DAMTP 2002/NA02

On trust region methods for unconstrained
minimization without derivatives!

M.J.D. Powell

Abstract: We consider some algorithms for unconstrained minimization without
derivatives that form linear or quadratic models by interpolation to values of the
objective function. Then a new vector of variables is calculated by minimizing
the current model within a trust region. Techniques are described for adjusting
the trust region radius, and for choosing positions of the interpolation points
that maintain not only nonsingularity of the interpolation equations but also
the adequacy of the model. Particular attention is given to quadratic models
with diagonal second derivative matrices, because numerical experiments show
that they are often more efficient than full quadratic models for general objective
functions. Finally, some recent research on the updating of full quadratic models
is described briefly, using fewer interpolation equations than before. The resultant
freedom is taken up by minimizing the Frobenius norm of the change to the second
derivative matrix of the model. A preliminary version of this method provides
some very promising numerical results.

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge,

Silver Street,

Cambridge CB3 9EW,

England.

February, 2002.

!Presented at NTOC 2001, Kyoto, Japan.

1. Introduction

Let the minimum of a function F(z), z € R", be required, where F' is defined by
a subroutine that provides the value of F(z) for any vector of variables z. We
assume that no derivatives of the objective function are available. The algorithms
that have been developed for this calculation vary greatly in the use that is made of
function values when deciding on changes to the variables. In simulated annealing,
for example, each new vector of variables is a random move from a point where F
is known, but, in order to achieve some global convergence properties, that point
may not be where the least value of the objective function has been calculated
so far. Moreover, if an algorithm employs a line search, then several consecutive
new vectors of variables may be collinear, and also the choice of search direction
may demand some extra function evaluations, especially if a gradient vector has
to be estimated by finite differences. We are going to restrict attention to trust
region methods, however, where an approximation to F'(z), z € R", is constructed
from available function values. Then the next vector of variables is generated
usually by seeking the minimum of the approximation in a suitable part of R™.
The approximation is called the “model function”.

We reserve the notation Q(z), z €R", for the current model function, because
often it is a quadratic polynomial. We take the view until Section 3, however, that
any linear space M of functions from R" to R can be prescribed, the dimension
of M being the finite number m. Then every model function is an element of M.
The algorithm of Conn, Scheinberg and Toint (1997) begins the iterations before
m values of F' have been calculated, and some other algorithms pick each model
function from M by weighted least squares fitting to all the values of F' that are
available. In the trust region methods that we consider until Section 5, however,
each () is an element of M that is defined by interpolation conditions of the form

Qz;) = Flx;), i=1,2,...,m, (1.1)

the right hand sides being known. The points z; € R", i=1,2,...,m, have to be
in positions that ensure the nonsingularity of the system (1.1), a convenient way
of satisfying this condition being described in Section 2.

When choosing the linear space M, attention should be given to the amount
of work that arises from solving a system of the form (1.1) on every iteration.
In the trust region methods of the author, the only calculated values of F' that
are retained at the beginning of the current iteration are the m right hand sides
of expression (1.1). Then the iteration generates at most one new value of F.
Therefore at least m—1 of the current interpolation conditions are carried forward
to the next iteration. It follows that, by applying updating techniques, each new
model function) after the first one can be generated in only O(m?) operations.
Unfortunately, however, if M contains all quadratic polynomials, then m has the
value £(n+1)(n+2), so the routine work of each iteration is O(n*). Thus the use

of full quadratic models becomes intolerable for more than about 50 variables.
On the other hand, if M is the space of linear and constant polynomials, which
has dimension n+1, then the construction of model functions is not expensive in
comparison with other operations of trust region methods, but such models seem
to be unsuitable for unconstrained optimization, because linear polynomials have
no curvature.

Therefore we consider the idea of letting M be the space of quadratic poly-
nomials that have diagonal second derivative matrices. In this case the task of
updating @ is relatively easy, because the dimension of M is only m = 2n+1.
Further, we expect the presence of diagonal curvature to provide substantial im-
provements over the use of linear polynomial model functions. We also expect
a trust region method with the new M to require more iterations than a trust
region method with the full quadratic model, because less information about the
objective function is present in (). These questions are investigated by applying
methods with the types of model that have been mentioned to several examples
of unconstrained optimization calculations. We will find in Section 4 that some
of the best numerical results are given by the new choice of M.

All of the software that is employed in the experiments was written in For-
tran 77 by the author. Specifically, the COBYLA (Powell, 1994) and UOBYQA
(Powell, 2000) packages treat the cases when M is composed of all polynomials of
degree at most one and all polynomials of degree at most two, respectively, and the
results for the new M were computed by a modification of UOBYQA. Including
the modification was straightforward, because already the author had developed
a version of UOBYQA where the elements of M are quadratic polynomials whose
second derivative matrices have any given sparsity structure, subject to symmetry
and unrestricted diagonal elements. Then the same sparsity conditions occurred
in the objective function F(z), z € R", but now we run the software for the new
M even if all the second derivatives of F' are nonzero. The name COBYLA is an
acronym for Constrained Optimization BY Linear Approximation. That package
is intended for calculations with constraints on the variables that provide compen-
sation for the lack of curvature in the model function), but COBYLA can also be
applied to unconstrained problems, because then a typical change to the variables
is a multiple of the steepest descent direction of the current model function. On
the other hand, UOBYQA is designed for unconstrained optimization.

