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Abstract: We consider some algorithms for unconstrained minimization withoutderivatives that form linear or quadratic models by interpolation to values of theobjective function. Then a new vector of variables is calculated by minimizingthe current model within a trust region. Techniques are described for adjustingthe trust region radius, and for choosing positions of the interpolation pointsthat maintain not only nonsingularity of the interpolation equations but alsothe adequacy of the model. Particular attention is given to quadratic modelswith diagonal second derivative matrices, because numerical experiments showthat they are often more e�cient than full quadratic models for general objectivefunctions. Finally, some recent research on the updating of full quadratic modelsis described brie
y, using fewer interpolation equations than before. The resultantfreedom is taken up by minimizing the Frobenius norm of the change to the secondderivative matrix of the model. A preliminary version of this method providessome very promising numerical results.Department of Applied Mathematics and Theoretical Physics,University of Cambridge,Silver Street,Cambridge CB3 9EW,England.February, 2002.1Presented at NTOC 2001, Kyoto, Japan.



1. IntroductionLet the minimum of a function F (x), x2Rn, be required, where F is de�ned bya subroutine that provides the value of F (x) for any vector of variables x. Weassume that no derivatives of the objective function are available. The algorithmsthat have been developed for this calculation vary greatly in the use that is made offunction values when deciding on changes to the variables. In simulated annealing,for example, each new vector of variables is a random move from a point where Fis known, but, in order to achieve some global convergence properties, that pointmay not be where the least value of the objective function has been calculatedso far. Moreover, if an algorithm employs a line search, then several consecutivenew vectors of variables may be collinear, and also the choice of search directionmay demand some extra function evaluations, especially if a gradient vector hasto be estimated by �nite di�erences. We are going to restrict attention to trustregion methods, however, where an approximation to F (x), x2Rn, is constructedfrom available function values. Then the next vector of variables is generatedusually by seeking the minimum of the approximation in a suitable part of Rn.The approximation is called the \model function".We reserve the notation Q(x), x2Rn, for the current model function, becauseoften it is a quadratic polynomial. We take the view until Section 3, however, thatany linear space M of functions from Rn to R can be prescribed, the dimensionofM being the �nite number m. Then every model function is an element ofM.The algorithm of Conn, Scheinberg and Toint (1997) begins the iterations beforem values of F have been calculated, and some other algorithms pick each modelfunction from M by weighted least squares �tting to all the values of F that areavailable. In the trust region methods that we consider until Section 5, however,each Q is an element ofM that is de�ned by interpolation conditions of the formQ(xi) = F (xi); i=1; 2; : : : ; m; (1.1)the right hand sides being known. The points xi2Rn, i=1; 2; : : : ; m, have to bein positions that ensure the nonsingularity of the system (1.1), a convenient wayof satisfying this condition being described in Section 2.When choosing the linear space M, attention should be given to the amountof work that arises from solving a system of the form (1.1) on every iteration.In the trust region methods of the author, the only calculated values of F thatare retained at the beginning of the current iteration are the m right hand sidesof expression (1.1). Then the iteration generates at most one new value of F .Therefore at least m�1 of the current interpolation conditions are carried forwardto the next iteration. It follows that, by applying updating techniques, each newmodel function Q after the �rst one can be generated in only O(m2) operations.Unfortunately, however, ifM contains all quadratic polynomials, then m has thevalue 12(n+1)(n+2), so the routine work of each iteration is O(n4). Thus the use2



of full quadratic models becomes intolerable for more than about 50 variables.On the other hand, if M is the space of linear and constant polynomials, whichhas dimension n+1, then the construction of model functions is not expensive incomparison with other operations of trust region methods, but such models seemto be unsuitable for unconstrained optimization, because linear polynomials haveno curvature.Therefore we consider the idea of letting M be the space of quadratic poly-nomials that have diagonal second derivative matrices. In this case the task ofupdating Q is relatively easy, because the dimension of M is only m = 2n+1.Further, we expect the presence of diagonal curvature to provide substantial im-provements over the use of linear polynomial model functions. We also expecta trust region method with the new M to require more iterations than a trustregion method with the full quadratic model, because less information about theobjective function is present in Q. These questions are investigated by applyingmethods with the types of model that have been mentioned to several examplesof unconstrained optimization calculations. We will �nd in Section 4 that someof the best numerical results are given by the new choice of M.All of the software that is employed in the experiments was written in For-tran 77 by the author. Speci�cally, the COBYLA (Powell, 1994) and UOBYQA(Powell, 2000) packages treat the cases whenM is composed of all polynomials ofdegree at most one and all polynomials of degree at most two, respectively, and theresults for the new M were computed by a modi�cation of UOBYQA. Includingthe modi�cation was straightforward, because already the author had developeda version of UOBYQA where the elements ofM are quadratic polynomials whosesecond derivative matrices have any given sparsity structure, subject to symmetryand unrestricted diagonal elements. Then the same sparsity conditions occurredin the objective function F (x), x2Rn, but now we run the software for the newM even if all the second derivatives of F are nonzero. The name COBYLA is anacronym for Constrained Optimization BY Linear Approximation. That packageis intended for calculations with constraints on the variables that provide compen-sation for the lack of curvature in the model function Q, but COBYLA can also beapplied to unconstrained problems, because then a typical change to the variablesis a multiple of the steepest descent direction of the current model function. Onthe other hand, UOBYQA is designed for unconstrained optimization.Section 2 gives some details of these trust region methods that are valid whenM is a general linear space. Some properties of our particular choices of M areaddressed in Section 3. The results of the numerical experiments that have beenmentioned are presented and discussed in Section 4. They provide strong reasonsfor the development of some new algorithms. Therefore another way of updatingfull quadratic models is considered brie
y in Section 5. It minimizes the Frobeniusnorm of the change to r2Q when there are fewer than 12(n+1)(n+2) interpolationconditions. 3



