more linear data
is around x, the more x has neighbors

4 clustering

knn fixed number of neighbors at each point ; used only if adn=="none". If zero,
a simple heuristic will determine it around sqrt(nrow(data))

symm boolean at TRUE for symmetric similarity matrix (see code. It does not impact
much the result

weight boolean at TRUE for weighted hitting/commute times, like in the article of
Liben-Nowell and Kleinberg

sigmo boolean at TRUE for sigmoid commute-time kernel, like in the article of Yen et
al.

redy boolean telling if the outputs should be reduced (with PCA) as a preprocessing
step

minszcl minimum size for a cluster. This is interesting to not allow too small clusters for
the regression stage ; recommanded values are above 30-50

maxcl maximum number of clusters ; Inf stands for “no limit”, i.e. determined by
stability-prediction loops only

mclass type of classifier to use in the prediction accuracy step ; choice between “kNN”
(k-nearest-neighbors), “ctree” (classification tree), “RDA” (Regularized Discrim-
inant Analysis), “rforest” (random forests), “SVM” (Support Vector Machines).
Only the first two were intensively tested

taus threshold for stability check ; value between 0 (every method accepted) and 1
(only ultra-stable method accepted). Recommanded between 0.6 and 0.9

Ns number of stability runs before averaging results (the higher the better, although
slower..)

tauc threshold for prediction accuracy check (after subsampling) ; value between
0 (every clustering accepted) and 1 (only “well separated” clusters accepted).
Recommanded between 0.6 and 0.9

Nc number of partitions predictions runs before averaging results (same remark as
for Ns above)

trcv fraction of total examples on which a model is trained during cross-validation
procedures.

verb TRUE for printing what is going on. A further release will allow to choose levels
of verbosity.

nstagn number of allowed stages (increasing the number of clusters K) without added
clusters (if minszcl is large enough small clusters may end being merged).

Details

adn should not be set when working with small datasets and/or in low dimension (<= 3).

When sigmo is set, the sigmoid commute-time kernel (Yen et al.) is computed with a=1. In the
paper authors say it need manual tuning.

The algorithm for simultaneous estimate of K and clustering works in two main steps :

1. subsample original data in data1 and data2, then cluster both, and measure similarity between
partitions at the intersection using the variation of information index of Meila article.

2. subsample a training set Tr in [1,n] where n is the number of data rows, then subsample a
set S which must contain [1,n] \ Tr. Cluster both sets, and use Tr to predict labels of the
testing set. Finally compare the partitions using simple “matching counter” after renumbering
(with the hungarian algorithm).

Both are repeated Ns, Nc times to get accurate estimators. We stop when these estimators fall
below the thresholds taus, tauc, and return corresponding partition.

comparts 5

Value

An integer vector describing classes (same as kmeans()$cluster field).

References

J-M. Chiou and P-L. Li, Functional clustering and identifying substructures of longitudinal
data, in Journal of the Royal Statistical Society 69(4): 679-699, 2007

L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen and M. Saerens, Clustering using a
random-walk based distance measure, at Symposium on Artificial Neural Networks 13: 317-
324, Bruges, Belgium, 2005

L. Yen, F. Fouss, C. Decaestecker, P. Francq and M. Saerens, Graph nodes clustering with the
sigmoid commute-time kernel: A comparative study, in Data \& Knowledge Engineering 68(3):
338-361, 2009

Examples

#generate a mixture of three gaussian data sets
data = rbind(matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2))

#cluster it using k-means
km = gtclusts("KM", data, 3)
#and using Commute-Time Hierarchic clustering
ct = gtclusts("CTH", data, 3, k=20, symm=FALSE)
#plot results
plotPts(data, cl=km)
plotPts(data, cl=ct)

#generate a (smaller) mixture of three gaussian data sets
inData = rbind(matrix(rnorm(60,mean=2,sd=0.5),ncol=2),

matrix(rnorm(60,mean=4,sd=0.5),ncol=2),
matrix(rnorm(60,mean=6,sd=0.5),ncol=2))

#build artificial corresponding outputs
sPoints = seq(from=0,to=2*pi,by=2*pi/200)
cosFunc = cos(sPoints)
sinFunc = sin(sPoints)
outData = as.matrix(inData[,1]) %*% cosFunc + as.matrix(inData[,2]^2) %*% sinFunc
#partition inputs-outputs using Commute-Time Hierarchic clustering
ct = gtclusts_inout(inData, outData, "CTH", k=20, minszcl=20, mclass="kNN",

taus=0.7, Ns=10, tauc=0.7, Nc=10)
#plot results, inputs then outputs
plotPts(inData, cl=ct)
plotC(outData, cl=ct)

comparts Comparing partitions (clustering)

Description

checkParts is an assymetric measure of the matching of P relatively to P_ref.

The two next indices are symmetric.

varInfo computes the variation of information index from Meila article.

6 connexity

countPart is a simple counter of matched elements, e.g. the matching level of (1,1,1,2) and
(1,1,2,3) is 2.

Usage

checkParts(P, P_ref)

varInfo(P1, P2)

countPart(P1, P2)

Arguments
P,P_ref,P1,P2

a partition of some data, as outputs by gtclusts ; e.g., (1,1,1,1,2,2,2,2,1,1,3,3,3)

Details

All indices are normalized to lie in the range (0,1).

The checkPartsmethod uses P clusters overlap over P_ref ones to compute an adequation index.
It is quite severe, designed for testing of clustering methods.

The “variation of information” index of Meila is a (mathematical) measure between partitions. This
is actually a nice property ; see article.

Value

A real number between 0 and 1, indicating the matching level between the two partitions.