Section 2 gives some details of these trust region methods that are valid when
M is a general linear space. Some properties of our particular choices of M are
addressed in Section 3. The results of the numerical experiments that have been
mentioned are presented and discussed in Section 4. They provide strong reasons
for the development of some new algorithms. Therefore another way of updating
full quadratic models is considered briefly in Section 5. It minimizes the Frobenius
norm of the change to V2@ when there are fewer than 1(n+1)(n+2) interpolation
conditions.

2. Details of the methods

At the beginning of any iteration of our trust region methods, the model function
Q(z), z€R™, defined by the interpolation conditions (1.1), is available. Further,
we assume without loss of generality that x; is the best of the interpolation points,
which means that it has the property

F(z,) < F(z;), i=1,2,...,m. (2.1)

If more than one of the function values F'(z;), i=1,2,...,m, is least, we split the
tie by letting x; be the point at which the value F'(z;) was calculated first. The
“suitable part of R"”, mentioned in the first paragraph of Section 1, has the form

S =Az: [lz—z| <A}, (2.2)

for some positive parameter A, where the vector norm is Euclidean. The set
SCR™ is called the “trust region”.

Many papers have addressed the calculation of the point x,, say, in § that
minimizes the model function Q(z), z€S. If @ is a linear polynomial, then z, is
where the steepest descent direction of () from z; meets the boundary of the trust
region, and, if () is a quadratic polynomial, then the author prefers to generate
za by the method of Moré and Sorensen (1983). That method is iterative, the
iterations being stopped in practice when an element Z, of § is found that satisfies
the condition

F(Za) = F(z)) < (1=n) [F(za) — F(a1)], (2.3)

where 7 is a prescribed positive tolerance. Thus the choice n = 0.01, which is
typical, ensures that the estimate Z, ~ z provides at least 99% of the greatest
reduction in F' from F'(z;) that can be achieved within the trust region. We ignore
the difference between z, and x, from now on, letting x, denote the calculated
element of S that gives an acceptably small value of the model function.

The iterations of our trust region methods that generate x, are called “trust
region iterations”. Usually they calculate the function value F'(z,), and then it is
also usual for one of the interpolation points z;, 1=1,2,...,m, to be replaced by
x . Further, @ is updated in order to satisfy the new interpolation equations (1.1).
Details of these operations are given later. No other new values of the objective
function are found by a trust region iteration, but a new vector of variables that
is different from z, may be required. An example is the possibility that the
first component of x, is always the same as the first component of x;. In that
case, if only trust region iterations were applied, and if the system of equations
(1.1) remained nonsingular throughout the sequence of iterations, then some of
the interpolation equations of the first model function would have to be retained.
On the other hand, in order to achieve enough accuracy in the approximation
@~ F, it may be necessary for all the interpolation points to be sufficiently close

4

to ;. Therefore our trust region methods also include some iterations that are
called “model iterations”. Each model iteration calculates the objective function
at a new point, zy € R" say, that is chosen to assist the suitability of) as an
approximation to F'(z), x€S.

The first iteration is always a trust region iteration, and a model iteration is
always followed by a trust region iteration. Therefore the decision that the next
iteration will be a model iteration is taken during a trust region iteration. Further,
if that decision is made, then the trust region iteration picks the point z, and the
integer, ¢ say, from [2, m], such that z, will be rejected from the set {z;, 2y, ..., z,,}
to make room for zy. Thus the only operations of a model iteration are the
calculation of F'(zg), the updating of @ that is required because Q(z;)=F(z,) is
replaced by Q(zg)=F(zg) in the system (1.1), all other interpolation conditions
being retained, and exchanging z;, with z¢ if F'(2g) is less than F(z).

It is possible for the vector x5 of a trust region iteration to be the point z,
because Q(z,) = F(x;) can be the least value of Q(z), x € S. In that case the
calculation of F'(z,) would be superfluous. Further, the use of F(x,) may be dis-
advantageous if the distance ||z,—z; || is small, because then a model function that
interpolates both F'(z;) and F(z,) tends to be sensitive to errors in the objective
function, especially if the errors cause substantial discontinuities. Therefore, after
generating x, each trust region iteration tests the condition

lza—zi]] > 3p (2.4)

for a choice of p that is addressed below. The function value F'(z,) is calculated
on the current iteration if and only if this condition holds. The parameter p
is intended to provide large steps in the space of the variables during the early
iterations, its initial value being prescribed. Further, when no more progress seems
to be possible with the current value, p is reduced, except that termination occurs
if p has reached its final value, which is also prescribed. Typical reductions are
by a factor of ten, and p is never increased. The trust region radius A is either
set to p on every iteration, or is adjusted in a usual way (see Fletcher, 1987, for
instance), subject to the bound A > p. The first and second of these alternatives
are employed by COBYLA and UOBYQA, respectively.
If F(z,) is calculated on a trust region iteration, then the inequality