2. Details of the methodsAt the beginning of any iteration of our trust region methods, the model functionQ(x), x2Rn, de�ned by the interpolation conditions (1.1), is available. Further,we assume without loss of generality that x1 is the best of the interpolation points,which means that it has the propertyF (x1) � F (xi); i=1; 2; : : : ; m: (2.1)If more than one of the function values F (xi), i=1; 2; : : : ; m, is least, we split thetie by letting x1 be the point at which the value F (x1) was calculated �rst. The\suitable part of Rn", mentioned in the �rst paragraph of Section 1, has the formS = fx : kx�x1k � �g; (2.2)for some positive parameter �, where the vector norm is Euclidean. The setS�Rn is called the \trust region".Many papers have addressed the calculation of the point x�, say, in S thatminimizes the model function Q(x), x2S. If Q is a linear polynomial, then x� iswhere the steepest descent direction of Q from x1 meets the boundary of the trustregion, and, if Q is a quadratic polynomial, then the author prefers to generatex� by the method of Mor�e and Sorensen (1983). That method is iterative, theiterations being stopped in practice when an element bx� of S is found that satis�esthe condition F (bx�)� F (x1) � (1��) [F (x�)� F (x1)]; (2.3)where � is a prescribed positive tolerance. Thus the choice � = 0:01, which istypical, ensures that the estimate bx�� x� provides at least 99% of the greatestreduction in F from F (x1) that can be achieved within the trust region. We ignorethe di�erence between bx� and x� from now on, letting x� denote the calculatedelement of S that gives an acceptably small value of the model function.The iterations of our trust region methods that generate x� are called \trustregion iterations". Usually they calculate the function value F (x�), and then it isalso usual for one of the interpolation points xi, i=1; 2; : : : ; m, to be replaced byx�. Further, Q is updated in order to satisfy the new interpolation equations (1.1).Details of these operations are given later. No other new values of the objectivefunction are found by a trust region iteration, but a new vector of variables thatis di�erent from x� may be required. An example is the possibility that the�rst component of x� is always the same as the �rst component of x1. In thatcase, if only trust region iterations were applied, and if the system of equations(1.1) remained nonsingular throughout the sequence of iterations, then some ofthe interpolation equations of the �rst model function would have to be retained.On the other hand, in order to achieve enough accuracy in the approximationQ�F , it may be necessary for all the interpolation points to be su�ciently close4



to x1. Therefore our trust region methods also include some iterations that arecalled \model iterations". Each model iteration calculates the objective functionat a new point, xQ 2 Rn say, that is chosen to assist the suitability of Q as anapproximation to F (x), x2S.The �rst iteration is always a trust region iteration, and a model iteration isalways followed by a trust region iteration. Therefore the decision that the nextiteration will be a model iteration is taken during a trust region iteration. Further,if that decision is made, then the trust region iteration picks the point xQ and theinteger, t say, from [2; m], such that xt will be rejected from the set fx1; x2; : : : ; xmgto make room for xQ. Thus the only operations of a model iteration are thecalculation of F (xQ), the updating of Q that is required because Q(xt)=F (xt) isreplaced by Q(xQ)=F (xQ) in the system (1.1), all other interpolation conditionsbeing retained, and exchanging x1 with xQ if F (xQ) is less than F (x1).It is possible for the vector x� of a trust region iteration to be the point x1,because Q(x1) = F (x1) can be the least value of Q(x), x 2 S. In that case thecalculation of F (x�) would be super
uous. Further, the use of F (x�) may be dis-advantageous if the distance kx��x1k is small, because then a model function thatinterpolates both F (x1) and F (x�) tends to be sensitive to errors in the objectivefunction, especially if the errors cause substantial discontinuities. Therefore, aftergenerating x�, each trust region iteration tests the conditionkx��x1k � 12 � (2.4)for a choice of � that is addressed below. The function value F (x�) is calculatedon the current iteration if and only if this condition holds. The parameter �is intended to provide large steps in the space of the variables during the earlyiterations, its initial value being prescribed. Further, when no more progress seemsto be possible with the current value, � is reduced, except that termination occursif � has reached its �nal value, which is also prescribed. Typical reductions areby a factor of ten, and � is never increased. The trust region radius � is eitherset to � on every iteration, or is adjusted in a usual way (see Fletcher, 1987, forinstance), subject to the bound ���. The �rst and second of these alternativesare employed by COBYLA and UOBYQA, respectively.If F (x�) is calculated on a trust region iteration, then the inequalityF (x�) � F (x1)� 0:1 [Q(x1)�Q(x�)] (2.5)is tested. In other words, we ask whether the step from x1 to x� reduces theobjective function by at least one tenth of the amount that is predicted by themodel, this amount being positive because of condition (2.4). The factor 0.1 onthe right hand side of expression (2.5) can be altered to any other constant fromthe open interval (0; 1). If the reduction (2.5) is achieved, then the next iterationis also a trust region iteration, which is begun after the usual updating that may5



revise �, that causes the new model function to satisfy Q(x�)=F (x�), and thatreorders the interpolation points so that x� is the new x1.If F (x�) is calculated on a trust region iteration, but inequality (2.5) fails,then � is decreased if it exceeds �, and usually Q is revised, in order to includethe new value of F in the next model function. Further, x� is exchanged with x1whenever the reduction F (x�)<F (x1) occurs, although many other trust regionalgorithms move the centre of the region (2.2) only if the reduction in the objectivefunction is su�ciently large, which means that F (x�) satis�es an inequality of theform (2.5). An advantage of preserving the conditions (2.1) is that, if F (x�) iscalculated, then the strict inequalitiesQ(x�) < Q(x1) = F (x1) � F (xi); i=1; 2; : : : ; m; (2.6)hold. Thus the equations (1.1) ensure that x� is not one of the interpolationpoints xi, i=1; 2; : : : ; m.If condition (2.4) or (2.5) fails on a trust region iteration, then it is assumedthat the next iteration will be a model iteration, so the algorithm makes a pro-visional choice of the index t of the interpolation condition that will be replaced.Speci�cally, this choice of t is an integer from [1; m] that has the propertykxt�x1k = max fkxi�x1k : i=2; 3; : : : ; mg; (2.7)and the ratio kxt�x1k=� is compared with a prescribed constant � > 1. In theearly versions of our algorithms, the decision to employ a model iteration next isalways taken if the ratio exceeds �. Each model iteration replaces xt by xQ, asmentioned already, the choice of xQ being given later. The UOBYQA software,however, tries to avoid the following disadvantage of the earlier versions. Becauseof the test (2.4), we expect most of the distances kxi�x1k, i = 2; 3; : : : ; m, toexceed 12� when � is going to be decreased. Moreover, the usual reductions in �are by a factor that is greater than 2�. Thus, after the reduction, most of thesedistances exceed ��. It follows that at least of magnitudem iterations are requiredto achieve the condition kxt�x1k��� for the new value of �. This disadvantageis tolerable for COBYLA but not for UOBYQA, because the values of m are n+1and 12(n+1)(n+2), respectively. Therefore, for each integer i in [2; m], UOBYQAcan generate a number, �i say, that is an estimate of the contribution to the errorF (x)�Q(x), x 2 S, from the position of xi, and it calculates ��, say, which isan estimate of the reduction in F that is excluded by condition (2.4), �� beingzero if the second derivative matrix of Q is not positive de�nite. Then a modeliteration is applied next if and only if both kxt�x1k>�� and �t>�� hold for aninterpolation point xt. Details are given in the description of UOBYQA (Powell,2000).The only remaining situation that can happen on a trust region iteration isthat condition (2.4) or (2.5) fails, and it is found that there is no need to improve6