References

M. Meila, Comparing Clusterings, Statistics Technical Report 418, University of Washington,
2002

Examples

#comparing the three indices
P = c(1,1,2,2,2,2,2,2,3,3,3,4,4,4,1,1)
P_ref = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
print(checkParts(P, P_ref))
print(varInfo(P, P_ref))
print(countPart(P, P_ref))

connexity Functions around graph conenxity

Description

Internal use only ; should not be called by the final user.

gt_cxcomps gets the connected components based on neighborhoods.

testConnexity returns neighborhoods that assure graph (weak) connexity. If NI does not lead
to connexity, kNN-graph is built instead.

dataSets 7

Usage

gt_cxcomps(NI, ctype=FALSE, k=0)

testConnexity(data, NI, k)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

NI list of (graph) neighborhoods

k fixed number of neighbors at each point ; used only if adn == FALSE

ctype (weak) connexity type, TRUE for mutual-kNN graph (clustering case), FALSE
for general graphs (dimensionality reduction)

Value

gt_cxcomps returns a vector like (1 1 1 2 2 2 1 1 3 3 3) describing connected components.

testConnexity returns the smallest list of neighborhoods that ensure connexity.

dataSets Two artificial data sets

Description

The first artificial dataset is generated by the function :

f1 = function(t)

{ return(0.8*atan(a*t) + exp(b*(-4-t)+1) + log(c*(4-t)+1)) }

and the second one by :

f2 = function(t)

{ return(0.8*atan(a*(4-t)) + exp(b*(-4+t)+1) + log(c*(4+t)+1)) }

for a, b, c varying uniformly in [0,4] or [0,7].

The matrix dataIn contains the input parameters a, b, c in rows, while the matrices dataOut1
and dataOut2 are filled with the corresponding curves in rows (200 sample points).

Usage

datacf

Format

Matrices with 300 rows, and 3 columns for dataIn, 200 for the others (sample points).

8 dimension

dimension Dimension estimation

Description

dest_PCA and dest_clust use the PCA locally to estimate dimension, and then average the
results. The second one determine local regions using k-means clustering (Bruske and Sommer,
1998), while the first can be considered as a fast suboptimal version of the algorithm by Fan et al.
(2010).

dest_pett, dest_fara, dest_levi and dest_unbl estimate the intrinsic dimension of
data, following respectively the algorithm of Pettis et al. (1979), Farahmand et al. (2007), Levina
and Bickel (2005) and a debiased version of this last one, by MacKay and Ghahramani. All these
methods are based on a relation between the dimension and density of data.

dest_RML and dest_rgrl implement an idea from the papers of Lin et al. (2006), using “non
flat” simplices to evaluate dimension. The second one is a regularization attempt, which has not
proven effective yet. dest_sliv implements a variation on an idea by Cheng and Chiu (2009),
simplified although heavier to run.

Usage

dest_PCA(data, k, thvar=0.01)

dest_clust(data, nclusts, thvar=0.01)

dest_pett(data, kmax)

dest_levi(data, k)

dest_unbl(data, k)

dest_fara(data, k)

dest_RML(data, kmax, N=10, tsoft=0.0)

dest_rgrl(data, kmax, N=10, alpha=3)

dest_sliv(data, k, N=10000, thtest=0.05)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

k fixed number of neighbors at each point

thvar expected threshold on explained variance (between 0 and 1 ; should be close to
0)

nclusts number of cells to be obtained by the k-means algorithm

kmax maximum number of neighbors at each point

N number of Monte-Carlo loops

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

dimension 9

alpha regularization parameter ; a positive value which give (decreasing) weighted
emphasize to increasing values of tsoft. When alpha becomes large, the
weights associated with “high” values of tsoft fade rapidly

thtest threshold on the p-value of the statistical test for densities adequation

Value

An integer equals to the estimated dimension.

References

J. Bruske and G. Sommer, Intrinsic dimension estimation with optimally topology preserving
maps, in IEEE Transactions on Pattern Analysis and Machine Intelligence 20: 572-575, 1998

M. Fan, N. Gu, H. Qiao and B. Zhang, Intrinsic dimension estimation of data by principal
component analysis, submitted for publication, 2010.

K. W. Pettis, T. A. Bailey, A. K. Jain and R. C. Dubes, An Intrinsic Dimensionality Estimator
from Near-Neighbor Information, in IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 1 (1): 25-37, 1979

A. M. Farahmand, C. Szepesvari and J-Y. Audibert, Manifold-adaptive dimension estimation, at
24th International Conference on Machine Learning 227: 265-272, 2007

E. Levina and P. J. Bickel, Maximum Likelihood Estimation of Intrinsic Dimension, in Advances
in Neural Information Processing Systems 17: 777–784, 2005

D. J. MacKay and Z. Ghahramani, Comments on “Maximum Likelihood Estimation of Intrinsic Di-
mension” by E. Levina and P. Bickel (2004), http://www.inference.phy.cam.ac.uk/mackay/dimension/,
2005

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006

S-W. Cheng and M-K. Chiu, Dimension detection via slivers, at 20th Annual ACM-SIAM Sym-
posium on Discrete Algorithms: 1001-1010, 2009

J. M. Lee and M. Verleysen, Nonlinear Dimensionality Reduction (chapter 3), Springer, 2007

Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
sw = cbind(phi*cos(phi), phi*sin(phi), z)

#estimate dimension
print(dest_PCA(sw, 20))
print(dest_unbl(sw, 20))
print(dest_pett(sw, 20))
print(dest_fara(sw, 20))
print(dest_levi(sw, 20))
print(dest_unbl(sw, 20))

print(dest_RML(sw, 20, 10))
print(dest_rgrl(sw, 20, 10))
print(dest_sliv(sw, 20, 10))

10 kmeans

errors Empirical error estimators

Description

fperrors estimates the error of a model on a specific testing set. It computes MSE errors indica-
tors, by comparing predictions to real curves.

Usage

fperrors(ypred, yreal, mntrain)

Arguments

ypred matrix of the predicted functions in rows (D sample points / columns)

yreal matrix of the expected functions (same format as ypred above)

mntrain mean curve of training outputs

Value

A list with MSE values for the model, and the constant estimator (equals to the training mean). The
corresponding attributes are named respectively “MSE” and “pvar”.