F(za) < F(zy) - 0.1[Q(z;) - Q(z4)] (2.5)

is tested. In other words, we ask whether the step from x; to z, reduces the
objective function by at least one tenth of the amount that is predicted by the
model, this amount being positive because of condition (2.4). The factor 0.1 on
the right hand side of expression (2.5) can be altered to any other constant from
the open interval (0, 1). If the reduction (2.5) is achieved, then the next iteration
is also a trust region iteration, which is begun after the usual updating that may

revise A, that causes the new model function to satisty Q(xz,)=F(z), and that
reorders the interpolation points so that z, is the new z;.

If F(za) is calculated on a trust region iteration, but inequality (2.5) fails,
then A is decreased if it exceeds p, and usually @ is revised, in order to include
the new value of F' in the next model function. Further, z, is exchanged with z,
whenever the reduction F'(z,) < F(z;) occurs, although many other trust region
algorithms move the centre of the region (2.2) only if the reduction in the objective
function is sufficiently large, which means that F'(z,) satisfies an inequality of the
form (2.5). An advantage of preserving the conditions (2.1) is that, if F(z,) is
calculated, then the strict inequalities

Q(iA) < Q(El) = F(ll) < F(Ez)v 1=1,2,...,m, (2'6)

hold. Thus the equations (1.1) ensure that z, is not one of the interpolation
points z;, 1=1,2,..., m.

If condition (2.4) or (2.5) fails on a trust region iteration, then it is assumed
that the next iteration will be a model iteration, so the algorithm makes a pro-
visional choice of the index t of the interpolation condition that will be replaced.
Specifically, this choice of ¢ is an integer from [1,m] that has the property

||£t_£1|| = max{“ii—&“: i:2737"'7m}7 (27)

and the ratio ||z, —z,||/p is compared with a prescribed constant 5> 1. In the
early versions of our algorithms, the decision to employ a model iteration next is
always taken if the ratio exceeds . Each model iteration replaces z, by g, as
mentioned already, the choice of 2, being given later. The UOBYQA software,
however, tries to avoid the following disadvantage of the earlier versions. Because
of the test (2.4), we expect most of the distances ||z; —z,||, i =2,3,...,m, to
exceed %p when p is going to be decreased. Moreover, the usual reductions in p
are by a factor that is greater than 23. Thus, after the reduction, most of these
distances exceed (p. It follows that at least of magnitude m iterations are required
to achieve the condition ||z, —z;|| < Bp for the new value of p. This disadvantage
is tolerable for COBYLA but not for UOBYQA, because the values of m are n+1
and %(n+1)(n+2), respectively. Therefore, for each integer ¢ in [2, m], UOBYQA
can generate a number, #; say, that is an estimate of the contribution to the error
F(z)—Q(z), z € S, from the position of z;, and it calculates 6,, say, which is
an estimate of the reduction in F' that is excluded by condition (2.4), 6, being
zero if the second derivative matrix of () is not positive definite. Then a model
iteration is applied next if and only if both ||z, —z,|| > Bp and 6; > 6, hold for an
interpolation point x,. Details are given in the description of UOBYQA (Powell,
2000).

The only remaining situation that can happen on a trust region iteration is
that condition (2.4) or (2.5) fails, and it is found that there is no need to improve

@ by a model iteration. Then we ask whether the work using the current value
of p is complete. The answer is negative if the distance ||z, —z;|| exceeds p,
which is possible when A > p is allowed. In that case the current iteration will
have calculated F'(z,), and will have decreased A to a value that satisfies p <
A < ||lza — 2], so a trust region iteration with the new A is performed next.
Otherwise, the value of p seems to be preventing or impairing progress. Therefore
termination occurs if p has reached its final value, or p is reduced and, because
the tests of the previous paragraph suggest that the quadratic model is good, the
next iteration is also a trust region iteration.

We now turn our attention to the Lagrange functions of the system (1.1),
because they are highly useful to COBYLA and UOBYQA for maintaining non-
singularity of the system, as shown in the next paragraph, and for updating @
when one of the equations (1.1) is replaced by a new interpolation condition. The
definition of the Lagrange function ¢;(z), x € R", where i is any integer from
[1,m], is that it is the element of the space M of model functions that satisfies
the equations

Ui(z;) = 0js, j=1,2,...,m, (2.8)

;i being the Kronecker delta. These functions are also important to the cal-
culation of the the numbers 6;, i =2,3,...,m, by UOBYQA, mentioned in the
paragraph that includes expression (2.7).

