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1. IntroductionThis paper describes the techniques that are used by the Fortran 77 software,namely UOBYQA, that the author has developed recently for unconstrained op-timization calculations, when �rst derivatives of the objective function are notavailable. We use the notation F (x), x 2 Rn, for the objective function. It isspeci�ed by a subroutine that calculates F (x) for any vector of variables x inRn. The user also has to provide an initial vector of variables, xb say, and initialand �nal values, �beg and �end say, of a trust region radius �. Values of � arechosen automatically that satisfy �beg� �� �end. For each one, typical distancesbetween successive points at which F is calculated are of magnitude �, and �is not reduced until the objective function stops decreasing for such changes tothe variables. Thus a highly useful feature of the software is that it is suitablefor noisy objective functions. Indeed, the distances between the points providesome control over the contributions from the noise to estimates of �rst and secondderivatives of F . On the other hand, noise is very harmful to algorithms thatcalculate derivative estimates from the di�erences between function values thatoccur when small changes are made to the variables.Our derivative estimates are contained in a quadratic modelQ(x) = cQ + gTQ(x�xb) + 12 (x�xb)TGQ (x�xb); x2Rn; (1.1)that is constructed by interpolation to values of the objective function. We letxb be the initial vector that has been mentioned already in the case � = �beg,but, whenever � is reduced, xb is changed to the vector of variables of the leastcalculated value of F so far. Here we are trying to prevent damage from computerrounding errors in the computation of Q(x), by picking xb so that kx�xbk becomessmall for relevant vectors x. Thus xb is available when Q is constructed, so theparameters of the quadratic model are the real number cQ, the vector gQ2Rn, andthe n�n symmetric matrix GQ. Hence the linear space of quadratic polynomialsfrom Rn to R has dimension m= 12(n+1)(n+2). Therefore the parameters of Qare de�ned by a system of interpolation equations of the formQ(xi) = F (xi); i=1; 2; : : : ; m; (1.2)where the points xi, i=1; 2; : : : ; m, are generated automatically by the algorithmin ways that will be speci�ed. The UO part of the name UOBYQA denotes uncon-strained optimization, BY is just by, and QA denotes quadratic approximation,because of the importance of the model (1.1).For reasons given by Powell (2000), which will be obvious later, we requirethe Lagrange functions of the interpolation problem (1.2). For j=1; 2; : : : ; m, thej-th Lagrange function is the quadratic polynomial `j from Rn to R that has theproperties `j(xi) = �ij; i=1; 2; : : : ; m; (1.3)2



where �ij is the Kronecker delta. Our notation for its parameters is shown in theexpression `j(x) = cj + gTj (x�xb) + 12 (x�xb)TGj (x�xb); x2Rn; (1.4)which is analogous to equation (1.1). Because conditions (1.2) and (1.3) implythe identity Q(x) = mXj=1 F (xj) `j(x); x2Rn; (1.5)it follows from expression (1.4) that the parameters of Q have the valuescQ = mXj=1 F (xj) cj; gQ = mXj=1 F (xj) gj and GQ = mXj=1 F (xj)Gj: (1.6)The Fortran software works explicitly with all the �rst and second derivativeparameters of all the Lagrange functions, and also gQ and GQ are constructed,but there is no need to retain cQ and cj, j=1; 2; : : : ; m.The quadratic model is used in a trust region calculation. Speci�cally, d2Rnis set to an estimate of the solution of the problemminimize Q(xk+d) subject to kdk � �; (1.7)where k is the integer in [1; m] such that F (xk) is the least of the values F (xi),i=1; 2; : : : ; m, any ties being broken by preferring the F (xk) that was calculated�rst. Further, the vector norm of the problem (1.7) is Euclidean, and � is anothertrust region radius that satis�es ���. The advantage of introducing � is to allowthe lengths of the changes to the variables to exceed �, which helps to avoid someloss of e�ciency that may occur otherwise, because � is never increased by thealgorithm. We will �nd in Section 3 that � is adjusted in a way that is typicalfor trust region methods.We do not allow � to increase, because increases would necessitate more de-creases later, and usually it is onerous to make decreases, due to some tests thathave to be satis�ed. These tests respond to the question, raised in the openingparagraph, whether the objective function has stopped decreasing for the currentvalue of �. We introduce the tests by considering the situation when d solves theproblem (1.7) with �= �, but the calculation of the objective function at xk+dreveals F (xk+d)>F (xk). Then � should be reduced if Q is a good approximationto F in the region fx : kx�xkk� �g, but we doubt the goodness of Q if one ormore of the distances kxi�xkk, i=1; 2; : : : ; m, is greater than 2�. Therefore thetests may require the interpolation point xj, say, to be moved into the neighbour-hood fx : kx�xkk� �g before � is reduced. We call such a move a model step.It is usually followed by a step to xk+d, where d is de�ned by the trust regioncalculation (1.7) for the current value of �.3



The description of the details of the algorithm is divided into three sections.Two trust region subproblems have to be solved, and they are the subject ofSection 2. One of them is the computation (1.7), and the other one is the problemmaximize j`j(xk+d)j subject to kdk � �; (1.8)where `j is the Lagrange function (1.4). The reason for this calculation is that theresultant value of xk+d is a suitable new position for the interpolation point xj,when it is moved by a model step. Indeed, this choice maintains and assists thenonsingularity of the interpolation equations (1.2) (see Powell, 2000). After theinitial quadratic model has been formed, which requires m function evaluations,then each vector of variables for a new value of F is generated by one of thetwo trust region subproblems. The ways of choosing between these alternatives,and of deciding which interpolation point to move in the case of a model step, areexplained in Section 3. The adjustments of the trust region radii are also speci�edthere. Then Section 4 describes the initialization procedure that provides the �rstm interpolation points, their Lagrange functions, and the �rst quadratic model.Another topic of Section 4 is the updating of the coe�cients of the Lagrangefunctions and the quadratic model when an interpolation point is moved. Thesemoves include not only model steps, but also the replacement of an interpolationpoint by xk+d after the calculation of F (xk+d), where d is the solution of theproblem (1.7). A summary of the complete algorithm is given in Section 5, with afew comments on its implementation. Finally, the performance of the algorithm inpractice is shown by some numerical experiments that are presented and discussedin Section 6.The idea of forming quadratic models by interpolation for optimization withoutderivatives was proposed by Win�eld (1973). The present work is a development ofa method that uses linear polynomial models for constrained calculations (Powell,1994). An early version of this development is addressed in a survey by theauthor (Powell, 1998) of direct search methods for unconstrained optimization.Some of our techniques can also be found in the algorithm of Conn, Scheinbergand Toint (1997a, 1997b), but that algorithm does not employ Lagrange functions.Furthermore, the UOBYQA software includes a new way of achieving a fast rateof convergence, by making use of the bound on the error of the quadratic modelthat is given by Powell (2000).2. The two trust region subproblemsThe present version of UOBYQA does not take advantage of any sparsity insecond derivatives of the objective function. Therefore we allow the solution ofthe subproblem (1.7) to employ O(n3) computer operations, which is not excessiveas the total number of coe�cients of the Lagrange functions is O(n4), and they4



are all updated when an interpolation point is moved. Speci�cally, we apply thetrust region method of Mor�e and Sorensen (1983), because of its control of theaccuracy that is achieved. Some details of the implementation of that method bythe UOBYQA software are given in the �rst half of this section.The vector hQ=gQ+GQ(xk�xb) is calculated, because expression (1.1) impliesthe identity Q(xk+d) = Q(xk) + hTQd+ 12 dTGQ d; d2Rn: (2.1)It follows from the KKT conditions of the subproblem (1.7) that d should satisfythe equation (GQ + �I) d = �hQ; (2.2)where I is the n�n unit matrix, and where � is a nonnegative number such thatGQ+�I is positive de�nite or semi-de�nite. Further, if � is positive, then kdk=�should hold. Therefore the method of Mor�e and Sorensen may require the solutionof the system (2.2) for several trial values of �.This task demands very little e�ort if the matrix GQ is tridiagonal. Moreover,the equations (2.2) are equivalent to the system(
GQ
T + �I) (
 d) = �
hQ; (2.3)where 
 is any n�n orthogonal matrix. Therefore in the trust region calculationGQ and hQ are overwritten by 
GQ
T and 
hQ, respectively, where 
 is chosento make the new GQ tridiagonal. Finally, after calculating an acceptable d fromthe new equations (2.2), this d is 
 times the required d, so it is overwritten by
Td, which preserves the constraint kdk�� because 
 is orthogonal. The choiceof 
, the reduction of GQ to tridiagonal form, and the multiplications by 
 and
T can all be done in O(n3) computer operations (see Section 7-4 of Parlett, 1980,for instance).After making the system (2.2) tridiagonal, the algorithm tries � = 0. If aCholesky factorization shows that GQ is positive de�nite, and if the resultant dsatis�es kdk��, then the required d has been found. In this case, however, anestimate of the least eigenvalue of GQ, �Q say, may be needed later. Therefore�Q is computed with a relative error of at most 0.01, using the tridiagonal formof GQ.Otherwise, the �nal d will have the property kdk = �. Let d = d(�) denotethe solution of the system (2.2) for any � such that GQ+�I is positive de�nite.Then kd(�)k decreases monotonically as � increases, and d=d(�) is acceptable if� satis�es the equation 1 = kd(�)k = 1 =�: (2.4)Useful properties of this form are that, if we regard 1=kd(�)k as a function of � for� >��Q, then it increases monotonically, it is concave, and its �rst derivative is5