Examples

#get the first artificial dataset and build a standard model of it
#using 250 training samples
data(datacf)
trainInds = sample(1:300, 250)
m = fmetam(dataIn[trainInds,],dataOut1[trainInds,],d=3,wcl=FALSE,mdim="linear")
#get the predicted curves and errors
pred = predict.modelcf(m, dataIn[-trainInds,])
errs = fperrors(pred,dataOut1[-trainInds,],colMeans(dataOut1[trainInds,]))
#plot the MSE and Q2 error curves
plot(errs$MSE, type="l", ylab="MSE")
plot(1-errs$MSE/errs$pvar, type="l", ylim=c(0,1), ylab="Q2")

kmeans k-means like functions

Description

km_dists = k-means based on a distance matrix.

km_PCA = generalization of classical k-means for functional case, by Chiou and Li.

Usage

km_dists(distm, K, nstart=10, maxiter=100)

km_PCA(data, K, d, simplif=TRUE, maxiter=50)

kmeans 11

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

distm matrix of distances (can be simple L2 distances, or more complicated like commute-
times)

K expected number of clusters

d estimated data dimension (e.g. through functions from dimension file)

simplif boolean at TRUE for simplified algorithm, without leave-one-out SVD’s (actu-
ally very costly)

nstart number of algorithm runs with random initialization

maxiter maximum number of iterations within one algorithm run

Details

The k-means using a distances matrix is exactly the same algorithm as classical k-means, except for
the choice of centroids, which must belong to the dataset.

The PCA-k-means algorithm replaces the centroids by centroids plus local basis functions obtained
by (functional) PCA. The closeness to a cluster is computed relatively to this full system, instead of
a centroid only. Apart from this point, the algorithm is similar to k-means ; but more general. The
simplif argument allows or not a simplification avoiding very costly leave-one-out procedure,
(re)computing local basis after slight data change. It can be switched off without fears for big
enough clusters (say, more then a few dozens).

Value

An integer vector describing classes (same as kmeans()$cluster field).

References

J-M. Chiou and P-L. Li, Functional clustering and identifying substructures of longitudinal
data, in Journal of the Royal Statistical Society 69(4): 679-699, 2007

Examples

#generate a mixture of three gaussian data set, and compute distances
data = rbind(matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2))

dists = as.matrix(dist(data))
#cluster using k-means
km = km_dists(dists, 3)
#plot result
plotPts(data, cl=km)
#and using km_PCA clustering after artificial functional transformation
sPoints = seq(from=0,to=2*pi,by=2*pi/200)
cosFunc = cos(sPoints)
sinFunc = sin(sPoints)
fdata = as.matrix(data[,1]) %*% cosFunc + as.matrix(data[,2]^2) %*% sinFunc
kp = km_PCA(fdata, 3, 2)
#plot result
plotC(fdata, cl=kp)

12 LPcaML

LPcaML Local PCA Manifold Learning

Description

LPcaML embeds data in the d-dimensional space using the Local PCA Manifold Learning method
from the Zhan et al. article.

LPcaML_rec inverses the above procedure, reconstructing a curve (or any high dimensional vec-
tor) from its low-dimensional representation.

Usage

LPcaML(data, d, adn="none", k=0, alpha=0.5, trcv=0.7)

LPcaML_rec(LPout, newEmb)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

d estimated data dimension (e.g. through functions from dimension file)

adn string for adapted point-varying neighborhoods. "none" for no adaptivity, "ad-
bas" for simple local PCA based neighborhoods (see code), "ad1" for the Zhan
et al. method, and "ad2" for Wang et al. method. In short, the more linear data
is around x, the more x has neighbors

k fixed number of neighbors at each point (used only if adn==FALSE). If zero, a
simple heuristic will determine it around sqrt(nrow(data))

alpha fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

trcv fraction of total examples on which a model is trained during cross-validation
procedures

LPout an object as output by LPcaML function

newEmb a new embedding from which the high dimensional object has to be estimated

Details

The algorithm works in two main steps :

1. A traversal sequence of (overlapping) local neighborhoods is constructed, and a simple PCA
is computed in each neighborhood.

2. The reduced coordinates are then computed step by step, by optimizing an affine transforma-
tion matrix on the overlap between two neighborhoods.

The reconstruction function LPcaML_rec first find the right neighborhood, then apply inverse
affine transformation. For better explanations, see the article.

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

mixpred 13

References

Y. Zhan, J. Yin, G. Zhang and E. Zhu, Incremental Manifold Learning Algorithm Using PCA
on Overlapping Local Neighborhoods for Dimensionality Reduction, at 3rd International Sym-
posium on Advances in Computation and Intelligence 5370: 406-415, 2008

Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
#::set colors
rSize = 64
r = rainbow(rSize)
cols = r[pmin(floor((rSize/(2.0*pi))*phi)+1,rSize)]
#end set colors::
sw = cbind(phi*cos(phi), phi*sin(phi), z)

#launch algorithm and visualize result
emb = LPcaML(sw, 2, alpha=0.7)$embed
plotPts(emb, cl=cols)

mixpred Mixing functional models

Description

Functions to define a mixture of already created models.

getcoefc returns a curve matching the maximums given by user (to facilitate models mixing).

mixpredf takes several models as arguments, and mix them after calling predict.modelcf.
This allows to benefit from different kinds of models.

Usage

getcoefc(D, inds, maxs=c(), rgs=c())

mixpredf(mods, coefs, x, verb = FALSE)

Arguments

D outputs dimensionality (usually a few hundreds)
inds (strictly) positive integer vector of desired local maximums locations
maxs positive real vector of desired local maximums amplitudes
rgs minimum number of neighbors at each point
mods a list of modelcf models, outputs of fmetam
coefs a list of curves (same length as training outputs), which are taken as mixture

coefficients (see details below)
x matrix of n testing input vectors in rows ; x[i,] is the i-th m-dimensional

testing input vector
verb TRUE for printing what is going on. A further release will allow to choose levels

ov verbosity.