Q by a model iteration. Then we ask whether the work using the current valueof � is complete. The answer is negative if the distance kx��x1k exceeds �,which is possible when �> � is allowed. In that case the current iteration willhave calculated F (x�), and will have decreased � to a value that satis�es � �� < kx��x1k, so a trust region iteration with the new � is performed next.Otherwise, the value of � seems to be preventing or impairing progress. Thereforetermination occurs if � has reached its �nal value, or � is reduced and, becausethe tests of the previous paragraph suggest that the quadratic model is good, thenext iteration is also a trust region iteration.We now turn our attention to the Lagrange functions of the system (1.1),because they are highly useful to COBYLA and UOBYQA for maintaining non-singularity of the system, as shown in the next paragraph, and for updating Qwhen one of the equations (1.1) is replaced by a new interpolation condition. Thede�nition of the Lagrange function `i(x), x 2 Rn, where i is any integer from[1; m], is that it is the element of the space M of model functions that satis�esthe equations `i(xj) = �ji; j=1; 2; : : : ; m; (2.8)�ji being the Kronecker delta. These functions are also important to the cal-culation of the the numbers �i, i = 2; 3; : : : ; m, by UOBYQA, mentioned in theparagraph that includes expression (2.7).It is elementary that the system (1.1) is singular if and only if a nonzeroelement of M vanishes at all the points xi, i=1; 2; : : : ; m. The positions of theinterpolation points of the �rst iteration have to be chosen in a way that providesnonsingularity, this requirement being addressed in Section 3, and we �nd byinduction how to preserve nonsingularity. Assume that singularity occurs for the�rst time when the interpolation point xt is removed from the set fx1; x2; : : : ; xmg,and let x�t be the new interpolation point, which is x� or xQ on a trust regionor a model iteration, respectively. Then, if the function `� 2 M, say, vanisheson the new set of points, it must vanish on the set fx1; x2 : : : ; xmgnfxtg, whichimplies that `� is a multiple of the old Lagrange function `t(x), x2Rn, becausethe old system of equations is nonsingular. It follows that the singularity of thenew system is equivalent to the condition `t(x�t ) = 0. Therefore our algorithmspick t and x�t in ways that ensure that `t(x�t ) is nonzero. Further, by relatingLagrange functions to ratios of determinants of matrices of systems of equations,it can be shown that relatively large values of j`t(x�t )j are advantageous.We recall that, when the decision is taken on a trust region iteration that amodel iteration will be performed next, the integer t 2 [2; m] has been selected,but a new interpolation point xQ=x�t is required. It is chosen from the regionN = fx : kx�x1k��g; (2.9)and the remark at the end of the last paragraph suggests that it is optimal to letxQ be the vector that maximizes j`t(x)j, x2N , which is done in both COBYLA7



and UOBYQA. This task is straightforward because the functions `t and �`t areboth elements of M, and the required xQ minimizes one of these functions onN . Therefore we can calculate xQ by two applications of the procedure that isavailable already for minimizing the model function Q(x), x2S.On a trust region iteration that calculates F (x�), the new interpolation con-dition is usually included in the model function, by replacing the point xt by x�,where the integer t has to be chosen. Nonsingularity is preserved by requiring`t(x�) to be nonzero, and in principal we seek a large value of j`t(x�)j. On theother hand, we wish to remove interpolation points that are far from x1, and theLagrange functions of such points are relatively small in the region S, because oftheir zeros at the interpolation points in S. Therefore t is set to an integer in[1; m] that has the property
(kxt�x�k) j`t(x�)j = max f
(kxi�x�k) j`i(x�)j : i=1; 2; : : : ; mg; (2.10)where 
 is a weighting function, and where x� is the choice between x1 andx� that is the next vector x1. In UOBYQA, for example, 
 is the function
(r) = max[1; (r=�)3], r � 0. We do not expect the updating to improve thequadratic model, however, if j`t(x�)j � 1, kxt�x�k� � and x� 6=x� hold for thischoice of t, which is the unusual case when Q is not updated. Otherwise, x�replaces xt in the interpolation equations (1.1).The updating of Q is simple if the Lagrange functions are available. Indeed,when the interpolation equation Q(xt)=F (xt) is replaced by Q(x�t )=F (x�t ), thechange to Q has to be a multiple of `t, in order to preserve the other interpolationconditions. Further, the multiplying factor is de�ned by Qnew(x�t )=F (x�t ), whereQnew is the new model function. These remarks provide the formulaQnew(x) = Qold(x) + F (x�t )�Qold(x�t )`t(x�t ) `t(x); x2Rn; (2.11)for generating Qnew from the current model function Qold. Our trust region meth-ods store the coe�cients of Qold and all the Lagrange functions explicitly, the totalnumber of coe�cients being about m2. Then the coe�cients of Qnew are obtainedfrom formula (2.11) in only O(m) operations.All the Lagrange functions are updated too, by formulae that are analogousto expression (2.11). Speci�cally, the functions`�t (x) = `t(x) = `t(x�t )`�i (x) = `i(x) � `i(x�t ) `�t (x); i 6= t 9=; ; x2Rn; (2.12)are the new Lagrange functions, as they satisfy the Lagrange conditions of thenew interpolation points. Thus the work of updating all the coe�cients is O(m2),which may be optimal, because, if the system (1.1) is written in matrix form,8