bounded below by 1=khQk. The algorithm takes advantage of these properties ina version of the rule of false position for adjusting �, that tries to �nd a solutionof the nonlinear equation (2.4).Now Lemma 3.4 of Mor�e and Sorensen (1983) shows that, if the optimal d ison the trust region boundary, if � has any value greater than ��Q, if z is anyvector in Rd such that kd(�)+zk=�, and if � is the ratio� = zT (GQ + �I) z. [ d(�)T (GQ + �I) d(�) + ��2 ]; (2.5)then bd=d(�)+z achieves the conditionQ(xk+bd)�Q(xk) � (1��) minfQ(xk+d)�Q(xk) : kdk��g: (2.6)In other words, if � is small, then the reduction in Q that occurs when the vectorof variables is changed from xk to xk+bd is close to the greatest reduction thatis allowed by the trust region constraint, the relative di�erence between thesereductions being bounded above by �. Therefore UOBYQA accepts bd as a suitabled if the ratio (2.5) is at most 0.01.Only two choices of z are considered when this technique is applied. Usuallyz is a multiple of d(�), so bd is the vectorbd = � d(�) = kd(�)k; (2.7)and the condition for ending the trust region calculation simpli�es to the inequality �kd(�)k � 1!2 � 0:01 1 + ��2d(�)T (GQ + �I) d(�)! : (2.8)A di�erent z may be necessary for good e�ciency, however, in the hard case whenGQ+�I has to be nearly (or exactly) singular. Then the Cholesky factorizationof GQ+�I may break down due to a negative pivot for some of the values of �that are used. When this happens, a vector v is constructed with the propertyvT (GQ+�I)v < 0, that tends to be an eigenvector of GQ with eigenvalue �Q as� ! ��Q. A multiple of this vector is the alternative choice of z. Numericalexperiments have con�rmed that it is very suitable for achieving the terminationcondition ��0:01 in pathologically hard cases.The other trust region subproblem (1.8) can be solved by two applicationsof the method that has just been considered, because we can put Q = `j andthen Q =�`j in the calculation (1.7) with � = �. The amount of work of thisapproach, however, may be unacceptable. Indeed, xj is a candidate for a moveby a model step when the subproblem (1.8) occurs, but the move is taken onlyif the resultant value of j`j(xk+d)j is su�ciently large. Thus several values of jmay be tried before a move is made, and there are about 12n2 possible choices of j.6



Fortunately, a crude solution of the subproblem is adequate. Therefore UOBYQAapplies a procedure that makes j`j(xk+d)j relatively large subject to kdk� � inonly O(n2) operations, as described in the remainder of this section.The integer j in the subproblem (1.8) is always di�erent from k, so the La-grange conditions (1.3) include `j(xk)=0. Therefore, recalling the notation (1.4),and letting hj be the vector gj+Gj(xk�xb) which is calculated, the analogue ofexpression (2.1) is that the subproblem can be written in the formmaximize jhTj d+ 12 dTGj dj = j`j(xk+d)j subject to kdk � �: (2.9)Further, because the trust region constraint allows d to be replaced by �d, it isequivalent to consider the calculationmaximize jhTj dj+ 12 jdTGj dj subject to kdk � �: (2.10)Now, if bd and ed are values of d that maximize jhTj dj and jdTGj dj, respectively,subject to kdk � �, then d may be an adequate estimate of the solution of theproblem (2.9), if it is the choice between �bd and �ed that gives the largest valueof the objective function of the problem. Indeed, for every feasible d, includingthe exact solution of the present calculation, we �nd the elementary boundjhTj dj+ 12 jdTGj dj � jhTj bdj+ 12 jedTGj edj+ jhTj edj+ 12 jbdTGj bdj� 2 maxh jhTj bdj+ 12 jbdTGj bdj; jhTj edj+ 12 jedTGj edji : (2.11)It follows that the proposed choice of d gives a value of j`j(xk+d)j that is at leasthalf of the optimal value. Now bd is the vector �� hj=khjk, while ed is an eigenvec-tor of an eigenvalue of Gj of largest modulus, which would be too expensive tocalculate. Therefore the UOBYQA software retains bd, but generates a di�erent edby the method of the next paragraph, which includes some features of the powermethod for obtaining large eigenvalues.Because jedTGj edj is large only if kGj edk is substantial, the technique beginsby �nding a column of Gj, w say, that has the greatest Euclidean norm. Hence,letting v1; v2; : : : ; vn be the columns of the symmetric matrix Gj, we deduce thebound kGjwk � kwk2 = maxfkvkk : k=1; 2; : : : ; ng kwk� n�1=2 hPnk=1 kvkk2 i1=2 kwk � n�1=2 �(Gj) kwk; (2.12)where �(Gj) is the spectral radius of Gj. It may be disastrous, however, to set edto a multiple of w, because wTGjw is zero in the caseGj = 0BBB@ 1 1 1 11 �1 �2=3 �2=31 �2=3 �1 �2=31 �2=3 �2=3 �1 1CCCA ; (2.13)7



for example. Therefore the algorithm picks ed from the two dimensional linearsubspace of Rn that is spanned by w and Gjw. Speci�cally, ed has the form�w+�Gjw, where the ratio �=� is calculated to maximize the expressionj(�w + �Gjw)TGj (�w + �Gjw)j = k�w+ �Gjwk2; (2.14)which determines the direction of ed. Then the length of ed is de�ned by kedk= �,the sign of ed being unimportant. This construction gives the optimal ed in the case(2.13), because two eigenvectors of Gj are in the span of w and Gjw, and theyinclude the eigenvector of the eigenvalue that has modulus �(Gj).This choice of ed is never very bad, because it achieves the propertyjedTGj edj � 12 n�1=2 �(Gj) �2: (2.15)A proof of this assertion begins with the remark that, by construction, the max-imum over � and � of expression (2.14) is just jedTGj edj=�2. Therefore condition(2.15) holds if there exist values of � and � such that the ratio (2.14) is at least12n�1=2�(Gj). We consider the case� = kGjwk and � = �kwk; (2.16)where the � sign is chosen so that the signs of (�2wTGjw+ �2wTG 3j w) and��wTG 2j w are the same. Thus the numerator of expression (2.14) is boundedbelow by j2��wTG 2j wj= j2�3�j. Moreover, the values (2.16) and Cauchy{Schwarzimply the upper boundk�w + �Gjwk2 � �2 kwk2 + j2��j kwk kGjwk+ �2 kGjwk2 = 4�2�2: (2.17)Hence expression (2.14) is at least 12 j�=�j = 12kGjwk=kwk in the case (2.16),which is bounded below by 12n�1=2�(Gj) because of condition (2.12). The proofof property (2.15) is complete.Having generated bd and ed in the ways that have been described, the algorithmsets d to a linear combination of these vectors, but the choice is not restricted to�bd or �ed as suggested in the paragraph that includes inequality (2.11), unless bdand ed are nearly or exactly parallel. Instead, vectors bu and eu of length � are foundin the span of bd and ed that satisfy the conditions buT eu=0 and buTGj eu=0, whichis a 2�2 matrix eigenvalue problem. Then d has the form d = cos� bu+sin � eu.Further, � is chosen to provide a relatively large value of the functionj`j(xk+d)j = jhTj d+ 12 dTGj dj = jhTj bu cos �+ hTj eu sin�+ 12 buTGj bu cos2�+ 12 euTGj eu sin2�j; 0���2�: (2.18)The � that maximizes this expression can be derived from a quartic polynomialequation, but for convenience the choice of � by the algorithm is restricted to8



