
package: ofp 0.6.0

Object-Functional Programming
(Draft)

Charlotte Maia

April 12, 2011

This vignette introduces the second part of the ofp package, a framework for object-functional program-

ming.

Introduction

We consider object-functional programming, a programming paradigm that combines the strengths of
object oriented programming with the strengths of functional programming. Object-functional pro-
gramming builds on the ideas in the earlier vignette.

The current view of the author, is that object-functional programming revolves around certain con-
cepts:

1. Functions are objects.
They can have and do anything that any typical“object”can have and do, constructors, inheritance
and attributes.

2. Functions can return other functions.

3. Functions can be evaluated directly.

Here, we do not require that functions are strictly functions in the mathematical sense, however this is
still a desirable property. i.e. We allow functions to modify state, or to return different values given the
same arguments.

To support these ideas, we consider enhanced functions. These are extended R functions, that are
given their own environment (which we shall regard as a container object). We can assign values to the
container object, and regard those values as function attributes.

A similar idea is seen in R’s splinefun and ecdf functions.

Enhanced Functions

Enhanced functions are created with the FUNCTION function. Creating FUNCTIONs is similar to
creating VECTORs described in the first vignette. Rather than providing a seed vector, we provide a
seed function, along with any attributes that we require. Here, is an example, for a lookup function.

> #first, a suitable data structure to look things up in

> key = LETTERS [1:6]

> value = c ("A's value", "B's value", "C's value",

"D's value", "E's value", "F's value")

> table = data.frame (key, value, stringsAsFactors=FALSE)

> table

key value

1 A A's value

2 B B's value

3 C C's value

4 D D's value

5 E E's value

6 F F's value

> #second, the function itself

> f = function (key) table [match (key, d [,1]), 2]

> lookup = FUNCTION (f, d=table)

> #calling the function

> lookup ("D")

[1] "D's value"

Sometimes me may wish to have a function, where an attribute name is the same as an argument name.
Probably not the best design pattern. However it can still be achieved using a self reference.

> f = function (x) .$x + x

> f = FUNCTION (f, x=10)

> f (2)

[1] 12

Noting that we can print the function and access the attributes directly

> f

FUNCTION (x)

.$x + x

attributes:

x

> f$x

[1] 10

Extending Functions

Extending a function could mean different things. It could mean extending it’s class attribute and giving
it further attributes. It could mean changing or extending the body of the function. It could even mean
changing or extending it’s attribute list.

Here, we regard extending a function, as a combination of extending it’s class attribute, potentially
giving it more attributes, and potentially changing the body of the function. If we do not wish to change
the body of the function, then we can use the extend function in the usual way.

> f = function (x) x

> linef1 = extend (FUNCTION (f), "line")

> linef1

FUNCTION (x)

x

ofp 0.6.0 Charlotte Maia 2

However, if we do indeed wish to change the body, then we need the extendf function, which is the same
as the extend function, except that the third argument is a function with the new body.

> f = function (x) a + b * x

> linef2 = extendf (linef1, "fancyline", f, a=0, b=1)

> linef2

FUNCTION (x)

a + b * x

attributes:

a b

S3 Methods

We can create S3 methods for functions, in the usual way.

> print.fancyline = function (f, ...)

cat ("fancyline:", f$a, "+", f$b, "x\n")

> #same as print (linef2)

> linef2

fancyline: 0 + 1 x

Nested Functions

It’s possible for a function to contain other functions (as attributes). If the child function needs to
access the parent function’s attributes, then the environment of the child function needs to be set the
environment of the parent function.

> f = function (x) g (x)

> g = function (x) 2 * x + k

> f = FUNCTION (f, g, k=2)

> environment (f$g) = environment (f)

> f (4)

[1] 10

ofp 0.6.0 Charlotte Maia 3