then the matrix has m2 elements. The values `i(x�t ), i = 1; 2; : : : ; m, have beencalculated already on a trust region iteration, because they are the numbers `i(x�),i= 1; 2; : : : ; m, of expression (2.10). Moreover, the updating method (2.12) hasa stability property that prevents damage from an accumulation of computerrounding errors over a sequence of iterations (Powell, 2001), the property beingderived from the remark that the method gives the Lagrange conditions `�i (x�t )=�it, i=1; 2; : : : ; m, for arbitrary functions `i2M, provided that `t(x�t ) is nonzero.On the other hand, when M is the space of quadratic polynomials, the fact thatm is of magnitude n2 is very unwelcome.3. The spaces of model functionsThe COBYLA software was written by the author for constrained minimizationcalculations (Powell, 1994). It was applied to the test problems of Section 4,which are unconstrained, because it was available and easy to use. Some of theresults of those experiments are reported and discussed later, because they areinstructive. We recall that COBYLA is a trust region method of the type thatis being considered, and that its space M of model functions is composed of alllinear and constant polynomials from Rn to R. Therefore the dimension m ofMis just n+1, and all the procedures of Section 2 are so easy to implement thatthe amount of routine work of each iteration is only of magnitude n2. At thebeginning of the calculation, one of the interpolation points, x1 say, is given bythe user, and � is set to its prescribed initial value. Then the other interpolationpoints of the �rst iteration are xj+1 = x1+� ej, j = 1; 2; : : : ; n, where ej is thej-th coordinate vector in Rn. After calculating all the function values F (xi),i=1; 2; : : : ; m, two of the points xi are exchanged if necessary so that condition(2.1) holds. Hence all the nonzero coe�cients of the Lagrange functions of the�rst iteration are found in only O(n) operations. These remarks show that, whenCOBYLA is employed for unconstrained optimization, then it is usual for mostof the time of the computation to be spent on the calculation of values of theobjective function.It has been mentioned, however, that linear polynomial models are unsuitablefor unconstrained calculations. The following example shows a serious de�ciencyof this choice of M. Let F be the quadratic functionF (x) = x21 + 4�x22; x2R2; (3.1)where � is a very large positive constant, and let the interpolation points be thevectors x1 =  ��0 ! ; x2 =  ��� 12�12� ! and x3 =  ��� 12��12� ! ; (3.2)9



for the current value of �. The positions of these points have been chosen so thatthere is no need for a model iteration, and the choice of F satis�es condition (2.1),the relevant function values being F (x1) = �2�2 and F (x2) = F (x3) = �2�2+ 14�2.Thus, due to symmetry about the x1-axis and F (x2)> F (x1), the interpolationequations (1.1) de�ne a linear polynomial Q that decreases monotonically as x1increases. Further, the minimization of Q within the trust region (2.2) providesx�=x1+�e1, so F (x�) exceeds F (x1) on a trust region iteration. Therefore, inthe usual case �=�, either termination or a reduction in � occurs. Terminationis unwelcome, because the distance from x1 to the solution of the unconstrainedproblem is ��. Alternatively, if �= � persists as in COBYLA, then the numberof iterations for the new value of � is typically of magnitude ��, where � is thefactor by which � is reduced. Both of these situations are unsatisfactory when �is very large.Therefore most of our attention is given to model functions that are quadraticpolynomials. The use of interpolation equations of the form (1.1) for de�ning aquadratic model is proposed by Win�eld (1973), but he does not provide a robustway of maintaining nonsingularity in the system of equations. Nonsingularity isintimately related to values of Lagrange functions, as shown in formulae (2.11)and (2.12). These relations were the reason for beginning the development ofUOBYQA about ten years ago. Two major changes to the original version arethe introduction of � � � instead of the single trust region radius � = �, andperforming fewer model iterations, by adding the condition �t>�� to kxt�x1k>��,as stated soon after expression (2.7). The material of Section 2 is based on thetechniques that are employed by the current version of UOBYQA. It follows that,because M contains all quadratic polynomials from Rn to R, the amount ofroutine work of an iteration is O(n4). Again the user has to pick an interpolationpoint for the �rst iteration, x1 say, and the other interpolation points of the �rstquadratic model are generated automatically, by taking steps of magnitude �from x1 in the space of the variables. There are two steps along each coordinatedirection, which de�ne the components of the gradient vector rQ(x1) and thediagonal elements of the second derivative matrix r2Q. Then each o�-diagonalelement (r2Q)ij, i 6= j, is obtained from a single step of the form ��ei��ej,the choice of signs and other details being given in Powell (2000). That paperalso presents some numerical results to demonstrate the accuracy and e�ciency ofUOBYQA for objective functions of up to 20 variables. A few experiments withlarger values of n are included in the next section.If the objective function has a sparse second derivative matrix, which happensin many applications, then it is advantageous to let M be the linear space ofquadratic polynomials whose second derivatives satisfy the sparsity conditions ofr2F . Thus the dimension m of M becomes the sum of n+1 and the number ofmatrix elements that may be nonzero on the diagonal and in the lower triangularpart ofr2F , every second derivative matrix being symmetric. Further, no sparsity10