It is elementary that the system (1.1) is singular if and only if a nonzero
element of M vanishes at all the points z;, 2=1,2,...,m. The positions of the
interpolation points of the first iteration have to be chosen in a way that provides
nonsingularity, this requirement being addressed in Section 3, and we find by
induction how to preserve nonsingularity. Assume that singularity occurs for the
first time when the interpolation point z; is removed from the set {z,z5,...,2,,},
and let zj be the new interpolation point, which is z or Zg on a trust region
or a model iteration, respectively. Then, if the function ¢* € M, say, vanishes
on the new set of points, it must vanish on the set {z,,z,...,z,,}\{z;}, which
implies that ¢* is a multiple of the old Lagrange function ¢;(x), x € R", because
the old system of equations is nonsingular. It follows that the singularity of the
new system is equivalent to the condition ¢;(z;) =0. Therefore our algorithms
pick ¢ and zj in ways that ensure that ¢;(z}) is nonzero. Further, by relating
Lagrange functions to ratios of determinants of matrices of systems of equations,
it can be shown that relatively large values of |(;(z})| are advantageous.

We recall that, when the decision is taken on a trust region iteration that a
model iteration will be performed next, the integer ¢t € [2,m] has been selected,
but a new interpolation point zo =z} is required. It is chosen from the region

N = {z: ||lz—z]| <p}, (2.9)

and the remark at the end of the last paragraph suggests that it is optimal to let
zg be the vector that maximizes |(;(x)|, z €N, which is done in both COBYLA

7

and UOBYQA. This task is straightforward because the functions ¢, and —¢; are
both elements of M, and the required z, minimizes one of these functions on
N. Therefore we can calculate 2 by two applications of the procedure that is
available already for minimizing the model function Q(z), z€S.

On a trust region iteration that calculates F'(z,), the new interpolation con-
dition is usually included in the model function, by replacing the point z, by za,
where the integer ¢t has to be chosen. Nonsingularity is preserved by requiring
li(zA) to be nonzero, and in principal we seek a large value of |(;(zA)]. On the
other hand, we wish to remove interpolation points that are far from z,, and the
Lagrange functions of such points are relatively small in the region S, because of
their zeros at the interpolation points in §. Therefore ¢ is set to an integer in
[1,m] that has the property

Qllz;—z. D 1b(za)l = max{Q([lz;—z.) [6:(2a)| - i=1,2,...,m}, (2.10)

where {2 is a weighting function, and where z, is the choice between z; and
x that is the next vector xz;. In UOBYQA, for example, € is the function
Q(r) = max[1, (r/p)3], r > 0. We do not expect the updating to improve the
quadratic model, however, if |[l;(zA)| <1, ||z;—z,]| <p and z #z, hold for this
choice of ¢, which is the unusual case when () is not updated. Otherwise, zx
replaces x, in the interpolation equations (1.1).

The updating of @) is simple if the Lagrange functions are available. Indeed,
when the interpolation equation Q(z,) = F'(x;) is replaced by Q(z;)=F(z}), the
change to () has to be a multiple of ¢;, in order to preserve the other interpolation
conditions. Further, the multiplying factor is defined by Quew(z;)=F(z}), where
Qnew 1s the new model function. These remarks provide the formula

F(z}) — Qoa(x})
l(zf)

for generating (e from the current model function Quq. Our trust region meth-
ods store the coefficients of (Q,q and all the Lagrange functions explicitly, the total
number of coefficients being about m?2. Then the coefficients of Qe are obtained
from formula (2.11) in only O(m) operations.

All the Lagrange functions are updated too, by formulae that are analogous
to expression (2.11). Specifically, the functions

Gi(z) = l(z) [b(z}) .
% * % y ! QGR !
G(z) = bi(z) — G(z) 6 (x), it

are the new Lagrange functions, as they satisfy the Lagrange conditions of the

new interpolation points. Thus the work of updating all the coefficients is O(m?),
which may be optimal, because, if the system (1.1) is written in matrix form,

QneW(g) = Qold(g) +

l(z), reR"™, (2.11)

(2.12)

then the matrix has m? elements. The values ¢;(z}), i=1,2,...,m, have been

calculated already on a trust region iteration, because they are the numbers ¢;(z),
i=1,2,...,m, of expression (2.10). Moreover, the updating method (2.12) has
a stability property that prevents damage from an accumulation of computer
rounding errors over a sequence of iterations (Powell, 2001), the property being
derived from the remark that the method gives the Lagrange conditions £f(z})=
dit, 1=1,2,...,m, for arbitrary functions ¢; € M, provided that ¢;(z;) is nonzero.
On the other hand, when M is the space of quadratic polynomials, the fact that
m is of magnitude n? is very unwelcome.