integer multiples of �=4. Thus the �nal value of j`j(xk+d)j is the quantitymaxh jhTj buj+ 12 jbuTGj buj; jhTj euj+ 12 jeuTGj euj;2�1=2 (jhTj buj+ jhTj euj) + 14 jbuTGj bu+ euTGj euji : (2.19)This quantity is never much less than the maximum value of the function (2.18).Speci�cally, the author has found analytically that the ratio of expression (2.19)to the maximum value is bounded below by (12+2p2)=17�0:872.During the numerical testing in the development of the UOBYQA software,comparisons were made between the true solution of the problem (1.8) and thegiven approximate solution that requires only O(n2) computer operations. Inthese tests the ratio of expression (2.19) to the optimal value maxfj`j(xk+d)j :kdk��g was calculated whenever the problem (1.8) was solved. For example, in�ve runs of the experiment of Section 6 that minimized the function (6.1) withn=20, the problem (1.8) occurred 8466 times altogether. The ratio was never lessthan 0.5, and the numbers of times it was less than 0.6, 0.7, 0.8 and 0.9 were 3,65, 544 and 2519, respectively. The �gures are better for smaller values of n. Forexample, in the same experiment with n=5, the ratio was never less than 0.8, andit was less than 0.9 on only 6 out of 194 occasions. Therefore our procedure forthe subproblem (1.8) seems to be suitable, there being no need for high precisionin the new position of an interpolation point that is moved by a model step.3. The changes to the variablesOur algorithm is iterative, and we begin this description of the changes that aremade to the variables by de�ning an iteration in a convenient way. The de�nitionis based on the information that is required at the start of an iteration. Thatinformation includes the current interpolation points xi, i=1; 2; : : : ; m, the vec-tor xb of expressions (1.1) and (1.4), the gradient gj and the second derivativematrix Gj of each of the current Lagrange functions `j, j = 1; 2; : : : ; m, and thegradient gQ and the second derivative matrix GQ of the current quadratic model,which satis�es the interpolation equations (1.2). It includes also the current val-ues of the trust region radii � and � where � � �, and the integer k that isintroduced in expression (1.7), so F (xk) is the least of the function values F (xi),i=1; 2; : : : ; m. Furthermore, a key ingredient of the information is a decision thathas been taken already between two alternatives, namely whether the iterationwill calculate d2Rn by solving the problem (1.7), or whether an interpolationpoint will be moved by a model step. In the latter case, the index j of the pointthat will be moved and the new position of the point, namely xk+d, are available.A few other numbers are required too, which will receive attention later.We de�ne an iteration to be the work of carrying out the given decision betweenthe alternatives, followed by all the operations that provide the information that9



has been mentioned for the next iteration, except that the �nal iteration endsthe computation because a termination condition is satis�ed. Therefore one newvalue of the objective function is calculated on most iterations, and it is includedin the quadratic model by the updating methods that are given in Section 4. Inthis section we address not only the changes that are made to the variables, butalso the revision of xb, � and �, the termination condition, the way of decidingbetween the alternatives for the next iteration, and the selection of the index j ofeach interpolation point that will be moved by a model step.There is little to say about iterations that apply a model step, because theydo not alter xb, � and �, and always their decision between the alternatives isthat the next iteration will solve the problem (1.7). Of course the function valueF (xk+d) is calculated for the given vector d, and then the interpolation pointxj is replaced by xk+d, which requires the �rst and second derivative coe�cientsof the Lagrange functions and the quadratic model to be updated. Further, kis not altered in the case F (xk+d) � F (xk), but otherwise it is changed to j,because the new F (xj) is the least calculated value of the objective function sofar. Another task of a model step iteration is explained in the next paragraph. Itoccurs just before the updating, and is important to the fast rate of convergencethat is mentioned at the end of Section 1.The task is concerned with the following theorem that is given in Powell (2000).If the objective function has third derivatives that are bounded by a constant, Msay, then the di�erence between the quadratic model and the objective functionsatis�es the conditionjQ(x)� F (x)j � 16M mXi=1 j`i(x)j kx�xik3; x2Rn: (3.1)One can take the view that this property of quadratic interpolation is of academicinterest only, because the third derivative assumption is too restrictive, becausefunctions are not di�erentiable in the presence of computer rounding errors, andbecauseM is not available. In practice, however, the algorithm employs inequality(3.1) in a way that can be implemented for general objective functions, and that ishighly successful at reducing the number of iterations in comparison with earlierversions of UOBYQA. Therefore we let 16M be a nonnegative parameter of thesoftware, that corresponds to 16M in condition (3.1), and that is included in theinformation at the beginning of each iteration. Then, when F (xk+d) is obtainedby a model step iteration, it is convenient to put x=xk+d into the bound (3.1),in order to test whether 16M seems to be large enough. Speci�cally, the value ofthis parameter is overwritten by the numbermaxh 16M; jQ(xk+d)� F (xk+d)j. mXi=1 j`i(xk+d)j kxk+d�xik3 i ; (3.2)where the functions and vectors in this expression are the ones that are given10



at the beginning of the iteration. The description of the work that is done by amodel step iteration is complete.Alternatively, an iteration of trust region type solves the problem (1.7) by themethod that is described in the �rst half of Section 2, which gives the trial stepd. Further, that method also provides an estimate of the least eigenvalue of thesecond derivative matrix GQ if d is a Newton{Raphson step. We let �Q be thisestimate in the case kdk< 12�, but otherwise �Q is set to zero. The number" = 12 �2 �Q (3.3)is stored, because, if the next iteration is going to move xj by a model step, then" is required in the selection of j.We recall from the opening paragraph of Section 1 that typical distances be-tween successive points at which F is calculated are of magnitude �. Thereforethe current iteration computes F (xk+d) if and only if kdk� 12� holds. Attentionwill be given later to the case kdk < 12�. When F (xk+d) is obtained, we takethe opportunity of revising the parameter 16M again to the value (3.2). Then thevalue of � is updated in a way that depends on the ratior = [F (xk)� F (xk+d) ] = [Q(xk)�Q(xk+d) ] : (3.4)Speci�cally, the details of the updating are typical of trust region methods, becausewe assume that the trust region is too conservative, adequate or overambitious inthe cases r�0:7, 0:1<r<0:7 or r�0:1, respectively. Therefore � is overwrittenby the new trust region radius8>><>>: max [�; 54 kdk; �+ kdk ]; r�0:7;max [ 12 �; kdk ]; 0:1<r<0:7;12 kdk; r�0:1; (3.5)except that the new value is set to � if it would satisfy �� 32� otherwise, because� � � is mandatory, and we will �nd that not allowing � to be slightly largerthan � is helpful occasionally.Next, because F (xk+d) is available, it is usual to replace one of the points xi,i=1; 2; : : : ; m, by xk+d, a replacement being obligatory in the caseF (xk+d) < F (xk); (3.6)in order to retain the least calculated value of F . The details of this part of thealgorithm are given in the next section. Let t be the index of the new interpolationpoint if a replacement is made and let t be zero otherwise. Of course Q and `i,i=1; 2; : : : ; m, are updated if t 6=0. Further, the value of the index k of the bestinterpolation point is altered to t when the reduction (3.6) is achieved.11



When inequality (3.6) is satis�ed for the old value of k, it seems that trustregion steps are helpful to the main calculation. In this case, therefore, the valuesof xb and � are not changed, and the decision is taken that the next iteration willalso solve the problem (1.7), which completes the work of the current iteration.We expect this strategy to be advantageous on average, but, if a long sequence oftrust region steps lies in a linear subspace of Rn that has dimension less than n,then some important features of the objective function may be ignored for manyiterations. The algorithm also perseveres with trust region steps whenever t 6=0and kdk> 2� occur, because the model has been revised, and, if inequality (3.6)failed, then the new value of � is at most 12 kdk.Now the quadratic model is assumed to be adequate for the current � if theinterpolation points satisfy the conditionskxi�xkk � 2�; i=1; 2; : : : ; m: (3.7)This property is enjoyed by the new position of xt when t 6= 0 and kdk � 2�, sothe iteration has made some useful progress if the distance kxt�xkk was greaterthan 2� before the updating altered xt. Therefore in this case too the currentiteration is complete, and the next iteration will try another trust region stepwithout changing xb and �.The other possibilities are considered in the remainder of this section, includingthe situation kdk< 12� when F (xk+d) is not calculated. The notation will referto current functions and points, which di�er from those at the beginning of theiteration if some updating has been done. We will �nd that the iteration preparesfor a model step if the quadratic model seems to be inadequate. Otherwise, ifkdk>� holds, then again the next iteration takes a trust region step with the new� for the current �. In the remaining case, when the quadratic model seems tobe suitable, and either condition (3.6) fails or F (xk+d) is not calculated, then nofurther progress may be possible for the current �. Therefore � is reduced, exceptthat termination occurs if � has already reached the prescribed lower bound �end.The details of all these operations are as follows.When the parameter (3.3) has the value "=0, and also in the earlier versionsof UOBYQA that did not take advantage of the bound (3.1), the quadratic modelis unacceptable if one or more of the conditions (3.7) fail. If unacceptability ofthe model occurs, then the next iteration will move the point xj by a model step,where j is chosen from the setJ = fi : kxi�xkk > 2�g: (3.8)Usually the algorithm picks the least integer j2J that has the propertykxj�xkk = maxfkxi�xkk : i2J g: (3.9)Further, the move d for the model step is calculated by applying the method inthe second half of Section 2 to the problem (1.8).12