conditions are allowed on the diagonal of r2F in unconstrained calculations. Thetechniques of Section 2 remain valid. In particular, the application of formulae(2.11) and (2.12) to update Q and all the coe�cients of all the Lagrange functionsstill takes O(m2) operations. Therefore this task may now be less expensivethan the solution of the trust region subproblem at the beginning of Section 2by the method of Mor�e and Sorensen (1983). The interpolation points of the�rst quadratic model are generated in the way that is described in the previousparagraph, except that the step from x1 of the form ��ei��ej is omitted if andonly if (r2Q)ij is required to be zero. A version of UOBYQA that includes thissparsity, namely UOBSQA (Unconstrained Optimization By Sparse QuadraticApproximation) is employed in some of the numerical experiments of the nextsection. Then the question under investigation is not the reduction in work oneach iteration, but the decrease that occurs in the total number of iterations, dueto the extra information about the objective function that is given by the sparsityconditions.One other method is also considered in the experiments of Section 4, namelyUOBDQA (Unconstrained Optimization By Diagonal Quadratic Approximation),which has been introduced already in Section 1. In this method, we let M bethe 2n+1 dimensional space of quadratic polynomials that have diagonal secondderivative matrices, even if there is no sparsity in r2F . All the techniques ofSection 2 are applied, and the routine work of each iteration takes only O(n2)operations, including the algorithm of Mor�e and Sorensen for solving the trustregion subproblem, because r2Q is a diagonal matrix. A cause of concern, how-ever, is that the estimate of the error of the approximation Q(x)�F (x), x2Rn,that is employed by UOBYQA and that is inherited by UOBSQA, is no longervalid, because the method of estimation requires the error to be zero wheneverF is a quadratic polynomial (Powell, 2001). We continue, however, to use theformula for the estimate as if it were true, in order to discover experimentallywhether UOBDQA may be useful in practice. Therefore, if UOBDQA and thediagonal version of UOBSQA are applied to the same objective function, with thesame initial vector of variables and the same initial and �nal values of �, then thesame sequences of vectors of variables are calculated, including the interpolationpoints of the �rst quadratic model. Our distinction between these two methods isthat, in the tables of numerical results that are given later, the name UOBSQAis reserved for the case when the sparsity structure of r2Q, Q2M, is the sameas the sparsity structure of r2F (x), x2Rn.When these structures are di�erent, then the performance of UOBDQA maybe ine�cient in ways that are similar to the de�ciencies of COBYLA that areshown in the second paragraph of this section. For example, we let F be thequadratic functionF (x) = (x1+x2)2 + 6� (x1�x2)2; x2R2; (3.3)11



where � is still a very large constant, and we let x1, x2, x3, x4 and x5 be the points ���� ! ;  ������ ! ;  ������ ! ;  ��+��� ! and  ����+� ! ; (3.4)respectively, for the current value of �. Again there is no need for a model iterationand condition (2.1) holds. Indeed, in addition to F (x1) = 4�2�2, we �nd thefunction values F (x2) = F (x3) = 4�2�2 + (1 + 2�) �2F (x4) = F (x5) = 4�2�2 + (1 + 10�) �2 9=; : (3.5)Hence UOBDQA generates a quadratic model that can be written in the formQ(x1 + d) = F (x1) + 4�� (d1 + d2) + (1 + 6�) (d 21 + d 22 ); d2R2: (3.6)Thus the solution x� of the trust region subproblem is the vector of variablesthat minimizes Q(x), x2R2, both components of x��x1 being �2�� =(1+6�).It follows that condition (2.4) fails, so either termination or a reduction in �occurs, although the distance from x1 to the optimal vector of variables is p2��.Therefore, unfortunately, some of the severe disadvantages of COBYLA apply alsoto UOBDQA.4. Numerical resultsThe methods of Section 3 were applied to three unconstrained optimization prob-lems with sparse second derivative matrices, that allow the number of variablesn to be arbitrarily large. These problems are called ARWHEAD, BDQRTIC andCHROSEN, the �rst two being Test Problems 55 and 61 in the Appendix of Connet al (1994), and the last one being taken from Toint (1978), except that some ofhis parameters are set to one. The name ARWHEAD indicates that the nonzeroelements of r2F have an arrowhead structure, F being the functionF (x) = n�1Xi=1 n(x2i + x2n)2 � 4xi + 3o ; x2Rn: (4.1)The BDQRTIC problem has the objective functionF (x) = n�4Xi=1 n(x2i + 2x2i+1 + 3x2i+2 + 4x2i+3 + 5x2n)2 � 4xi + 3o ; x2Rn; (4.2)which is an extension of ARWHEAD that adds a band matrix of width sevento the previous arrowhead structure of r2F . Moreover, the name CHROSEN12



Test Problem COBYLA UOBYQA UOBSQA UOBDQAARWHEAD, n=10 280 219 118 105ARWHEAD, n=15 522 458 170 164ARWHEAD, n=20 678 837 225 260ARWHEAD, n=25 900 1320 296 277BDQRTIC, n=10 1106 434 350 288BDQRTIC, n=15 2323 834 594 385BDQRTIC, n=20 3616 1541 855 534BDQRTIC, n=25 5619 2302 1016 705CHROSEN, n=10 4661 454 247 3652CHROSEN, n=15 6935 1064 431 4590CHROSEN, n=20 8912 1897 553 5871CHROSEN, n=25 10861 2565 736 5943Table 1: Numbers of values of F in the cases when r2F is sparsedenotes Chained Rosenbrock, which does not require an explanation, F being thefunction F (x) = nXi=2 n4(xi�1 � x2i )2 + (1� xi)2o ; x2Rn; (4.3)so r2F is a tridiagonal matrix. We see that all three objective functions arequartic polynomials, and that, when UOBSQA is applied, the dimension m ofthe space M is 3n, 6n�9 or 3n for the choice (4.1), (4.2) or (4.3), respectively,assuming n�5 in BDQRTIC. For each test problem and each trust region method,the numbers of variables n= 10, n= 15, n= 20 and n= 25 were tried. In everycase, we let the initial and �nal values of � be 0:5 and 10�6. Further, as in thereferences cited above, the initial vector of variables was set to e, e or �e forARWHEAD, BDQRTIC or CHROSEN, respectively, where all the components ofe2Rn are one.The numbers of values of F that occurred in these calculations are reportedin Table 1. A comparison of the UOBYQA and UOBSQA columns shows thereductions that can be achieved in the numbers of iterations by taking advantage ofsparsity in r2F . Indeed, it is possible that these numbers are of magnitude n2 andn for UOBYQA and UOBSQA, respectively. No more attention will be given toUOBSQA in this section. The performance of COBYLA is better than the authorexpected, especially on the ARWHEAD test problem, and the number of iterationsseems to be proportional to n in the CHROSEN experiments. The success ofUOBDQA on both ARWHEAD and BDQRTIC is staggering and unexplained.These calculations were the �rst applications of UOBDQA that were tried by the13