14 modelcf

Details

getcoefc outputs a piecewise constant function, which locally constant parts are centered around
indices given in inds. The (integer) width of each locally constant part is given by the rgs vector
argument ; if not provided, the width is taken constant, equals to the maximum value which avoid
overlapping. maxs indicates the amplitude of each local maximum (piecewise constant), and will
equals (1,1,1,1,...) if not provided.

Value

getcoefc returns a sampled curve (with D values).

mixpredf returns a model prediction (matrix with curves in rows) ; same output format as
predict.modelcf.

Examples

#get the first artificial dataset and build three different models of it
#using 250 training samples
data(datacf)
trainInds = sample(1:300, 250)
m1 = fmetam(dataIn[trainInds,], dataOut1[trainInds,], d=3, wcl=FALSE,

mdim="linear")
m2 = fmetam(dataIn[trainInds,], dataOut1[trainInds,], d=3, wcl=FALSE,

mdim="RML", kmin=15, kmax=25)
m3 = fmetam(dataIn[trainInds,], dataOut1[trainInds,], d=3, wcl=FALSE,

mreg="fkNN")
#mix the three, giving \dQuote{first third} weight to the first,
#\dQuote{second third} weight to the second
#and \dQuote{third third} weight to the third one
mix = mixpredf(list(m1,m2,m3), list(c(rep(1,66),rep(0,134)),

c(rep(0,66),rep(1,67),rep(0,67)),c(rep(0,133),rep(1,67))),
dataIn[-trainInds,], verb=TRUE)

#plot the (L1) error between real and predicted curves
plotC(dataOut1[-trainInds,] - mix)

modelcf package modelcf

Description

This package contains a generic way to build surrogate models of physical computer codes, when
inputs are vectors (in R^p) and outputs (continuous) curves from [a,b] to R. The curves are dis-
cretized on a finite grid t1,...,tD.

Note

This work was supported by the CEA Cadarache, where I was employed three years for my PhD.
I would also like to thank Bertrand Iooss and Michel Marques for all their suggestions of improve-
ment, and all the people who helped me, directly or not, for creating this package.

See Also

fmetam, predict.modelcf, mixpredf, nfoldcv.

modeling 15

modeling Build and validate the functional outputs model

Description

fmetam_1cl is a subroutine to do the dimensionality reduction step. Internal use only.

fmetam is the main method to build a model, using clustering and dimensionality reduction.

fm_resids will call fmetam twice, first on basic data and then on residuals for a better fit.

nfoldcv builds and tests several models with fixed parameters and ramdomly generated training
sets (cross-validation).

Usage

fmetam_1cl(x, y, d, mdim, adnRD, knnRD, linbt, filt, wvar, alpha,
kmin, kmax, tsoft, thlvl, hdth, advhr, mreg, ppts, stred, trcv, verb)

fmetam(x, y, d=0, mclust="CTH", mclass="kNN", redy=FALSE, adnCC="none",
knnCC=0, wcl=TRUE, iclusts=rep(0,nrow(y)), symm=TRUE, weight=FALSE,
sigmo=FALSE, minszcl=30, maxcl=Inf, taus=0.8, Ns=10, tauc=0.8, Nc=10,
mdim="linear", adnRD="none", knnRD=0, linbt="PCA", filt="haar",
wvar=TRUE, alpha=0.5, kmin=0, kmax=0, tsoft=0.1, thlvl=0.3, hdth=2,
advhr=FALSE, mreg="PPR", ppts=FALSE, stred=TRUE, trcv = 0.7, verb = TRUE)

fm_resids(x, y, d=0, mclust="CTH", mclass="kNN", redy=FALSE, adnCC="none",
knnCC=0, wcl=TRUE, iclusts=rep(0,nrow(y)), symm=TRUE, weight=FALSE,
sigmo=FALSE, minszcl=30, maxcl=Inf, taus=0.8, Ns=10, tauc=0.8, Nc=10,
mdim1="linear", mdim2="RML", adnRD="none", knnRD=0, linbt="PCA",
filt="haar", wvar=TRUE, alpha=0.5, kmin=0, kmax=0, tsoft=0.1, thlvl=0.3,
hdth=2, advhr=FALSE, mreg1="PPR", mreg2="PPR", ppts=FALSE, stred=TRUE,
trcv = 0.7, verb = TRUE)

nfoldcv(x, y, d=0, single=TRUE, mclust="CTH", mclass="kNN", redy=FALSE,
adnCC="none", knnCC=0, wcl=TRUE, symm=TRUE, weight=FALSE, sigmo=FALSE,
minszcl=30, maxcl=Inf, taus=0.8, Ns=10, tauc=0.8, Nc=10,
mdim1="linear", mdim2="RML", adnRD="none", knnRD=0, linbt="PCA", filt="haar",
wvar=TRUE, alpha=0.5, kmin=0, kmax=0, tsoft=0.1, thlvl=0.3, hdth=2,
advhr=FALSE, mreg1="PPR", mreg2="PPR", ppts=FALSE, stred=TRUE, trcv = 0.7,
loo = FALSE, nfold=100, nhold=10, verb = TRUE, plotc=TRUE)

Arguments

x matrix of n input vectors in rows, given as a R matrix or filename. x[i,] is the
i-th p-dimensional input

y matrix of n discretized outputs in rows, given as a R matrix or filename. y[i,]
is the i-th D-dimensional output

d estimated (real) outputs dimensionality (should be far less than D)

single boolean telling if the model will be composite (base + residuals)