Many calculations of the objective function can be saved, however, by usingthe bound (3.1) to relax the tests for the acceptability of the quadratic model, ina way that preserves the procedure of the previous paragraph in the case "= 0.In order to be speci�c, we construe the decision not to calculate F (xk+d) in thecase kdk< 12� as giving up an opportunity to reduce the objective function by anamount that is predicted to be of magnitude ". Further, if such possible changesto the objective function are being neglected, then errors of " in the quadraticmodel should be tolerable. These errors are indicated in expression (3.1), whichsuggests that, if x is constrained by the trust region bound kx�xkk��, then thecontribution to the error of the model from the position of xj is approximatelythe quantity16M maxfj`j(x)j kx�xjk3 : kx�xkk � �g� 16M kxj�xkk3 maxfj`j(xk+d)j : kdk � �g: (3.10)Therefore we prefer not to move xj if it satis�es the condition16M kxj�xkk3 maxfj`j(xk+d)j : kdk � �g � ": (3.11)We are ignoring the dependence of the other Lagrange functions on xj, however,in the hope of �nding a useful technique that can be implemented cheaply.We are going to combine this idea with the operations of the paragraph thatincludes equations (3.8) and (3.9). Moreover, we are concerned by the possibilitythat the parameter 16M may be too small, because initially it is set to zero, so thevalue (3.3) is replaced by "=0 if 16M has been overwritten by the number (3.2)fewer than ten times. Then the selection of an integer j for a model step iterationbegins as before by forming the set (3.8), and, if J is nonempty, by seeking aj that has the property (3.9). Further, we retain the calculation of d from theproblem (1.8), and now we also require the number `j(xk+d), because the choiceof d makes j`j(xk+d)j close to the maximum value in expression (3.11). It followsthat, if the inequality 16M kxj�xkk3 j`j(xk+d)j � " (3.12)holds, then the position of xj seems to be adequate, so j is deleted from J , andanother j is found that satis�es equation (3.9) if the diminished set J is nonempty.This procedure continues recursively until j2J fails the test (3.12), or until J isexhausted. In the former case, the work of the present iteration is complete, andthe next iteration has to move xj to xk+d by a model step.Otherwise, the tests for the acceptability of the quadratic model are achieved,so we ask whether further calculations are required for the current value of �. Theanswer is a�rmative if and only if kdk>� holds, where d is now the solution ofthe problem (1.7) at the beginning of the present iteration. Then the decision is13



taken to solve the trust region problem (1.7) on the next iteration. The resettingof � to � immediately after expression (3.5) helps to provide kdk��.In the remaining situation, no more iterations are required for the present valueof �, because we have a good quadratic model, but it seems that steps of length� fail to decrease the objective function. Therefore, if � > �end, the algorithmreduces � from �old to �new, say, by applying the formula�new = 8>><>>: �end; �end < �old � 16 �end;p�old �end; 16 �end < �old � 250 �end;0:1 �old; �old > 250 �end; (3.13)which is designed to provide reductions by about a factor of ten that achieve� = �end eventually. Further, xb is overwritten by xb+xk, which makes no dif-ference to the second derivative matrices GQ and Gj, but the gradient vectors ofthe quadratic model and Lagrange functions become gQ+GQxk and gj+Gj xk,j = 1; 2; : : : ; m, respectively. Then � is set to max [12�old; �new], which has theadvantage of allowing a trust region step that satis�ed kdk< 12� for �= �old. Weare now ready to begin the iterations with �=�new, and the decision between thealternatives for the �rst of them is that the problem (1.7) will be solved.Of course termination occurs when �=�end and no more iterations are required,but another value of the objective function may be calculated. Speci�cally, if thesolution of the problem (1.7) satis�ed kdk< 12�, then the value of F (xk+d) hasnot been computed, so the algorithm does that computation now. Further, xk isoverwritten by xk+d if inequality (3.6) is achieved, in order that xk can be re-turned as the optimal vector of variables. This device often provides a substantialimprovement to the vector of variables, because, when it is applied, the quadraticmodel is good and d is a Newton{Raphson step.4. Initialization and updatingThe initialization procedure depends on the data xb 2Rn and �beg> 0 that haveto be provided by the user of UOBYQA. It is usually helpful if the given xbis close to the required vector of variables, while numbers of magnitude �beg areassumed to be suitable as distances between any two of the interpolation points xi,i=1; 2; : : : ; m, of the initial quadratic model. The positions of these interpolationpoints, which are taken from Powell (2000), are as follows.They include x1=xb and x2j=xb+�beg ej, j=1; 2; : : : ; n, where ej is the j-thcoordinate vector in Rn. The choice of x2j+1 depends on F (x2j), however, in orderto provide a bias towards low function values. Speci�cally, de�ning �j to be �1 or+1 in the cases F (x2j)�F (xb) or F (x2j)<F (xb), respectively, UOBYQA applies14



the formulax2j+1 = ( xb � �beg ej if �j = �1;xb + 2�beg ej if �j = +1; j=1; 2; : : : ; n: (4.1)Thus x2j+1 is on the positive side of xb along the j-th coordinate direction if andonly if �j is positive. Further, letting i(p; q) have the valuei(p; q) = 2n + 1 + p + 12 (q�1) (q�2); 1�p<q�n; (4.2)the remaining initial interpolation points are assigned the positionsxi(p;q) = xb + �beg (�p ep + �q eq); 1�p<q�n: (4.3)The notation (4.2) provides the property that the subscripts of the vectors (4.3)run through the integers in the interval [2n+2; m].These choices make it easy to derive the parameters of the �rst quadratic model(1.1) from the conditions (1.2). Firstly, the coincidence x1=xb gives cQ=F (x1),and then, for j = 1; 2; : : : ; n, the fact that x2j�xb and x2j+1�xb are di�erentnonzero multiples of ej allows (gQ)j and (GQ)jj to be deduced from F (x2j)�F (xb)and F (x2j+1)�F (xb), where (gQ)j and (GQ)pq denote the j-th component of gQand the (p; q)-th element of GQ, respectively. Finally, the o�-diagonal elementsof the symmetric matrix GQ are obtained from the remark that equations (1.1),(1.2) and (4.3) imply the identitycQ + �beg [�p (gQ)p + �q (gQ)q] + 12� 2beg [(GQ)pp + 2�p�q (GQ)pq + (GQ)qq]= F (xi(p;q)); 1 � p < q � n: (4.4)Indeed, the required matrix element (GQ)pq is the only unknown quantity in thisrelation for each p and q. Thus the positions of the interpolation points reducethe work of solving the initial m�m system (1.2) to only O(n2) operations.All the nonzero coe�cients of all the initial Lagrange functions can also becomputed in O(n2) operations, because, for 1� p< q�n, the Lagrange function`i(p;q) has a very simple form. It is derived from the remark that, if p 6= q, then,because of the positions of the interpolation points, only the i(p; q)-th of theproducts (xi�xb)p (xi�xb)q, i=1; 2; : : : ; m, is nonzero, where the notation (x�xb)jdenotes the j-th component of x�xb. Hence we �nd the formula`i(p;q)(x) = (�p�q=� 2beg) (x�xb)p (x�xb)q; x2Rn; 1�p<q�n; (4.5)which shows that (Gi(p;q))pq=�p�q=� 2beg is the only nonzero coe�cient of `i(p;q).Next we identify the nonzero coe�cients of `k, k=2; 3; : : : ; 2n+1, by makinguse of the quadratic polynomialsb̀2j(x) = (x�xb)j (x�x2j+1)j(x2j�xb)j (x2j�x2j+1)jb̀2j+1(x) = (x�xb)j (x�x2j)j(x2j+1�xb)j (x2j+1�x2j)j 9>>>>=>>>>; ; x2Rn; j=1; 2; : : : ; n: (4.6)15