3. The spaces of model functions

The COBYLA software was written by the author for constrained minimization
calculations (Powell, 1994). It was applied to the test problems of Section 4,
which are unconstrained, because it was available and easy to use. Some of the
results of those experiments are reported and discussed later, because they are
instructive. We recall that COBYLA is a trust region method of the type that
is being considered, and that its space M of model functions is composed of all
linear and constant polynomials from R™ to R. Therefore the dimension m of M
is just n+1, and all the procedures of Section 2 are so easy to implement that
the amount of routine work of each iteration is only of magnitude n?. At the
beginning of the calculation, one of the interpolation points, z; say, is given by
the user, and p is set to its prescribed initial value. Then the other interpolation
points of the first iteration are z;., =z, +pe;, j =1,2,...,n, where ¢; is the
j-th coordinate vector in R"™. After calculating all the function values F(z;),
1=1,2,...,m, two of the points x; are exchanged if necessary so that condition
(2.1) holds. Hence all the nonzero coefficients of the Lagrange functions of the
first iteration are found in only O(n) operations. These remarks show that, when
COBYLA is employed for unconstrained optimization, then it is usual for most
of the time of the computation to be spent on the calculation of values of the
objective function.

It has been mentioned, however, that linear polynomial models are unsuitable
for unconstrained calculations. The following example shows a serious deficiency
of this choice of M. Let F' be the quadratic function

F(z) = 22 +4Ta23, z€R?, (3.1)

where I' is a very large positive constant, and let the interpolation points be the

vectors
r p—1 Cp—1L
£1:< p)a £2:< p1 20) and £3:< p12p>a (3.2)
0 2P —3p

for the current value of p. The positions of these points have been chosen so that
there is no need for a model iteration, and the choice of F satisfies condition (2.1),
the relevant function values being F(z,) =T%? and F(z,) = F(z3) =T%*+ 1o
Thus, due to symmetry about the z;-axis and F(z,) > F'(z;), the interpolation
equations (1.1) define a linear polynomial () that decreases monotonically as
increases. Further, the minimization of () within the trust region (2.2) provides
xa=2;+Ae, so F(za) exceeds F(z;) on a trust region iteration. Therefore, in
the usual case A =p, either termination or a reduction in p occurs. Termination
is unwelcome, because the distance from x; to the solution of the unconstrained
problem is I'p. Alternatively, if A =p persists as in COBYLA, then the number
of iterations for the new value of p is typically of magnitude oI', where o is the
factor by which p is reduced. Both of these situations are unsatisfactory when I'
is very large.

Therefore most of our attention is given to model functions that are quadratic
polynomials. The use of interpolation equations of the form (1.1) for defining a
quadratic model is proposed by Winfield (1973), but he does not provide a robust
way of maintaining nonsingularity in the system of equations. Nonsingularity is
intimately related to values of Lagrange functions, as shown in formulae (2.11)
and (2.12). These relations were the reason for beginning the development of
UOBYQA about ten years ago. Two major changes to the original version are
the introduction of A > p instead of the single trust region radius A = p, and
performing fewer model iterations, by adding the condition 8, >0, to ||z,—z, || > Bp,
as stated soon after expression (2.7). The material of Section 2 is based on the
techniques that are employed by the current version of UOBYQA. It follows that,
because M contains all quadratic polynomials from R™ to R, the amount of
routine work of an iteration is O(n*). Again the user has to pick an interpolation
point for the first iteration, z; say, and the other interpolation points of the first
quadratic model are generated automatically, by taking steps of magnitude p
from z; in the space of the variables. There are two steps along each coordinate
direction, which define the components of the gradient vector VQ(z;) and the
diagonal elements of the second derivative matrix V2@Q. Then each off-diagonal
element (V?Q);;, @ # j, is obtained from a single step of the form +pe; £ pe;,
the choice of signs and other details being given in Powell (2000). That paper
also presents some numerical results to demonstrate the accuracy and efficiency of
UOBYQA for objective functions of up to 20 variables. A few experiments with
larger values of n are included in the next section.

If the objective function has a sparse second derivative matrix, which happens
in many applications, then it is advantageous to let M be the linear space of
quadratic polynomials whose second derivatives satisfy the sparsity conditions of
V2F. Thus the dimension m of M becomes the sum of n+1 and the number of
matrix elements that may be nonzero on the diagonal and in the lower triangular
part of V2F, every second derivative matrix being symmetric. Further, no sparsity

10

conditions are allowed on the diagonal of V2F in unconstrained calculations. The
techniques of Section 2 remain valid. In particular, the application of formulae
(2.11) and (2.12) to update @ and all the coefficients of all the Lagrange functions
still takes O(m?) operations. Therefore this task may now be less expensive
than the solution of the trust region subproblem at the beginning of Section 2
by the method of Moré and Sorensen (1983). The interpolation points of the
first quadratic model are generated in the way that is described in the previous
paragraph, except that the step from z; of the form +pe;+pe; is omitted if and
only if (V2Q);; is required to be zero. A version of UOBYQA that includes this
sparsity, namely UOBSQA (Unconstrained Optimization By Sparse Quadratic
Approximation) is employed in some of the numerical experiments of the next
section. Then the question under investigation is not the reduction in work on
each iteration, but the decrease that occurs in the total number of iterations, due
to the extra information about the objective function that is given by the sparsity
conditions.