16 modeling

mdim, mdim1, mdim2
the dimensionality reduction method (to be) used for base model (1) or residuals
(2) : choice between “linear” for orthonormal basis, “RML” for Riemannian
Manifold Learning, “LPcaML” for Local PCA Manifold Learning and “GCEM”
for Global Coordination of Exponential Maps

adnRD string for adapted point-varying neighborhoods in dimensionality reduction. "none"
for no adaptivity, "adbas" for simple local PCA based neighborhoods (see code),
"ad1" for the Zhan et al. method, and "ad2" for Wang et al. method. In short,
the more linear data is around x, the more x has neighbors

knnRD fixed number of neighbors at each point for dimensionality reduction (used only
if adnRD=="none"). If zero, a simple heuristic will determine it around
sqrt(nrow(data)). Irrelevant if mdim=="RML"

linbt the type of (linear) orthonormal basis ; “PCA” for functional PCA, “wav” for
wavelets basis, “four” for Fourier basis and “bsp” for B-spline basis

filt the desired filter in case of wavelets basis ; choice between EXTREMAL PHASE
(daublet): “haar”, “dX” where X belongs to (4, 6, 8, 10, 12, 14, 16, 18, 20);
LEAST ASYMMETRIC (symmlet): “sX” where X belongs to (4, 6, 8, 10, 12,
14, 16, 18, 20); BEST LOCALIZED: “lX” where X belongs to (2, 4, 6, 14, 18,
20); COIFLET: “cX” where X belongs to (6, 12, 18, 24, 30)

wvar boolean telling if we should select the sub-basis with most variable coefficients

alpha fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

kmin minimum number of neighbors at each point

kmax maximum number of neighbors at each point

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

advhr if TRUE, the heuristic for RML’s last step is based on estimated graph distances
from minimal connectivity graph ; if FALSE, the heuristic use euclidian dis-
tances

mreg, mreg1, mreg2
regression method to use (1 for base model, 2 for residuals) ; choice between be-
tween “PPR” (Projection Pursuit Regression), “rforest” (random forests), “kNN,
fkNN” (Nadaraya-Watson, after dimensionality reduction or not), “lPCA” (local
PCA regression, without dimensionality reduction), “GP” (gaussian processes),
“SVR” (Support Vector Regression)

ppts TRUE for pointwise regression

stred TRUE for standardized outputs

trcv fraction of total examples on which a model is trained during cross-validation
procedures

mclust the clustering method, to be chosen between “HDC” (k-means based on Hit-
ting Times), “CTH” (Commute-Time Hierarchic), “CTKM” (Commute-Time
k-means), “spec” (spectral clustering), “CH” (hierarchical clustering), “PCA”
(PCA-k-means from Chiou and Li ; see references), “KM” (basic k-means)

modeling 17

mclass type of classifier to use in the prediction accuracy step ; choice between “kNN”
(k-nearest-neighbors), “ctree” (classification tree), “RDA” (Regularized Discrim-
inant Analysis), “rforest” (random forests), “SVM” (Support Vector Machines).
Only the first two were intensively tested

redy boolean telling if the outputs should be reduced (with PCA) as a preprocessing
step

adnCC same as adnRD above, for clustering
knnCC fixed number of neighbors at each point in clustering ; used only if adnCL ==

FALSE

wcl FALSE for disable clustering step ; can be useful for comparison purposes
iclusts imposed clustering, like (1,1,2,2,2,1) (if known by user ; used in the fm_resids

method)
symm boolean at TRUE for symmetric similarity matrix (see code. It does not impact

much the result
weight boolean at TRUE for weighted hitting/commute times, like in the article of

Liben-Nowell and Kleinberg
sigmo boolean at TRUE for sigmoid commute-time kernel, like in the article of Yen et

al.
minszcl minimum size for a cluster. This is interesting to not allow too small clusters for

the regression stage ; recommanded values are above 30-50
maxcl maximum number of clusters ; Inf stands for “no limit”, i.e. determined by

stability-prediction loops only
taus threshold for stability check ; value between 0 (every method accepted) and 1

(only ultra-stable method accepted). Recommanded between 0.6 and 0.9
Ns number of stability runs before averaging results (the higher the better, although

slower..)
tauc threshold for prediction accuracy check (after subsampling) ; value between

0 (every clustering accepted) and 1 (only “well separated” clusters accepted).
Recommanded between 0.6 and 0.9

Nc number of partitions predictions runs before averaging results (same remark as
for Ns above)

loo TRUE for leave-one-out cross-validation
nfold number of cross-validation loops to run
nhold number of curves to hold in the training step for cross-validation
verb TRUE for printing what is going on. A further release will allow to choose levels

of verbosity
plotc TRUE for plotting current Q2 curves at each step

Details

If coded argument is left unspecified (0), it will be estimated using Farahmand et al. algorithm.

The algorithm in fmetam works in three main steps :

1. Optional clustering of intputs-outputs.
2. Dimensionality reduction in each outputs cluster.
3. Statistical learning "inputs –> reduced coordinates".

The predict.modelcf function then computes the associated reconstruction "recuced coordi-
nates –> curves".

18 modeling

Value

fmetam_1cl and fmetam return a list of relevant parameters for internal use.

nfoldcv returns a list with the following attributes:

• curves = predicted curves (only in leave-one-out mode);

• MSE = (average) mean squares error curve for the model chosen;

• stMSE = corresponding standard deviation;

• pvar = (average) mean squares error curve for the training mean model;

• stvar = corresponding standard deviation;

• Q2 = Q2 error curve (should be above 0 and close to 1);

• stQ2 = corresponding standard deviation;

• ssclust = measure of clusters’ sizes homogeneity (>=0, should be as small as possible);

• snclust = histogram vector of the number of clusters found over the runs; e.g., (0,0,32,78,0,...,0)
means 78 runs with 4 clusters and 32 runs with 3 clusters.

NOTE: standard deviations cannot be accurate if nfold parameter is too small. Value around 100
or above is recommended.