They satisfy the Lagrange conditions b̀k(xi) = �ik, k = 2; 3; : : : ; 2n+1, for mostintegers i in [1; m], the exceptions being i = i(p; j), 1 � p < j, and i = i(j; q),j < q� n, where j is the integer in [1; n] such that k is equal to 2j or 2j+1. Itfollows from the Lagrange properties of formula (4.5) that the function`k(x) = b̀k(x)� j�1Xp=1 b̀k(xi(p;j)) `i(p;j)(x)� nXq=j+1 b̀k(xi(j;q)) `i(j;q)(x); x2Rn; (4.7)does achieve `k(xi)=�ik, i=1; 2; : : : ; m, as required, where the �rst or second sumis suppressed in the case j=1 or j=n, respectively. Expressions (4.5), (4.6) and(4.7) show that the nonzero o�-diagonal elements of Gk =r2`k are con�ned tothe j-th row and column of Gk. They also imply that (Gk)jj is the only nonzerodiagonal element of Gk. Similarly, only the j-th component of gk can be nonzero.Therefore it is easy to calculate the parameters of the initial Lagrange functions`k, k = 2; 3; : : : ; 2n+1. The parameters of `1, however, can all be nonzero. Thealgorithm extracts their values from the elementary identity`1(x) = 1� mXi=2 `i(x); x2Rn: (4.8)Furthermore, the initialization procedure sets k for the �rst iteration to theleast integer in [1; m] such that F (xk) is the least of the function values F (xi),i=1; 2; : : : ; m, and it picks the initial values 16M =0, �= �beg and �= �beg. Thedecision between the alternatives for the �rst iteration of UOBYQA is that theproblem (1.7) will be solved.We now turn to the updating of the coe�cients of the Lagrange functions whenthe interpolation point xt is moved to the new position ext, say, but the positionsof the other interpolation points are preserved. We let the old and new Lagrangefunctions be `i, i=1; 2; : : : ; m, and èi, i=1; 2; : : : ; m, respectively. The point exthas to satisfy the condition `t(ext) 6= 0; (4.9)because otherwise the nonzero quadratic polynomial `t would vanish on the newset of interpolation points, so the new system of equations (1.2) would be singular.Moreover, for every integer i in [1; m], the di�erence èi�`i has to be a multipleof èt, in order that èi agrees with `i at all the old interpolation points that areretained. Further, for each i, the multiplying factor is de�ned by the equationèi(ext)=�it. Thus we deduce the formulaeèt(x) = `t(x) = `t(ext); x2Rn; (4.10)and èi(x) = `i(x)� `i(ext) èt(x); x2Rn; i 6= t: (4.11)16



Therefore the algorithm updates the coe�cients of the Lagrange functions in thefollowing way. The coe�cients of èt are set to the corresponding coe�cients of`t divided by `t(ext). Then, for every integer i in [1; m] that is di�erent fromt, the coe�cients of èi are set to the coe�cients of `i minus the correspondingcoe�cients of èt multiplied by `i(ext). The numbers `i(ext), i = 1; 2; : : : ; m, areavailable, because ext is always the vector xk+d that occurred in the most recentuse of expression (3.2). These remarks specify the updating method in a veryconvenient form.Fortunately, as explained in Powell (2000), the formulae (4.10) and (4.11) havesome excellent stability properties. In particular, if `t is any quadratic polynomial,and if ext is any point of Rn that obeys the constraint (4.9), then equation (4.10)gives the identity èt(ext) = 1. Thus expression (4.11) provides èi(ext) = 0, i 6= t,even if the old Lagrange functions `i, i=1; 2; : : : ; m, fail to satisfy any Lagrangeconditions. Usually, however, the old Lagrange functions were generated by theupdating method on the previous iteration. It follows from the present argumentthat, if xj is the interpolation point that was moved, then the values`i(xj) = �ij; i=1; 2; : : : ; m; (4.12)have been achieved already. Therefore we assume that the conditions (4.12) holdfor an integer j that is di�erent from t. In this case, formula (4.10) shows thatèt(xj) = 0 is inherited from `t(xj) = 0, so the function (4.11) satis�es èi(xj) =`i(xj) = �ij, i 6= t. We draw the following conclusions by applying these remarksrecursively. Any failure in the Lagrange conditions at an interpolation point iscorrected by the updating method when the interpolation point is moved to a newposition. Then any further failures at that point are caused only by computerrounding errors, even if there are large discrepancies in the Lagrange conditionsat the other interpolation points. We do not expect any large discrepancies tooccur, however, and this view is corroborated very well by numerical experiments,as shown in Section 6.The quadratic model has to be revised too, when xt is moved to the newposition ext and the other interpolation points are not disturbed. Then, letting Qand eQ be the old and new models, the equations eQ(xi)=Q(xi), i 6= t, should hold.It follows that the di�erence eQ�Q is the multiple of the Lagrange function (4.10)that provides the value eQ(ext)=F (ext). Thus eQ is the quadratic polynomialeQ(x) = Q(x) + [F (ext)�Q(ext)] èt(x); x2Rn: (4.13)Therefore its coe�cients are generated by adding to the coe�cients of Q thecorresponding coe�cients of èt multiplied by the factorF (ext)�Q(ext) = F (xk+d)�Q(xk+d); (4.14)which is also available from the most recent use of expression (3.2). Equation(4.13) implies eQ(ext) = F (ext) for any function Q(x), x 2 Rn, and it also implies17



eQ(xi) = Q(xi), i 6= t. Therefore any failure in the condition Q(xt) = F (xt) iscorrected when xt is moved, and any further failures are due to computer roundingerrors. Thus the stability properties of the updating of Q are similar to those ofthe previous paragraph.Finally, we address the selection of t, when F (xk+d) has been calculated for atrial step d obtained from the problem (1.7). We recall from Section 3 that t maybe positive or zero, t = 0 being reserved for the case when no updating is doneby the current iteration, but otherwise the interpolation point xt is moved to theposition ext=xk+d. The algorithm picks a value of t from the set f1; 2; : : : ; mg inthe following way, and then decides later whether to overwrite the choice by t=0.Our remarks on condition (4.9) show that it is important for t to have theproperty `t(xk + d) 6= 0: (4.15)Further, we wish to move an interpolation point that seems to be making a rela-tively large contribution to the bound (3.1) on the error of the quadratic model.Both of these objectives are observed by developing the idea of letting t be a valueof i that maximizes the product j`i(xk+d)j kxk+d�xik3, i=1; 2; : : : ; m. The �rstterm of the product is welcome in view of condition (4.15), and the second one isuseful in the case (3.6), because it promotes the replacement of an interpolationpoint that is far from the current best vector of variables. We strengthen this aimby changing the product to j`i(xk+d)j kxi�bxkk3, where bxk is the value of xk for thenext iteration, which is xk instead of xk+d if F (xk+d)�F (xk) occurs. Moreover,the position of xi is close enough to bxk if it satis�es kxi�bxkk��, so then we givepriority to the term j`i(xk+d)j, except that xk must not be moved if it is the bestvector of variables so far. Speci�cally, the algorithm combines these ingredientsby setting t to a value of i that maximizes the expressionj`i(xk+d)j max [ 1; kxi�bxkk3= �3 ] ; i2f1; 2; : : : ; mgnK; (4.16)where K is empty or fkg if bxk=xk+d or bxk=xk, respectively. This value of t isretained whenever condition (3.6) is achieved, and whenever the greatest of theproducts (4.16) exceeds one, but otherwise t=0 is preferred. Therefore a positiveinteger t that satis�es j`t(xk+d)j> 1 is never rejected. Thus the updating tendsto be bene�cial to the interpolation equations (1.2), because, if the equationsare written in matrix form by introducing any basis of the space of quadraticpolynomials, then the replacement of xt by ext=xk+d multiplies the determinantof the matrix by the factor `t(xk+d). Furthermore, the details of this method forselecting t were in
uenced by numerical results.5. Summary of the algorithmThe following summary of the algorithm is divided into steps, where each step18



refers to the relevant part of the material of the previous three sections. Everyiteration begins at Step 3. Here a zero value of the integer variable j indicatesthat the decision between the alternatives is that d will be calculated by solvingthe problem (1.7). This use of j complements the one that is mentioned in the�rst paragraph of Section 3, because j is positive when a model step is required.Some further details of the implementation are given after the summary.Step 1: The user supplies the data that are speci�ed in the opening paragraph ofSection 1, namely the initial vector of variables xb2Rn, the parameters �beg and�end that determine the choices of �, and the subroutine that provides the valueF (x) of the objective function for any x in Rn.Step 2: The initialization procedure, explained in the �rst half of Section 4,generates the initial set of interpolation points, with the coe�cients of the initialquadratic model and Lagrange functions. It also sets the values 16M=0, �=�beg,�=�beg and j=0, and k becomes the least integer in [1; m] that has the propertyF (xk) = min fF (xi) : i=1; 2; : : : ; mg: (5.1)Step 3: If j=0, then the problem (1.7) is solved by the method that is describedin the �rst half of Section 2, which provides the trial step d. Further, the numberDNORM=kdk is noted, and there is a branch to Step 8 if DNORM< 12� occurs.Step 4: The new value of the objective function F (xk+d) is calculated, d beingavailable at the beginning of the iteration if j is positive. The numbers Q(xk+d)and `i(xk+d), i=1; 2; : : : ; m, are computed too, using a technique that is givenlater in this section. Then the parameter 16M is overwritten by expression (3.2),and the value FOLD=F (xk) is noted.Step 5: If j=0, then � is updated in the way that is the subject of the paragraphthat includes expression (3.5). Further, t is selected by the method in the lastparagraph of Section 4. Alternatively, if j>0, then t is set to j.Step 6: If t>0, then the interpolation point xt is moved to the position ext=xk+d,using the updating formulae (4.10), (4.11) and (4.13) to revise the coe�cients ofthe Lagrange functions and the quadratic model. Moreover, the value of k ischanged to t if F (ext)<FOLD occurs, which preserves equation (5.1). Let DMOVE bethe distance between the old position of xt and xk for the new value of k.Step 7: The tests that are stated in the two complete paragraphs after inequality(3.6) are tried. Speci�cally, if t>0, and if at least one of the four conditionsj > 0; F (ext) < FOLD; DNORM > 2� and DMOVE > 2� (5.2)holds, then j is set to zero and there is a branch to Step 3, in order to begin aniteration that calculates a trust region step.19