One other method is also considered in the experiments of Section 4, namely
UOBDQA (Unconstrained Optimization By Diagonal Quadratic Approximation),
which has been introduced already in Section 1. In this method, we let M be
the 2n+1 dimensional space of quadratic polynomials that have diagonal second
derivative matrices, even if there is no sparsity in V2F. All the techniques of
Section 2 are applied, and the routine work of each iteration takes only O(n?)
operations, including the algorithm of Moré and Sorensen for solving the trust
region subproblem, because V2Q is a diagonal matrix. A cause of concern, how-
ever, is that the estimate of the error of the approximation Q(z)~F(z), z€R",
that is employed by UOBYQA and that is inherited by UOBSQA, is no longer
valid, because the method of estimation requires the error to be zero whenever
F is a quadratic polynomial (Powell, 2001). We continue, however, to use the
formula for the estimate as if it were true, in order to discover experimentally
whether UOBDQA may be useful in practice. Therefore, if UOBDQA and the
diagonal version of UOBSQA are applied to the same objective function, with the
same initial vector of variables and the same initial and final values of p, then the
same sequences of vectors of variables are calculated, including the interpolation
points of the first quadratic model. Our distinction between these two methods is
that, in the tables of numerical results that are given later, the name UOBSQA
is reserved for the case when the sparsity structure of V2Q, @Q € M, is the same
as the sparsity structure of V?F(z), x € R".

When these structures are different, then the performance of UOBDQA may
be inefficient in ways that are similar to the deficiencies of COBYLA that are
shown in the second paragraph of this section. For example, we let F' be the
quadratic function

F(z) = (214+29)* + 6T (21 —129)?, zER?, (3.3)

11

where [is still a very large constant, and we let x,, x5, 25, £, and x5 be the points

() () (a2, () i (18 o0

respectively, for the current value of p. Again there is no need for a model iteration
and condition (2.1) holds. Indeed, in addition to F(z;) = 4T?p?, we find the
function values

F(zy) = Flz3) = 47?0 + (1+21)p? } (3.5)

F(z,) = F(zs) = 4T%p* + (1+10T)p?
Hence UOBDQA generates a quadratic model that can be written in the form
Qzy+d) = F(z)) + 4Tp(di +do) + (1+6T) (d} +d3), deR*. (3.6)

Thus the solution x5 of the trust region subproblem is the vector of variables
that minimizes Q(x), z € R?, both components of 5 —xz; being —2Tp /(1+6T).
It follows that condition (2.4) fails, so either termination or a reduction in p
occurs, although the distance from z, to the optimal vector of variables is v/2 T'p.
Therefore, unfortunately, some of the severe disadvantages of COBYLA apply also
to UOBDQA.

4. Numerical results

The methods of Section 3 were applied to three unconstrained optimization prob-
lems with sparse second derivative matrices, that allow the number of variables
n to be arbitrarily large. These problems are called ARWHEAD, BDQRTIC and
CHROSEN, the first two being Test Problems 55 and 61 in the Appendix of Conn
et al (1994), and the last one being taken from Toint (1978), except that some of
his parameters are set to one. The name ARWHEAD indicates that the nonzero
elements of V2F have an arrowhead structure, F' being the function

F(z) = f{(agfmi)? —dx;+3}, zER" (4.1)

i=1
The BDQRTIC problem has the objective function

n—4
F(z) = Y {(a? +2a},, + 327, + a7, + 522)° — d; + 3}, z€R", (4.2)

=1

which is an extension of ARWHEAD that adds a band matrix of width seven
to the previous arrowhead structure of V2F. Moreover, the name CHROSEN

12

Test Problem COBYLA UOBYQA UOBSQA UOBDQA
ARWHEAD, n=10 280 219 118 105
ARWHEAD, n=15 522 458 170 164
ARWHEAD, n=20 678 837 225 260
ARWHEAD, n=25 900 1320 296 277
BDQRTIC, n=10 1106 434 350 288
BDQRTIC, n=15 2323 834 594 385
BDQRTIC, n=20 3616 1541 855 534
BDQRTIC, n=25 5619 2302 1016 705
CHROSEN, n=10 4661 454 247 3652
CHROSEN, n=15 6935 1064 431 4590
CHROSEN, n=20 8912 1897 953 5871
CHROSEN, n=25 10861 2565 736 5943

Table 1: Numbers of values of F' in the cases when V?F is sparse

denotes Chained Rosenbrock, which does not require an explanation, F' being the

function
n

Flz) = Y {4(@ims — a2’ + (1 -2)*}, zeR", (4.3)
i=2

so V2F is a tridiagonal matrix. We see that all three objective functions are
quartic polynomials, and that, when UOBSQA is applied, the dimension m of
the space M is 3n, 6n—9 or 3n for the choice (4.1), (4.2) or (4.3), respectively,
assuming n > 5 in BDQRTIC. For each test problem and each trust region method,
the numbers of variables n =10, n =15, n =20 and n =25 were tried. In every
case, we let the initial and final values of p be 0.5 and 10°°%. Further, as in the
references cited above, the initial vector of variables was set to e, e or —e for
ARWHEAD, BDQRTIC or CHROSEN, respectively, where all the components of
e€R™ are one.