Examples

data(datacf)
#plot curves of the dataset
plotC(dataOut1)
plotC(dataOut2)

#build a standard model of the first dataset using 250 training samples
trainInds = sample(1:300, 250)
m = fmetam(dataIn[trainInds,],dataOut1[trainInds,],d=3,wcl=FALSE,mdim="linear")
print the model
print(m)
#get the predicted curves
pred = predict.modelcf(m, dataIn[-trainInds,])
#get and plot error estimators
errs = fperrors(pred,dataOut1[-trainInds,],colMeans(dataOut1[trainInds,]))
plot(errs$MSE, type="l", ylab="MSE")
plot(1-errs$MSE/errs$pvar, type="l", ylim=c(0,1), ylab="Q2")

run cross validation for the second dataset
Not run: nf = nfoldcv(dataIn,dataOut2,d=3,wcl=FALSE,mdim="linear",plotc=FALSE)
nf = nfoldcv(dataIn[1:200,],dataOut2[1:200,],d=3,wcl=FALSE,mdim1="linear",

nfold=10,plotc=FALSE) #for speed
plot MSE +/- standard deviation
rg = range(nf$MSE-nf$stMSE,nf$MSE+nf$stMSE)
plot(nf$MSE-nf$stMSE,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$MSE+nf$stMSE,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$MSE,type="l",lwd=3,col=1,ylim=rg)
plot Q2 +/- standard deviation
rg = c(-0.5, 1.5)
plot(nf$Q2-nf$stQ2,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$Q2+nf$stQ2,type="l",lwd=3,col=4,ylim=rg); par(new=TRUE)
plot(nf$Q2,type="l",lwd=3,ylim=rg)

neighbors 19

neighbors Top-level neighborhoods functions

Description

Internal use only ; should not be called by the final user.

getNI gets neighborhoods (designed for any algorithm), adaptively or not.

neighbs_RML gets neighborhoods designed for Riemannian Manifold Learning algorithm (see
RML).

Usage

getNI(data, adn, d, k, mutual=FALSE, threshP = 0.95, eta = 0.05,
expand=FALSE)

neighbs_RML(data, rgdists, kmin, kmax, tsoft=0.1)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

rgdists rough approximations of graph distances (only for RML)

kmin minimum number of neighbors at each point

kmax maximum number of neighbors at each point

adn string for adapted point-varying neighborhoods. "none" for no adaptivity, "ad-
bas" for simple local PCA based neighborhoods (see code), "ad1" for the Zhan
et al. method, and "ad2" for Wang et al. method. In short, the more linear data
is around x, the more x has neighbors

d estimated data dimensionality ; useful only if adn is set

k fixed number of neighbors at each point ; used only if adn == FALSE

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

mutual boolean for computing mutual graph neighborhoods

threshP threshold percentage to estimate number of neighbors for a locally linear surface

eta threshold percentage used for neighborhood contraction

expand boolean for enable the final expansion step in the Wang et al. algorithm

Details

neighbs_RML computes the visibility graph as described in the article of Lin et al. See this paper
for further explanations.

Value

A list of neighborhoods, describing a graph.

20 orthBasis

References

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006

J. Wang, Z. Zhang and H. Zha, Adaptive Manifold Learning, in Advances in Neural Information
Processing Systems 17: 1473-1480, 2005

Y. Zhan, J. Yin, X. Liu and G. Zhang, Adaptive Neighborhood Select Based on Local Linearity
for Nonlinear Dimensionality Reduction, at International Symposium on Advances in Computa-
tion and Intelligence, Huangshi, China 5821: 337-348, 2009

orthBasis Around orthonormal bases

Description

linEmb performs decomposition onto an orthonormal basis amoung functional PCA, wavelets
(any filter), Fourier and B-spline basis.

linear_rec performs linear reconstruction based on coefficients.

Usage

linEmb(data, d, linbt="PCA", filt="haar", wvar=TRUE)

linear_rec(basis, coefs)

Arguments

data matrix of n functions (written as vectors) in rows ; data[i,] is the i-th D-
dimensional function

d desired number of coefficients ; corresponds to basis resolution, reduced d-
dimensionality

linbt the type of (linear) orthonormal basis ; “PCA” for functional PCA, “wav” for
wavelets basis, “four” for Fourier basis and “bsp” for B-spline basis

filt the desired filter in case of wavelets basis ; choice between EXTREMAL PHASE
(daublet): “haar”, “dX” where X belongs to (4, 6, 8, 10, 12, 14, 16, 18, 20);
LEAST ASYMMETRIC (symmlet): “sX” where X belongs to (4, 6, 8, 10, 12,
14, 16, 18, 20); BEST LOCALIZED: “lX” where X belongs to (2, 4, 6, 14, 18,
20); COIFLET: “cX” where X belongs to (6, 12, 18, 24, 30)

wvar boolean telling if we should select the sub-basis with most variable coefficients

basis orthonormal functions (written as vectors) in rows

coefs matrix of projected coefficients in rows

Value

linEmb returns a list L, with L$embed = matrix of d-dimensional embeddings in rows, L$basis =
matrix of orthonormal functions (in rows).

linear_rec performs linear reconstruction based on coefficients.

predict 21

References

Functional PCA: J. Ramsay and B. W. Silverman, Functional Data Analysis, Springer 2005

Wavelets basis R package used is wmtsa available here http://cran.r-project.org/web/
packages/wmtsa/index.html

Examples

#generate a \dQuote{triginometric} functional dataset
cosFunc = cos(seq(from=0,to=2*pi,by=2*pi/200))
sinFunc = sin(seq(from=0,to=2*pi,by=2*pi/200))
coefs = matrix(runif(200),ncol=2)
fdata = coefs %*% rbind(cosFunc, sinFunc)
#plot the two first Fourier functions
four = linEmb(fdata, 2, "four")
plotC(four$basis)
#output the three first PCA functions
fpca = linEmb(fdata, 3, "PCA")
plotC(fpca$basis)

predict Predictions for some models

Description

predictClassif estimates the label of an object x.

predictRegress estimates the output y for an input x.

These two last functions should not be used directly. Prefer calling specific methods from some R
package.

predict.modelcf estimates the output curve y for an input vector x, using a model built by the
fmetam function.