Step 8: The procedure in the paragraph that includes expression (3.12) is em-ployed to seek a positive integer j for a model step. If one is found, then themodel step d will have been calculated by applying the method in the secondhalf of Section 2 to the problem (1.8). Otherwise, either the conditions (3.7) aresatis�ed or the search for j>0 has exhausted the set J , so j is set to zero.Step 9: As mentioned soon after expression (3.12), there is a branch to Step 3for a new iteration either if j is positive or if both j=0 and DNORM>� occur.Step 10: If �>�end, then the algorithm performs the operations of the paragraphthat includes equation (3.13). They decrease � and � and revise xb before branch-ing to Step 3 for the next iteration. Since j is already zero, the next iteration willgenerate a trust region step by solving the problem (1.7).Step 11: The iterations are now complete, but one more value of F may berequired before termination. Indeed, we recall from the last paragraph of Section3 that F (xk+d) is calculated if DNORM< 12�, and then xk is overwritten by xk+d ifthe reduction (3.6) is achieved. Finally, the current xk is returned to the user asthe best estimate of the optimal vector of variables. 2Unfortunately, the amount of work of both Step 4 and Step 6 is O(n4), becauseevery coe�cient of every Lagrange function is relevant. Therefore these expensiveparts of the algorithm are simpli�ed as much as possible. Speci�cally, the requiredcoe�cients of the quadratic model are held in a vector vQ2Rn(n+3)=2, whose �rstn and last 12n(n+1) entries are the components of gQ and the elements of thelower triangular and diagonal parts of GQ, respectively. Further, for each integeri in [1; m], the required coe�cients of the Lagrange function `i are stored similarlyin a single vector vi2Rn(n+3)=2. Then the updating formula (4.10) requires vt tobe multiplied by [`t(xk+d)]�1, and, using this new vt, formulae (4.11) and (4.13)require vi, i 6= t, and vQ to be overwritten by the vectorsvi � `i(xk+d) vt and vQ + [F (xk+d)�Q(xk+d)] vt; (5.3)respectively. Moreover, in Step 4 we make use of the observation that equation(1.1), the symmetry of GQ and the de�nition of vQ give the identityQ(xk+d)�Q(xk) = g TQ d+ dTGQ (xk�xb) + 12 dTGQd = v TQw; (5.4)where w2Rn(n+3)=2 does not depend on gQ and GQ. Its components are calculatedfrom the remark that, if j(p; q) is the integer in [n+1; 12n(n+3)] that is de�ned by(vQ)j(p;q)=(GQ)pq, 1�p�q�n, then they have the valueswj = dj; j=1; 2; : : : ; n;wj(p;q) = dp (xk�xb)q + dq (xk�xb)p + dpdq; 1 � p < q � n;wj(p;p) = dp (xk�xb)p + 12 d 2p ; p=1; 2; : : : ; n: 9>>=>>; (5.5)20



Thus w is formed in O(n2) operations, and then Q(xk+d)�Q(xk) is just thescalar product v TQw. Now equation (5.4) remains true with no change to w ifQ is replaced by `i on the left hand side and if the subscript Q is replaced by ielsewhere. Hence we �nd the formulae`i(xk+d)� `i(xk) = v Ti w; i=1; 2; : : : ; m: (5.6)Therefore the O(n4) part of Step 4 is only the calculation of the scalar products(5.6), where w has the components (5.5).The method of the previous paragraph is the reason for the statement, made inSection 1, that there is no need to retain the coe�cients cQ and cj, j=1; 2; : : : ; m,of the functions (1.1) and (1.4). Indeed, the values of Q(xk+d) and `i(xk+d),i=1; 2; : : : ; m, are obtained from the equationsQ(xk+d) = Q(xk) + v TQw = F (xk) + v TQw and`i(xk+d) = `i(xk) + v Ti w = �ik + v Ti w; i=1; 2; : : : ; m: ) (5.7)Furthermore, we see that F (xk) is the only one of the function values F (xi),i=1; 2; : : : ; m, that has to be available at the start of an iteration of the algorithm,because we do not work with the system (1.2) explicitly. Therefore F (xk) is oneof the other numbers that are mentioned at the end of the opening paragraphof Section 3. It is updated occasionally. Speci�cally, Step 6 of the algorithmreduces F (xk) from FOLD to F (ext) when the value of k is changed to t, becauseF (ext)<FOLD occurs.Only one more quantity is present among the other numbers that are requiredat the beginning of each iteration, namely NF, which is the number of values ofF (x), x2Rn, that have been calculated so far. Of course it is set to m in Step 2 ofthe algorithm, and it is increased by one in Step 4. One purpose of NF is that thechoice of j for a model step, given in the paragraph that includes inequality (3.12),depends on the number of updates of 16M that have been made. The algorithmemploys the remark that this number has the value NF�m. Furthermore, theuser may prescribe an upper bound, NFMAX say, on the number of calls of thesubroutine that generates values of the objective function. Then there is a returnfrom Step 4 if NF=NFMAX holds at the beginning of the step, the current xk beingthe �nal vector of variables.One other situation may cause an early return. It is due to the fact that themethod for revising � in Step 5 is suitable only if the denominator Q(xk)�Q(xk+d)of the ratio (3.4) is positive. This happens in theory, because d is a solution ofthe problem (1.7) that has the property kdk� 12�, but damage may be caused bycomputer rounding errors. Therefore, if j is zero at the beginning of Step 5, thereis a check on the computed value of the scalar product (5.4). The calculationsare terminated if v TQw� 0 occurs, and again the current xk is the �nal vector ofvariables. An example of this early termination is shown in the numerical resultsof the next section. 21



Finally, we mention a technique that reduces the work of Step 8. It dependson the elementary boundj`j(xk+d)j = j �jk + g Tk d+ dTGj (xk�xb) + 12 dTGj d j� kdk k gk +Gj (xk�xb) k+ 12 kdk 2 kGjkF ; j 6=k; (5.8)on the function (1.4), where kGjkF is the Frobenius norm [Pnp=1Pnq=1(Gj)2pq]1=2.Thus, for j 6=k, the solution d of the problem (1.8) achieves the condition (3.12)if the coe�cients of `j have the property16M kxj�xkk 3 h� k gk +Gj (xk�xb) k+ 12 �2 kGjkF i � ": (5.9)Now testing this inequality requires much less e�ort than the approximate solutionof the problem (1.8), although the complexity of both tasks is O(n2). Therefore,when ">0, and when the algorithm is asking whether j should be removed fromJ , inequality (5.9) is tried �rst. Of course j is discarded from J if the inequalityholds, but otherwise the problem (1.8) is solved and condition (3.12) is tested asdescribed already. We recall from the end of Section 2 that in some numericalexperiments the calculation (1.8) occurred 8466 and 194 times for n = 20 andn=5, respectively. Those counts would increase to 16434 and 785, however, if thetechnique of this paragraph were not included in the algorithm.6. Numerical results and discussionThe development of the UOBYQA software was guided by numerical experiments,using objective functions of the formF (x) = nXi=1 hai � nXj=1 (Sij sin xj + Cij cos xj)i2 ; x2Rn: (6.1)The way of generating the parameters of F is taken from Fletcher and Powell(1963), and is as follows. The elements of the n�n matrices S and C are randomintegers from the interval [�100; 100], and a vector x� is chosen whose compo-nents are random numbers from [��; �]. Then the parameters ai, i=1; 2; : : : ; n,are de�ned by the equation F (x�) = 0, and the starting vector xb is formed byadding random perturbations from [�0:1�; 0:1�] to the components of x�. Alldistributions of random numbers are uniform. The remaining data for Step 1 inSection 5 are �beg = 0:1 and �end = 10�8. The number of variables is restrictedseverely by the O(n4) work of each iteration, the calculations being done on a SunSparc 2 or Sparc 10 workstation. The values n=3, n=5, n=10 and n=20 wereselected for most of the trials.An advantage of the random numbers is that it is easy to generate manydi�erent objective functions. We are going to consider 20 of them, 5 for each of22