The numbers of values of F' that occurred in these calculations are reported
in Table 1. A comparison of the UOBYQA and UOBSQA columns shows the
reductions that can be achieved in the numbers of iterations by taking advantage of
sparsity in V2F'. Indeed, it is possible that these numbers are of magnitude n? and
n for UOBYQA and UOBSQA, respectively. No more attention will be given to
UOBSQA in this section. The performance of COBYLA is better than the author
expected, especially on the ARWHEAD test problem, and the number of iterations
seems to be proportional to n in the CHROSEN experiments. The success of
UOBDQA on both ARWHEAD and BDQRTIC is staggering and unexplained.
These calculations were the first applications of UOBDQA that were tried by the

13

author, so they gave much encouragement for further work. The poor results
of this method for CHROSEN become less bad as n increases, but some damage
occurs from the disadvantages that are the subject of the last paragraph of Section
3. Specifically, for every n in the CHROSEN experiments, the distance from
the final vector of variables of UOBDQA to the optimal vector, namely e, is in
the interval [5.2 x 1075 7.4 x 10~°], although the final value of p is 1075 The
corresponding interval for COBYLA is [9.0x 107°,1.1 x107*]. Good accuracy is
obtained, however, in all the other calculations of Table 1.

We also try some objective functions F(z), x € R", that are periodic, so
they have maxima and saddle points in addition to minima. Indeed, we apply
COBYLA, UOBYQA and UOBDQA to several cases of the trigonometric function

v

F(z) =Y {bi — > (S sinz; + Cyj cos x;) }2, zeR", (4.4)

i=1 j=1

that is taken from Fletcher and Powell (1963). Here v is an integer that is at least
n, and the parameters S;; and Cj;, 1 <i<w, 1<j <n, are independent random
integers from the interval [—100,100]. Further, a vector Z is chosen randomly
from [—m,w|" C R", and then the parameters b;, 1 < i < v, are defined by the
equation F(z) =0, so Z is an optimal vector of variables for the unconstrained
minimization of F'. The required initial vector of variables is generated by making
a random perturbation to every component of &, each perturbation being from
the distribution that is uniform on [—0.17,0.17]. From now on, we let the initial
and final values of p be 0.1 and 10~°, respectively. Thus, apart from the random
numbers, each problem and the data for the trust region methods are defined by
n and v. The effects of randomness are tested by generating five different sets of
random numbers for every n and v. Solving these five different versions of the
optimization problem by any one of our methods usually provides five different
values of the number of times the objective function is calculated. Just the least
and greatest of these five values will be reported Tables 2, 3 and 5. The choices of
random numbers were preserved, in order to apply the three different trust region
methods to the same test problems. We let the number of variables be n = 3,
n=>5, n=10 and n=20, and we compare the dependence of the minimization of
the function (4.4) on two different choices of v, namely v=n and v=2n.

The results of these experiments are given in Table 2. We see that the perfor-
mance of UOBYQA is satisfactory for all the test problems, but that the worst
results of COBYLA and UOBDQA when v = n are remarkably bad. The rea-
son is that a large value of I' in example (3.1) or (3.3) is analogous to severe
ill-conditioning in the second derivative matrix V?F(&). Moreover, because the
terms inside the braces of expression (4.4) are zero at x =&, we find the identity
V2F (2)=2Z"7, where Z is the v xn matrix that has the elements

Zz‘j = Sz'jCOSj?j —C’Z-jsinsij, 1§Z§I/, 1§]§n (45)

14

Test Problem COBYLA UOBYQA UOBDQA
v=n, n=3 89-18792 34-112 105-36553
v=n, n=5 482-171206 60-103 501-38506
v=n, n=10 4521-53942 209625 6017-97136
v=n, n=20 10533-67726 736-1448 21473-190196
v=2n, n=3 92-387 33-37 129-587
v=2n, n=>5 165450 51-56 233-512
v=2n, n=10 360-616 139-158 539-1036
v=2n, n=20 8671404 416-483 1158-2019

Table 2: Numbers of values of F' for the trigonometric function (4.4)

Therefore, letting zI' denote the i-th row of Z, the least eigenvalue of the positive
definite matrix V2F (&) is the quantity

2min{ > (zfv)*: veR”, |lu]|=1}. (4.6)
i=1

It follows that COBYLA and UOBDQA tend to be highly inefficient if a vector
v €R™ is nearly orthogonal to all the rows of Z. This can happen easily due to
the random numbers in the case v =n, but, in the alternative case v = 2n, the
probability that V2F(z) is well-conditioned is high. Thus the entries in the second
half of Table 2 depend less strongly on the random numbers. Further, if the most
difficult of the five test problems with v =n =3 is deleted, then the COBYLA
and UOBDQA results in the first row of Table 2 become 89-3778 and 105-1207,
respectively. Similarly, if the third of the five problems with v =n=5 is deleted,
then the COBYLA and UOBDQA entries in the second row of the table become
482-1135 and 501-1400. It seems, however, that UOBYQA is good at coping with
ill-conditioning when the number of variables is small.