Usage

predictRegress(model,newIn_s)

predictClassif(model,newIns)

S3 method for class 'modelcf'
predict(object, x, verb = FALSE, ...)

Arguments

model a classification or regression model, as output by learnClassif or learnRegress
newIn_s, newIns

a matrix of (testing) input vectors in rows
object a modelcf model, output of fmetam
x a matrix of n input vectors in rows, which can be given as a R matrix or a text

file. x[i,] is the i-th p-dimensional input.
verb TRUE for printing what is going on. A further release will allow to choose levels

of verbosity
... unused (for compatibility with generic method predict)

http://cran.r-project.org/web/packages/wmtsa/index.html
http://cran.r-project.org/web/packages/wmtsa/index.html

22 printPlot

Value

predictClassif (resp. predictRegress) returns a vector of integer (resp. real) values.

predict.modelcf return a matrix of curves in rows, one for each testing example.

Examples

#get the first artificial dataset and build a standard model of it
#using 250 training samples
data(datacf)
trainInds = sample(1:300, 250)
m = fmetam(dataIn[trainInds,],dataOut1[trainInds,],d=3,wcl=FALSE,mdim="linear")
#get the predicted curves
pred = predict.modelcf(m, dataIn[-trainInds,])
#plot the (L1) error between real and predicted curves
plotC(dataOut1[-trainInds,] - pred)

printPlot Printing and plotting utilitiy functions

Description

plotC plots a matrix of curves (in rows).

plotPts plots a set of 2D points given by the column numbers in a matrix.

print.modelcf prints some relevant parameters of a constructed model (as output by fmetam).

Usage

plotC(data, cl=rep(1,nrow(data)), rg=c(min(data),max(data)), ...)

plotPts(data, cols=c(1,2), cl=rep(1,nrow(data)), ...)

S3 method for class 'modelcf'
print(x, ...)

Arguments

data matrix of n vectors (“or functions”) in rows ; data[i,] is the i-th m-dimensional
vector

cl an integer vector with R colors to be applied to each row

rg the range on y axis in case of functions drawing

cols the two selected columns in case of points plotting

x a model as output by fmetam

... any other relevant graphical parameter(s)

redDim 23

Examples

#plot first artificial dataset
data(datacf)
plotC(dataOut1)
#generate a mixture of three gaussian data set
data = rbind(matrix(rnorm(200,mean=2,sd=0.5),ncol=2),

matrix(rnorm(200,mean=4,sd=0.5),ncol=2),
matrix(rnorm(200,mean=6,sd=0.5),ncol=2))

#cluster it using k-means
km = gtclusts("KM", data, 3)
#plot result
plotPts(data, cl=km)

redDim Dimensionality reduction and associate reconstruction

Description

nlin_redDim nlin_redDim is a generic method for dimensionality reduction.

nlin_adaptRec is a generic method for reconstruction.

For internal use only ; use specific methods directly if you need.

Usage

nlin_redDim(method, data, d, adn, k, alpha, trcv,
kmin, kmax, tsoft, thlvl, hdth, advhr)

nlin_adaptRec(method, embobj, newEmb)

Arguments

method the dimensionality reduction method (to be) used, to be chosen between RML
and LPcaML

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

d estimated data dimension (e.g. through functions from dimension file)

adn string for adapted point-varying neighborhoods. "none" for no adaptivity, "ad-
bas" for simple local PCA based neighborhoods (see code), "ad1" for the Zhan
et al. method, and "ad2" for Wang et al. method. In short, the more linear data
is around x, the more x has neighbors

k fixed number of neighbors at each point (used only if adn=="none"). If zero,
a simple heuristic will determine it around sqrt(nrow(data))

alpha fraction of overlapping elements when building the traversal sequence of neigh-
borhoods

trcv fraction of total examples on which a model is trained during cross-validation
procedures

kmin minimum number of neighbors at each point

kmax maximum number of neighbors at each point

24 refining

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

advhr if TRUE, the heuristic for RML’s last step is based on estimated graph distances
from minimal connectivity graph ; if FALSE, the heuristic use euclidian dis-
tances

embobj an object as output by RML or LPcaML functions

newEmb a new embedding from which the high dimensional object has to be estimated

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

refining Rearrangement of clusters

Description

reordering changes the clusters numerotation to use all the integers from 1 to K.

fusion_smcl merges clusters until no one has size inferior than minszcl argument.

mergeToK merges clusters given through its arguments until there are exactly K classes.

Usage

reordering(clusts)

fusion_smcl(data, clusts, minszcl)

mergeToK(data, clusts, K)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

clusts a partition of the data, as outputs by gtclusts ; e.g., (1,1,1,1,2,2,2,2,1,1,3,3,3)

K expected number of clusters

minszcl minimum size of a cluster

Value

An integer vector describing classes (same as kmeans()$cluster field).

regression 25

Examples

#on an artificial dataset
data = matrix(runif(300),ncol=3)
clusts = gtclusts("KM",data,10)
print(clusts)
#fusion clusters of size >=20
print(reordering(fusion_smcl(data,clusts,20)))
#merge until 3 clusters
print(mergeToK(data,clusts,3))

regression Statistical learning (regression)

Description

learnRegress builds a regression object (see code for details).

optimParams_regress optimize parameters for the chosen method.

These two methods should not be called directly. Using the specific technique inside its own pack-
age is a better idea.

Usage

learnRegress(x, y, method, params, stred)

optimParams_regress(x, y, method, k, d, trcv, verb)

Arguments

x matrix of n input vectors in rows. x[i,] is the i-th p-dimensional input

y matrix of n outputs in rows. y[i,] is the i-th m-dimensional output

method regression method, to be chosen between “PPR” (Projection Pursuit Regres-
sion), “rforest” (random forests), “kNN, fkNN” (Nadaraya-Watson, after dimen-
sionality reduction or not), “lPCA” (local PCA regression, without dimensional-
ity reduction), “GP” (gaussian processes), “SVR” (Support Vector Regression)

params vector of parameters for the chosen method

stred boolean at TRUE for standardize outputs y

k fixed number of neighbors at each point to build the training set in cross-validation
procedure

d estimated outputs dimensionality ; relevant only if data has not been reduced

trcv fraction of total examples on which a model is trained during cross-validation
procedure.

verb TRUE for printing what is going on.