author, so they gave much encouragement for further work. The poor resultsof this method for CHROSEN become less bad as n increases, but some damageoccurs from the disadvantages that are the subject of the last paragraph of Section3. Speci�cally, for every n in the CHROSEN experiments, the distance fromthe �nal vector of variables of UOBDQA to the optimal vector, namely e, is inthe interval [5:2�10�5; 7:4�10�5], although the �nal value of � is 10�6. Thecorresponding interval for COBYLA is [9:0�10�5; 1:1�10�4]. Good accuracy isobtained, however, in all the other calculations of Table 1.We also try some objective functions F (x), x 2 Rn, that are periodic, sothey have maxima and saddle points in addition to minima. Indeed, we applyCOBYLA, UOBYQA and UOBDQA to several cases of the trigonometric functionF (x) = �Xi=1 nbi � nXj=1 (Sij sin xj + Cij cos xj)o2 ; x2Rn; (4.4)that is taken from Fletcher and Powell (1963). Here � is an integer that is at leastn, and the parameters Sij and Cij, 1� i� �, 1� j� n, are independent randomintegers from the interval [�100; 100]. Further, a vector �x is chosen randomlyfrom [��; �]n � Rn, and then the parameters bi, 1 � i � �, are de�ned by theequation F (�x) = 0, so �x is an optimal vector of variables for the unconstrainedminimization of F . The required initial vector of variables is generated by makinga random perturbation to every component of �x, each perturbation being fromthe distribution that is uniform on [�0:1�; 0:1�]. From now on, we let the initialand �nal values of � be 0:1 and 10�6, respectively. Thus, apart from the randomnumbers, each problem and the data for the trust region methods are de�ned byn and �. The e�ects of randomness are tested by generating �ve di�erent sets ofrandom numbers for every n and �. Solving these �ve di�erent versions of theoptimization problem by any one of our methods usually provides �ve di�erentvalues of the number of times the objective function is calculated. Just the leastand greatest of these �ve values will be reported Tables 2, 3 and 5. The choices ofrandom numbers were preserved, in order to apply the three di�erent trust regionmethods to the same test problems. We let the number of variables be n = 3,n=5, n=10 and n=20, and we compare the dependence of the minimization ofthe function (4.4) on two di�erent choices of �, namely �=n and �=2n.The results of these experiments are given in Table 2. We see that the perfor-mance of UOBYQA is satisfactory for all the test problems, but that the worstresults of COBYLA and UOBDQA when � = n are remarkably bad. The rea-son is that a large value of � in example (3.1) or (3.3) is analogous to severeill-conditioning in the second derivative matrix r2F (�x). Moreover, because theterms inside the braces of expression (4.4) are zero at x=�x, we �nd the identityr2F (�x)=2Z TZ, where Z is the ��n matrix that has the elementsZij = Sij cos �xj � Cij sin �xj; 1� i��; 1�j�n: (4.5)14



Test Problem COBYLA UOBYQA UOBDQA�=n; n=3 89{18792 34{112 105{36553�=n; n=5 482{171206 60{103 501{38506�=n; n=10 4521{53942 209{625 6017{97136�=n; n=20 19533{67726 736{1448 21473{190196�=2n; n=3 92{387 33{37 129{587�=2n; n=5 165{450 51{56 233{512�=2n; n=10 360{616 139{158 539{1036�=2n; n=20 867{1404 416{483 1158{2019Table 2: Numbers of values of F for the trigonometric function (4.4)Therefore, letting zTi denote the i-th row of Z, the least eigenvalue of the positivede�nite matrix r2F (�x) is the quantity2 min n �Xi=1 (zTi v)2 : v2Rn; kvk=1o : (4.6)It follows that COBYLA and UOBDQA tend to be highly ine�cient if a vectorv 2Rn is nearly orthogonal to all the rows of Z. This can happen easily due tothe random numbers in the case � = n, but, in the alternative case � = 2n, theprobability that r2F (�x) is well-conditioned is high. Thus the entries in the secondhalf of Table 2 depend less strongly on the random numbers. Further, if the mostdi�cult of the �ve test problems with � = n = 3 is deleted, then the COBYLAand UOBDQA results in the �rst row of Table 2 become 89{3778 and 105{1207,respectively. Similarly, if the third of the �ve problems with �=n=5 is deleted,then the COBYLA and UOBDQA entries in the second row of the table become482{1135 and 501{1400. It seems, however, that UOBYQA is good at coping withill-conditioning when the number of variables is small.Table 2 shows that COBYLA is more e�cient than UOBDQA at minimiz-ing the function (4.4) with � = 2n. This conclusion was unexpected, becauseCOBYLA employs linear model functions, while UOBDQA pays some attentionto curvature. On the other hand, linear models provide suitable search directionsfor unconstrained minimization if r2F is close to a multiple of the n�n unitmatrix, and there is a tendency for the matrix 2Z TZ of the previous paragraphto have this property if � is increased for �xed n. Therefore we consider someother test problems where the general diagonal quadratic model of UOBDQA isparticularly useful. Speci�cally, we let Fold be the function (4.4) with �=2n, welet D be an n�n diagonal matrix whose diagonal elements are random numbersfrom the distribution that is logarithmic on [1; 10], and we employ the objective15



Test Problem COBYLA UOBYQA UOBDQA�=2n; n=3 500{5329 34{63 155{818�=2n; n=5 991{4686 74{101 258{944�=2n; n=10 4069{10948 198{249 708{1613�=2n; n=20 8101{16662 596{665 1526{2762Table 3: Numbers of values of F for the scaled trigonometric functionfunction Fnew(x) = Fold(D�1x); x2Rn: (4.7)The only other change to the �=2n calculations of Table 2 is that, having chosenan initial vector of variables, bx say, in the way that is described soon after equation(4.4), we let the initial vector of variables for the new calculation be D bx, whichallows for the scaling that has been introduced. The initial and �nal values of �remain at 0:1 and 10�6, however, because of any diagonal elements of D that areclose to one. Table 3 presents the results of these new experiments that correspondto the � = 2n entries of Table 2. We see that UOBYQA and UOBDQA requirea few more iterations than before, but that the e�ciency of COBYLA has beendestroyed by the introduction of some mild diagonal scaling. Indeed, these resultsrestore the belief of the author that COBYLA is unsuitable for unconstrainedminimization calculations.We recall that the main advantage of UOBDQA over UOBYQA is that theamount of routine work of each iteration is only O(n2) instead of O(n4). ThusUOBDQA is faster than UOBYQA at solving the n = 20 problems of Table 3,although it requires about three times as many values of F . Details are given inTable 4, which compares the computation times and numbers of function evalu-ations of these two trust region methods, using the objective function and initialdata that are described in the previous paragraph. The results are not very sensi-tive to the random numbers that occur. Therefore, for each value of n, the entriesin Table 4 are averages for the �ve test problems that are generated by di�erentchoices of the random numbers. The given times were measured in seconds, bythe Fortran DTIME instruction, from the call of UOBYQA or UOBDQA untilthe return from the subroutine. All the calculations were run on a Sun Ultra 10workstation, which allows the inclusion of problems with 40 variables, but theamount of work of UOBYQA for n=80 would be prohibitive. We see in the tablethat UOBYQA becomes impractical as n increases, but that UOBDQA may beuseful for the larger values of n. On the other hand, we have found already thatsometimes UOBDQA is very ine�cient, as in the � = n calculations of Table 2and in the example of the last paragraph of Section 3. Therefore another trustregion method is considered brie
y in the next section.16