n Values of NFTOT3 37 46 35 115� 455 75 74 110 69 6310 229 455 222 398 645�20 1150 760 1502 1480 1074Table 1: UOBYQA applied to functions of the form (6.1)the values of n that have been mentioned. These test functions provide two otherfeatures that are also helpful to learning by experiments. Firstly, because thenumber of terms in the sum of squares (6.1) is equal to the number of variables,it happens often that the second derivative matrix r2F is ill-conditioned at therequired solution. Secondly, because F is periodic, it has many saddle points andmaxima. The UOBYQA software responds to these challenges very well. Indeed,the greatest �nal value of F in the 20 trials is 2:48� 10�14, and in that casethe greatest modulus of a di�erence between a variable and the correspondingcomponent of x� is only 6:56�10�10, which is substantially less than �end. In twoof the trials, however, the algorithm �nds an optimal vector of variables that isdi�erent from x�.The total number of calculations of F in each of the 20 trials, NFTOT say, isgiven in Table 1. The asterisks indicate the two problems in which the �nal x isfar from x�. The entries in the table suggest that those two problems are relativelyhard. and the variations in the entries for each n show that the di�erent randomnumbers provide several degrees of di�culty. On the other hand, the table is notsuitable for estimating the dependence of NFTOT on n. Nevertheless, our resultscan be compared with those of Powell (1964) for a conjugate direction methodin the case (6.1). One �nds that the UOBYQA software requires fewer functionevaluations, which is some compensation for the huge amount of routine workthat occurs in the construction of quadratic models by interpolation.The usefulness of inequality (3.12) to the speed of convergence of UOBYQAwas investigated numerically. Those studies are reported in Powell (2000), butthe main conclusions are repeated now with some additional comments becauseof their importance. That work was also addressed by the author in his talk atthe 17th Symposium of the Mathematical Programming Society in Atlanta. Webegin the present discussion by recalling from Steps 8 and 9 of the summary ofSection 5 that, if the computations of UOBYQA with the current � are complete,then one or both of the conditionskxj�xkk � 2� and 16M kxj�xkk 3 j`j(xk+d)j � " (6.2)23



n=5 n=20�oldNF FBEST NF FBEST46 6:6�10�1 10�1 488 1:0�10068 4:5�10�4 10�2 984 9:5�10�490 7:1�10�6 10�3 1259 1:8�10�692 2:1�10�8 10�4 1352 1:5�10�898 1:4�10�9 10�5 1393 2:5�10�10102 5:4�10�12 10�6 1424 1:9�10�12105 1:2�10�16 10�7 1493 3:5�10�14110 7:2�10�20 10�8 1502 2:9�10�18Table 2: The calculations so far when � is reducedmust hold for every integer j in [1; m], where d is an approximation to the solutionof the problem (1.8). When � is reduced by formula (3.13), however, then it isusual for the interpolation points to satisfy kxj�xkk>2�, j 6=k, for the new valueof �, because of the techniques that keep the interpolation points apart for theold �. Therefore, if the bounds kxj�xkk�2�, j=1; 2; : : : ; m, have to be achievedeventually for the new �, then the algorithm may have to move all but one ofthe interpolation points, which would require m�1= 12n(n+3) new values of theobjective function. The purpose of the alternative test for the acceptability of xj,namely inequality (3.12), which is the second of the conditions (6.2), is to reducethe number of points that have to be moved for each new �. It follows that the useof this inequality is successful if UOBYQA calculates fewer than 12n2 new valuesof F for most of its choices of �.The UOBYQA software is highly successful in this way throughout the nu-merical experiments of Table 1. For example, some details are given in Table 2for the n=5 and n=20 calculations that require 110 and 1502 values of the ob-jective function, respectively. Each row of the table states the number of functionvalues so far, namely NF, and the least value of F so far, namely FBEST, when theiterations with �= �old are complete. We see that a substantial improvement inaccuracy is achieved after each reduction in �, and that the criterion for success,explained at the end of the previous paragraph, is satis�ed easily in the last �verows of the table. Therefore the algorithm makes very good use of the bound (3.1)on the error of the quadratic model.If one ignores computer rounding errors, then it may be possible to show thatthe excellent results in Table 2 as �old decreases are due to superlinear convergence.In other words, the average number of new values of the objective function for24



each � may tend to zero as � ! 0. We consider this conjecture brie
y, assumingthat the number of reductions in � by a factor of ten is in�nite, that F hasbounded third derivatives, that the relevant vectors of variables converge to alocal minimum x� of the objective function, that r2F (x�) is positive de�nite, andthat the techniques for adjusting the positions of the interpolation points providethe property max fj`j(xk+d)j : kdk � �g � c; j=1; 2; : : : ; m; (6.3)where xk satis�es equation (5.1) as usual, and where c is a positive constant.These assumptions imply that � and kxk�x�k are of magnitude � and boundedabove by a constant multiple of �, respectively. It follows from the second of theconditions (6.2) that, if an iteration picks xj for a move by a model step, and if "is at least a positive multiple of �2, which is a likely consequence of the de�nition(3.3), then the magnitude of kxj�x�k is at least �2=3. Hence the new position extof an interpolation point in Step 6 of Section 5 is not going to be disturbed bya model step move, until � has decreased from its present value, �old say, to oneof magnitude �3=2old , which implies that the average number of model step movesfor each � does tend to zero. This property is also expected for the number ofcalculations of F (xk+d) when the trial step d solves the problem (1.7). Indeed,because improvements to the quadratic model should cause any Newton{Raphsonsteps to converge superlinearly, we have only to consider solutions of the problem(1.7) that are prevented from being Newton{Raphson steps by the bound kdk��.Now the assumptions should imply that, after a �nite number of iterations, allthe trust region steps give the decrease (3.6) in the objective function. Thereforethe reductions in � occur because a Newton{Raphson step satis�es kdk < 12�.Then the �rst choice of � for the new �, namely max[12�old; �new], ensures thatthe next solution of problem (1.7) provides the same d. Further, because of thegoodness of the quadratic model, formula (3.5) should not reduce �. It followsthat all the trust region steps may become Newton{Raphson steps eventually,giving superlinear convergence. It would be better, however, to establish thisproperty without some of the assumptions that have been made.The calculation should terminate after a �nite number of iterations if �end ispositive, but the only analysis of this question so far depends on the limited pre-cision of computer arithmetic. Speci�cally, because the total number of di�erentvalues of the objective function is �nite in practice, a least calculated value mustoccur, so the point xk that satis�es equation (5.1) becomes �xed. Then, for each�, every trust region iteration is followed by a model step iteration, and the trustregion iterations reduce � until � = � holds. Now, when xk is �xed, the trustregion steps with � = � do not decrease the number of integers j 2 [1; m] thatsatisfy kxj�xkk � 2�, while every model step increases this number. Thus thenumber of iterations for each � is �nite. Further, the number of reductions in � isalso �nite, which completes the proof of termination.25



n Values of NFTOT3 37 64 43 137� 545 92 93 155 87 8310 290 590 285 560 728�20 1361 964 1939 2010 1365Table 3: Examples of deterioration due to rounding errorsn Values of NFTOT3 115 112 122 127 1175 396 245 330 393 27010 978 1120 1266 1564 107420 5385 6022 5269 4517 4821Table 4: Examples with �rst derivative discontinuitiesWe investigate the e�ects of computer rounding errors by repeating the calcu-lations of Table 1, after adding the constant 104 to the objective function (6.1),but �beg=0:1 and �end=10�8 are retained. The new values of NFTOT are given inTable 3. The additional work in comparison with Table 1 can be attributed to theimpossibility of constructing good quadratic models by interpolation, when typi-cal distances between interpolation points are of magnitude �=10�7 or �=10�8.Indeed, when the new objective function is tried in the Table 2 calculations, thenew values of NF in the �old = 10�6 row are 102 and 1430 for n= 5 and n= 20,respectively, and the corresponding computed values of FBEST�104 are 3:6�10�12and 1:8�10�11, so the damage to changes in the variables from rounding errorsoccurs for �� 10�7. Moreover, in all the test problems of Table 3, a computedvalue of FBEST�104 is exactly zero before � reaches its �nal value. Therefore allthe work of UOBYQA with � = 10�8 makes no di�erence to the �nal vector ofvariables. Further, the computer output shows that FBEST�104 is always an in-teger multiple of 1:8189894�10�12 in practice. Such rounding errors cause 16M tobecome huge, due to the di�culties of estimating third derivatives from functionvalues. Thus the second of the conditions (6.2), which is important to superlinearconvergence in theory, is ine�ective when � is too small. These remarks may behelpful to the choice of �end.We tried applying UOBYQA to some functions with discontinuous �rst deriva-26