Value

learnRegress returns a regression object (internal specifications).

optimParams_regress returns a vector of optimized parameters for the chosen method.

26 RML

RML Riemannian Manifold Learning

Description

RML embeds data in the d-dimensional space using the Riemannian Manifold Learning method
from the Lin et al. article.

RML_rec inverses the above procedure, reconstructing a curve (or any high dimensional vector)
from its low-dimensional representation.

Usage

RML(data, d, kmin=0, kmax=0, tsoft=0.1,
thlvl=0.3, hdth=2, advhr=FALSE)

RML_rec(RLout, newEmb)

Arguments

data matrix of n vectors in rows ; data[i,] is the i-th m-dimensional vector

d estimated data dimension (e.g. through functions from dimension file)

kmin minimum number of neighbors at each point

kmax maximum number of neighbors at each point

tsoft tolerance factor for the visibility graph computation (between 0 and 1 ; should
be close to 0)

thlvl fraction of total elements of data to be embedded using the initial local basis

hdth “hard” threshold, same as above parameter but integer. It defines the maximum
level of elements in the Dijkstra graph which will be embedded using the initial
local basis. If zero, only thlvl is considered

advhr if TRUE, the heuristic for RML’s last step is based on estimated graph distances
from minimal connectivity graph ; if FALSE, the heuristic use euclidian dis-
tances

RLout an object as output by RML function

newEmb a new embedding from which the high dimensional object has to be estimated

Details

The algorithm works in two main steps :

1. An origin vector y0 is determined, and its neighbors are embedded by projection onto a local
tangent basis.

2. For further away elements y, we first find the predecessor yp of y on a shortest path from y0,
and the yp neighbors written yi1,...,yik. The core idea then is to preserve (as much as
possible) angles y-yp-yij to get the embedding z.

The reconstruction function RML_rec does exactly the same thing but from low-dimensional space
to high-dimensional one. For better explanations, see the article.

RML 27

Value

A list with the embedding in $embed, and some technical parameters for reconstruction.

References

T. Lin, H. Zha and S. U. Lee, Riemannian Manifold Learning for Nonlinear Dimensionality
Reduction, at European Conference on Computer Vision, Graz, Austria 9: 44-55, 2006

T. Lin and H. Zha, Riemannian Manifold Learning, in IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (5): 796-809, 2008

Examples

#generate a swissroll dataset
n = 300 ; h = 3
phi = runif(n, min=0, max=2*pi)
z = runif(n, min=0, max=h)
#::set colors
rSize = 64
r = rainbow(rSize)
cols = r[pmin(floor((rSize/(2.0*pi))*phi)+1,rSize)]
#end set colors::
sw = cbind(phi*cos(phi), phi*sin(phi), z)

#launch algorithm and visualize result
emb = RML(sw, 2, kmin=15, kmax=30)$embed
plotPts(emb, cl=cols)

Index

checkParts (comparts), 5
classification, 2
clustering, 3
comparts, 5
connexity, 6
countPart (comparts), 5

datacf (dataSets), 7
dataIn (dataSets), 7
dataOut1 (dataSets), 7
dataOut2 (dataSets), 7
dataSets, 7
dest_clust (dimension), 8
dest_fara (dimension), 8
dest_levi (dimension), 8
dest_PCA (dimension), 8
dest_pett (dimension), 8
dest_rgrl (dimension), 8
dest_RML (dimension), 8
dest_sliv (dimension), 8
dest_unbl (dimension), 8
dimension, 3, 8, 11, 12, 23, 26

errors, 10

findK_gtclusts (clustering), 3
fm_resids (modeling), 15
fmetam, 13, 14, 21, 22
fmetam (modeling), 15
fmetam_1cl (modeling), 15
fperrors (errors), 10
fusion_smcl (refining), 24

getcoefc (mixpred), 13
getNI (neighbors), 19
gt_cxcomps (connexity), 6
gtclusts, 6, 24
gtclusts (clustering), 3
gtclusts_inout (clustering), 3

km_dists (kmeans), 10
km_PCA (kmeans), 10
kmeans, 10

learnClassif, 21

learnClassif (classification), 2
learnRegress, 21
learnRegress (regression), 25
linear_rec (orthBasis), 20
linEmb (orthBasis), 20
LPcaML, 12, 23, 24
LPcaML_rec (LPcaML), 12

mergeToK (refining), 24
mixpred, 13
mixpredf, 14
mixpredf (mixpred), 13
modelcf, 14
modeling, 15

neighbors, 19
neighbs_RML (neighbors), 19
nfoldcv, 14
nfoldcv (modeling), 15
nlin_adaptRec (redDim), 23
nlin_redDim (redDim), 23

optimParams_classif
(classification), 2

optimParams_regress (regression),
25

orthBasis, 20

phclust (clustering), 3
plotC (printPlot), 22
plotPts (printPlot), 22
predict, 21
predict.modelcf, 13, 14, 17
predictClassif (predict), 21
predictRegress (predict), 21
print.modelcf (printPlot), 22
printPlot, 22

redDim, 23
refining, 24
regression, 25
reordering (refining), 24
RML, 19, 23, 24, 26
RML_rec (RML), 26

28

INDEX 29

testConnexity (connexity), 6

varInfo (comparts), 5

	classification
	clustering
	comparts
	connexity
	dataSets
	dimension
	errors
	kmeans
	LPcaML
	mixpred
	modelcf
	modeling
	neighbors
	orthBasis
	predict
	printPlot
	redDim
	refining
	regression
	RML
	Index