UOBYQA UOBDQATest Problem Seconds #F Seconds #F�=2n; n=3 0.008 47 0.032 313�=2n; n=5 0.042 83 0.119 523�=2n; n=10 0.774 225 0.823 1067�=2n; n=20 19.91 637 5.96 2040�=2n; n=40 1086.6 2119 78.2 6831Table 4: Averages of timings and #F for the scaled trigonometric function5. Least Frobenius norm updatingThe main disadvantages of UOBYQA and UOBDQA are that the work of eachiteration of UOBYQA takes of magnitude n4 operations, while the e�ciencyof UOBDQA is often impaired by restricting the model functions to quadraticpolynomials with diagonal second derivative matrices. The amount of work ofUOBYQA occurs because each quadratic model depends on 12(n+1)(n+2) valuesof F , so now we prefer to employ the interpolation conditionsQ(xi) = F (xi); i=1; 2; : : : ;cm; (5.1)where cm is a given integer that is only of magnitude n. On the other hand, wealso prefer to include all polynomials of degree at most two from Rn to R in thespace M, as in UOBYQA, so the dimension of M is m= 12(n+1)(n+2).Ways of constructing quadratic models from fewer than m conditions are usualin algorithms for unconstrained optimization when �rst derivatives of F are avail-able. Then a typical iteration changes the best vector of variables so far fromxk to xk+1, say, where k is the iteration number for the moment. The gradientvectors rF (xk) and rF (xk+1) are calculated. Further, letting Qold and Qnew bethe quadratic models at the beginning and end of the iteration, Qnew is giventhe curvature information that is provided by the change in gradients. The pro-cedure that takes up the remaining freedom in Qnew can often be expressed asthe minimization of some measure of the di�erence between Qnew and Qold. Inparticular, the symmetric Broyden formula (see Fletcher, 1987, for instance) gen-erates the second derivative matrix r2Qnew by minimizing the Frobenius normkr2Qnew�r2QoldkF , subject to symmetry and the quasi-Newton equation(r2Qnew) (xk+1 � xk) = rF (xk+1)�rF (xk): (5.2)In other words, the sum of squaresnXi=1 nXj=1 n(r2Qnew)ij � (r2Qold)ijo2 (5.3)17



is made as small as possible, subject to the constraints that have been mentioned.We are going to consider brie
y whether a version of this updating method maybe useful for unconstrained minimization without derivatives.There are usually m�cm independent degrees of freedom in the solution of theequations (5.1) by a quadratic polynomial Q2M. Let Qnew be the model functionthat is being generated, and let Qold be the model function at the beginning ofthe current iteration. As in the previous paragraph, we take up the freedomin Qnew by minimizing the sum of squares (5.3). Further, we ensure that Qnewis well de�ned by imposing the following two conditions on the positions of theinterpolation points xi, i=1; 2; : : : ;cm. Firstly, we require the (n+1)�cm matrixX =  1 1 � � � 1x1 x2 � � � xbm ! (5.4)to have rank n+1, because otherwise a nonzero polynomial, p say, of degree atmost one, would satisfy p(xi)=0, i=1; 2; : : : ;cm. Then Qnew could be changed bythe addition of any multiple of p, which would preserve the interpolation equationswithout altering r2Qnew. Secondly, letting bj, j = 1; 2; : : : ; m, be a basis of M,we require the cm�m matrix B with the elementsBij = bj(xi); 1� i�cm; 1�j�m; (5.5)to have rank cm. Thus the equations (5.1) have a solution for any right hand sides.It follows from these conditions that cm is in the interval [n+1; m], and a techniquefor satisfying them is given later. The freedom in the initial quadratic interpolantQ is removed by minimizing kr2QkF .It would be inconvenient to include �rst derivatives in the expression that isminimized to take up the freedom in Qnew, partly because the value of rQnew(x)requires a particular vector x 2 Rn to be chosen. Moreover, the proposed useof Frobenius norms provides a very welcome projection property when F is aquadratic polynomial. Speci�cally, in this case, the updating of the quadraticmodel gives the inequalitykr2F �r2Qnewk2F = kr2F �r2Qoldk2F � kr2Qnew �r2Qoldk2F� kr2F �r2Qoldk2F ; (5.6)which is proved by the following elementary argument. The di�erence F�Qnew isa quadratic polynomial that vanishes at the points xi, i=1; 2; : : : ;cm. Thereforethe construction of Qnew implies that the least value of the functionk(r2Qnew �r2Qold) + � (r2F �r2Qnew)k2F ; �2R; (5.7)occurs when � is zero, which is the conditionnXi=1 nXj=1 (r2Qnew �r2Qold)ij (r2F �r2Qnew)ij = 0: (5.8)18