n Values of NFTOT q(n)3 36 36 35 31 35 345 64 54 59 67 64 6310 161 159 161 185 157 16420 509 473 488 486 467 486Table 5: Some well-conditioned least squares calculationstives. In the �rst of these experiments, the objective function is formed by re-placing the sum of squares of expression (6.1) by the sum of moduli of the termsin square brackets. Then the 20 calculations of Table 1 are repeated, withoutchanging the values of the parameters. Unfortunately, the distance from the �nalxk to a local minimum is less than �end in only two cases with n=3. For n=5,these distances are 3�10�2, 1�10�3, 1�10�1, 7�10�4 and 6�10�6, while only oneof the n=10 and one of the n=20 trials yields kxk�x�k1<0:1. It seems that theill-conditioning, mentioned in the second paragraph of this section, is too severe.Therefore UOBYQA was also applied to the functionF (x) = 2nXi=1 ��� ai � nXj=1 (Sij sin xj + Cij cos xj) ��� ; x2Rn; (6.4)S and C being matrices of size 2n�n. Their elements and x�2Rn are generatedas before. Then ai, i = 1; 2; : : : ; 2n, are de�ned by F (x�) = 0, and as usual thecomponents of xb di�er from those of x� by random numbers from [�0:1�; 0:1�].We retain �beg=0:1 and �end =10�8, and again �ve test problems are generatedfor each of the choices n=3, n=5, n=10 and n=20. The numbers of calculationsof the objective function that occurred are reported in Table 4. They are largebecause quadratic functions are unsuitable for modelling �rst derivative disconti-nuities. On the other hand, the accuracy that is achieved is excellent. Indeed, oneof the �nal values of kxk�x�k1 is 2:03�10�8, and the �nal vectors of variables ofall the other 19 cases are better because they satisfy kxk�x�k1<�end.We employ the smooth least squares formF (x) = 2nXi=1 hai � nXj=1 (Sij sin xj + Cij cos xj)i2 ; x2Rn; (6.5)of the function (6.4) to study the dependence of the amount of work of UOBYQAon n. The numbers of calculations of the objective function in this case for theusual 20 test problems are given in Table 5, where all the parameters are takenfrom the experiments of Table 4, including �beg = 0:1 and �end = 10�8. We see27



Total time Percentage of total time spent onn in seconds Prob. (1.7) Prob. (1.8) Eqn. (5.7) Updating3 0.020{0.022 13%{16% 4%{6% 10%{13% 12%{16%5 0.10{0.13 10%{12% 3%{5% 15%{17% 17%{20%10 1.81{2.25 6%{7% 2%{4% 24%{25% 28%{30%20 48.4{56.7 3%{4% 1%{3% 32%{35% 49%{50%Table 6: Some timings of the Table 5 examplesthat the variations in the values of NFTOT in each row are much less than before.Further, these entries can be �tted quite well by the quadratic polynomialq(n) = 0:8n2 + 8:2n+ 2; n=3; 5; 10; 20; (6.6)as shown by the rounded values in the last column of the table. Moreover, afterevery Table 5 calculation, the vector of variables xk satis�es kxk�x�k1 < �end.Thus we �nd that expression (6.5) provides some straightforward examples ofsuccessful applications of UOBYQA. Therefore we use the Table 5 calculationsto illustrate computation times, which are measured in seconds by the Fortranfunction DTIME on a Sun Sparc 10 workstation. Special attention is given tothe two trust region subproblems of Section 2, and to the tasks of an iterationthat require O(n4) operations, namely formula (5.7) for generating `i(xk+ d),i=1; 2; : : : ; m, and the updating in Step 6 of Section 5. The times of each taskwere obtained by comparing UOBYQA with a version that was programmed toperform the particular task under consideration more than once. The results ofthese investigations are reported in Table 6, the range of each entry in the body ofthe table being as follows. The value of the stated quantity was found for each ofthe �ve trials in the relevant row of Table 5, and then the range gives the least andgreatest values that occurred. The lengths of the ranges depend not only on therandom parameters of the objective functions, but also on some roughness in themethod of DTIME. We see in Table 6 that the work of solving the subproblemsof Section 2 is not excessive, and that, if n�10, then more than half of the timeis taken by formula (5.7) and the updating. These expensive operations are sosimple that it would be easy to perform them e�ciently on a parallel machine.Finally, we consider a few well-known test problems that are without randomnumbers. Many researchers have employed Rosenbrock's functionF (x) = 100(x2�x21)2 + (1�x1)2; x2R2; (6.7)and the \singular" functionF (x) = (x1+10x2)2 + 5(x3�x4)2 + (x2�2x3)4 + 10(x1�x4)4; x2R4: (6.8)28



Rosenbrock's function (6.7) The singular function (6.8)�oldNF FBEST NF FBEST39 3:5�10�1 10�1 75 4:0�10�482 1:3�10�6 10�2 123 7:1�10�987 5:2�10�8 10�3 160 9:3�10�1293 3:3�10�13 10�4 214 2:9�10�1694 3:3�10�13 10�5 262 9:0�10�2196 6:5�10�15 10�6 295 3:1�10�2398 2:7�10�21 10�7 348 9:0�10�29100 7:1�10�23 10�8 386 4:5�10�34Table 7: UOBYQA applied to the functions (6.7) and (6.8)We do so too, with the usual starting points (�1:2; 1:0) and (3:0;�1:0; 0:0; 1:0),respectively, and we retain �beg=0:1 and �end=10�8. Table 7 is the analogue ofTable 2 for these trials. We see that the second part of expression (6.2) allows anexcellent rate of convergence in the case (6.7), but there are more than 30 newcalculations of F for each � in the other case, because of the singularity of r2F atthe solution. The early termination, mentioned in the penultimate paragraph ofSection 5, occurred when UOBYQA was applied to the function (6.8), so the tinyvalue of the objective function at termination, namely F =4:5�10�34, shows thatexcellent accuracy is achieved before further progress is prevented by computerrounding errors.The Chebyquad objective functions of Fletcher (1965) were also minimizedby UOBYQA. They are sums of squares, and their variables are n points of aquadrature formula over the interval [0; 1], the starting values of the variablesbeing xi = i=(n+1), i = 1; 2; : : : ; n. Therefore �beg = 0:2=(n+1) is suitable, andwe try �beg =0:1 and �beg = 0:01 too. We persevere with the choice �end =10�8,and n takes the values 2, 4, 6 and 8. The middle three columns of Table 8 showthe total number of function calculations that UOBYQA requires in each of thesecases. Good accuracy occurs, every �nal value of F (xk) being within 2�10�17 ofthe least value of the objective function, F� say, which is zero for n = 2, 4 and6, and about 0.0035 for n=8. Fletcher (1965) uses the Chebyquad examples tocompare three old algorithms for unconstrained minimization without derivatives,the best results being obtained by the conjugate direction method of Powell (1964)that has been mentioned already. The entries in the last column of Table 8 aretaken from Fletcher (1965). They are the number of function evaluations whenthe method of Powell (1964) reduces the objective function to about F�+10�13.29



Choices of �begn Powell (1964)0.1 0:2=(n+1) 0.012 24 25 29 414 59 73 82 916 186 135 155 2888 394 244 263 537Table 8: Values of NFTOT for the Chebyquad examplesWe see that the values of NFTOT in the middle three columns of Table 8 dependquite strongly on �beg. In fact the di�erences between the columns are mainly dueto the calculations with � � 10�4. Hence one can take the view that much ofthe e�ciency has to be achieved from good strategies instead of from the �nedetails of quadratic models. Moreover, Broyden, Dennis and Mor�e (1973) provethat close estimates of all second derivatives are not necessary for the superlinearconvergence of quasi-Newton methods for unconstrained optimization, althoughsome aspects of r2F have to be quite accurate. These remarks suggest that it maybe possible to advance the techniques of UOBYQA in a way that preserves goodperformance, and that avoids the need for all the parameters of all the Lagrangefunctions to be available. Now, however, we infer from Table 6 that UOBYQAbecomes prohibitively expensive for more than 50 variables, the cause of the ceilingbeing the 12(n+1)(n+2) degrees of freedom in the quadratic model Q. There aremany applications of unconstrained optimization with no more than 20 variables.Furthermore, any sparsity in r2F can be inherited by the quadratic model and theLagrange functions, which may provide huge reductions in the number of degreesof freedom, but software for this straightforward extension to UOBYQA has notbeen written yet. The three main advantages of the present version are that itis easy to apply, it usually gives good accuracy, even in some cases when F hasdiscontinuous �rst derivatives, and, in the small range of comparisons that havebeen made, it seems to require fewer function evaluations than other algorithms.The Fortran 77 code was developed for general use, and is available free of chargefrom the author at the e-mail address mjdp@cam.ac.uk.AcknowledgementThe author is very grateful to three referees for their careful consideration of thispaper. They made several good suggestions that have improved the presentation.30
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