Hence the �rst line of expression (5.6) is true, and the second line is obvious.Thus, in the quadratic case F 2M, we can take the view that the errors of theapproximations Q� F decrease monotonically as the iterations proceed, exceptfor the e�ects of computer rounding errors.The calculation of Qnew in the way that has been suggested is a quadratic pro-gramming problem with only equality constraints. Therefore it can be expressedas the solution of a linear system of equations. Further, the KKT conditions ofthis problem imply that the second derivative matrix of Qnew has the formr2Qnew = r2Qold + bmXj=1 �j xjxTj ; (5.9)where the Lagrange multipliers �j, j = 1; 2; : : : ;cm, satisfy X�= 0, X being thematrix (5.4). Therefore, if we write Qnew as the quadratic polynomialQnew(x) = g0 + gTx + 12 xT (r2Qnew)x; x2Rn; (5.10)then, because of the interpolation conditions (5.1) and X� = 0, the coe�cients�2Rbm, g0 2R and g 2Rn are de�ned by the (cm+n+1)�(cm+n+1) system ofequations  A XTX 0 ! �bg ! =  F0 ! ; (5.11)where A is the cm�cm matrix that has the elementsAij= 12 (xTi xj)2; 1 � i; j � cm; (5.12)where bg is the vector inRn+1 whose components are g0 followed by the componentsof g, and where the components of F are the known function values F (xi), i=1; 2; : : : ;cm. Thus the amount of work to calculate Qnew by a direct method is ofmagnitude (cm+n)3, which is a major improvement over UOBYQA for su�cientlylarge n, due to our restriction cm=O(n). Further, the author expects to develop anupdating technique for generating the sequence of quadratic models that is fasterthan the use of direct methods. Another improvement over UOBYQA is that themethod of this section requires less computer storage. Moreover, equation (5.12)implies that A is not only symmetric but also has no negative eigenvalues.The author started his research on the material of this section in January,2002, so it is not complete. The reason for jumping the gun in the publication ofresults is that it is easy to include the least Frobenius norm updating method in aversion of UOBDQA. Speci�cally, we retain the number of interpolation equationscm=2n+1, but, instead of applying formula (2.11), the new algorithm generatesQnew by the method of the previous paragraph. Hence r2Qnew is usually a fullmatrix, although the choice of the initial interpolation points by UOBDQA causesr2Q to be diagonal at the beginning of the �rst iteration. Therefore no sparsity19



Test ProblemTable 2 (�=n) Table 2 (�=2n) Table 3 (�=2n)n=3 37{141 32{60 46{66n=5 95{232 56{87 114{186n=10 303{1067 156{230 326{395n=20 1370{3316 428{474 785{941Table 5: Numbers of values of F for the new version of UOBDQAis assumed when solving the trust region subproblem of Section 2 by the methodof Mor�e and Sorensen (1983). All other features of UOBDQA are present in thenew algorithm, however, including the use of Lagrange functions with diagonalsecond derivative matrices to control the changes that are made to the positionsof the interpolation points. Further, these Lagrange functions are still updated byformula (2.12). Thus the ranks of the matrices X and B are always n+1 and cm,respectively, as required. An objection to this way of maintaining nonsingularityof the system (5.11), however, is that it is not invariant under orthogonal rotationsof the space of the variables. Therefore the new version of UOBDQA is intendedonly for some preliminary investigations of least Frobenius norm updating.The new algorithm was applied to all the test problems of Section 4. It may bemisleading to draw conclusions from the objective functions of Table 1, becauseof the e�ects of sparsity. We note, however, that the numbers of calculationsof F by the new algorithm when n=20, for example, are 341, 2779 and 825 forARWHEAD, BDQRTIC and CHROSEN, respectively, and that comparisons withthe entries in Table 1 for other values of n are similar to comparisons in the casen = 20. Moreover, the results for the objective functions of Tables 2 and 3 aregiven in Table 5. We welcome the fact that the change to UOBDQA corrects thesevere ine�ciencies for �=n that are shown in the last column of Table 2, whichsuggests that the least Frobenius norm updating method is useful when r2F isill conditioned. The other entries in Table 5 also compare favourably with thecorresponding results of UOBDQA in Tables 2 and 3. Experiments with the newalgorithm are also promising for larger numbers of variables. Indeed, the changeto the updating procedure of UOBDQA decreases the n=40 value of #F in Table4 from 6831 to 2179. Further, in similar tests with n=80 and n=160, the value of#F is reduced from 15147 to 4623 and from 34854 to 9688, respectively. Only twosets of random numbers were tried for the new algorithm when n=160, however,because the time of each experiment was about 25 hours. Nevertheless, goodaccuracy is achieved in both cases, the ratio of the initial to the �nal calculatedvalue of F being of magnitude 1014.These results for n=160 are reminiscent of an important property of gradient20



methods for unconstrained optimization that was discovered about 30 years ago. Itis that the sequence of calculated vectors of variables can converge at a superlinearrate to a solution of the optimization problem, x� say, without r2Q convergingto r2F (x�), where Q is still the current quadratic model. Further, fewer thann iterations often provide enough accuracy in practice, although n iterations areusually necessary if r2Q is required to be a good approximation to r2F (x�). Inthe present situation without derivatives, we recall that a quadratic model has12(n+1)(n+2) independent parameters. This number is 13122 when n=160, butwe have found in this case that the new version of UOBDQA employs fewer than10000 values of F , when it is applied to the scaled trigonometric function of Tables3 and 4. In other words, assuming that the amount of work is proportional to thenumber of function values, the new method solves the minimization problem whileUOBYQA is constructing the quadratic model for the �rst iteration. It followsthat trying to achieve good accuracy in all the parameters of the model maybe ine�cient. Therefore we expect the updating technique of this section to behighly useful to the development of new algorithms for unconstrained optimizationcalculations.AcknowledgementsThe author is very grateful to the Mathematics Department of the City Universityof Hong Kong for hospitality and facilities that supported the research that isreported in Section 5. Moreover, Benoit Colson provided helpful advice on thesparse test problems of Table 1, and Beresford Parlett kindly con�rmed that thematrix A with the elements (5.12) has no negative eigenvalues.ReferencesA.R. Conn, N.J.M. Gould, M. Lescrenier and Ph.L. Toint (1994), \Performanceof a multifrontal scheme for partially separable optimization", in Advancesin Optimization and Numerical Analysis, eds. S. Gomez & J-P. Hennart,Kluwer Academic (Dordrecht), pp. 79{96.A.R. Conn, K. Scheinberg and Ph.L. Toint (1997), \Recent progress in uncon-strained nonlinear optimization without derivatives", Math. Programming,Vol. 79, pp. 397{414.R. Fletcher (1987), Practical Methods of Optimization, John Wiley & Sons(Chichester).R. Fletcher and M.J.D. Powell (1963), \A rapidly convergent descent method forminimization", Comput. J., Vol. 6, pp. 163{168.21
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