Table 2 shows that COBYLA is more efficient than UOBDQA at minimiz-
ing the function (4.4) with v = 2n. This conclusion was unexpected, because
COBYLA employs linear model functions, while UOBDQA pays some attention
to curvature. On the other hand, linear models provide suitable search directions
for unconstrained minimization if V2F is close to a multiple of the n xn unit
matrix, and there is a tendency for the matrix 2777 of the previous paragraph
to have this property if v is increased for fixed n. Therefore we consider some
other test problems where the general diagonal quadratic model of UOBDQA is
particularly useful. Specifically, we let Fq be the function (4.4) with v=2n, we
let D be an nxn diagonal matrix whose diagonal elements are random numbers
from the distribution that is logarithmic on [1,10], and we employ the objective

15

Test Problem | COBYLA UOBYQA UOBDQA

v=2n, n=3 500-5329 34-63 155-818
v=2n, n=>5 991-4686 74-101 258-944
v=2n, n=10 4069-10948 198-249 708-1613
v=2n, n=20 8101-16662 596-665 1526-2762

Table 3: Numbers of values of F' for the scaled trigonometric function

function

Fnew(&) — old(D_li); EeRn. (47)

The only other change to the »=2n calculations of Table 2 is that, having chosen
an initial vector of variables, Z say, in the way that is described soon after equation
(4.4), we let the initial vector of variables for the new calculation be D Z, which
allows for the scaling that has been introduced. The initial and final values of p
remain at 0.1 and 107%, however, because of any diagonal elements of D that are
close to one. Table 3 presents the results of these new experiments that correspond
to the v =2n entries of Table 2. We see that UOBYQA and UOBDQA require
a few more iterations than before, but that the efficiency of COBYLA has been
destroyed by the introduction of some mild diagonal scaling. Indeed, these results
restore the belief of the author that COBYLA is unsuitable for unconstrained
minimization calculations.

We recall that the main advantage of UOBDQA over UOBYQA is that the
amount of routine work of each iteration is only O(n?) instead of O(n*). Thus
UOBDQA is faster than UOBYQA at solving the n = 20 problems of Table 3,
although it requires about three times as many values of F'. Details are given in
Table 4, which compares the computation times and numbers of function evalu-
ations of these two trust region methods, using the objective function and initial
data that are described in the previous paragraph. The results are not very sensi-
tive to the random numbers that occur. Therefore, for each value of n, the entries
in Table 4 are averages for the five test problems that are generated by different
choices of the random numbers. The given times were measured in seconds, by
the Fortran DTIME instruction, from the call of UOBYQA or UOBDQA until
the return from the subroutine. All the calculations were run on a Sun Ultra 10
workstation, which allows the inclusion of problems with 40 variables, but the
amount of work of UOBYQA for n=_80 would be prohibitive. We see in the table
that UOBYQA becomes impractical as n increases, but that UOBDQA may be
useful for the larger values of n. On the other hand, we have found already that
sometimes UOBDQA is very inefficient, as in the v = n calculations of Table 2
and in the example of the last paragraph of Section 3. Therefore another trust
region method is considered briefly in the next section.

16

UOBYQA UOBDQA
Seconds #F Seconds #F

Test Problem

v=2n, n=3 0.008 47 0.032 313
v=2n, n=>5 0.042 83 0.119 923
v=2n, n=10 0.774 225 0.823 1067
v=2n, n=20 19.91 637 5.96 2040
v=2n, n=40 1086.6 2119 78.2 6831

Table 4: Averages of timings and #F for the scaled trigonometric function

5. Least Frobenius norm updating

The main disadvantages of UOBYQA and UOBDQA are that the work of each
iteration of UOBYQA takes of magnitude n* operations, while the efficiency
of UOBDQA is often impaired by restricting the model functions to quadratic
polynomials with diagonal second derivative matrices. The amount of work of
UOBYQA occurs because each quadratic model depends on 5(n+1)(n+2) values
of F, so now we prefer to employ the interpolation conditions

where m is a given integer that is only of magnitude n. On the other hand, we
also prefer to include all polynomials of degree at most two from R"™ to R in the
space M, as in UOBYQA, so the dimension of M is m=1(n+1)(n+2).

Ways of constructing quadratic models from fewer than m conditions are usual
in algorithms for unconstrained optimization when first derivatives of F' are avail-
able. Then a typical iteration changes the best vector of variables so far from
Zp to 2y, say, where k is the iteration number for the moment. The gradient
vectors VF(z;,) and VF(z,,,) are calculated. Further, letting Qoq and Quey be
the quadratic models at the beginning and end of the iteration, (e is given
the curvature information that is provided by the change in gradients. The pro-
cedure that takes up the remaining freedom in @ne, can often be expressed as
the minimization of some measure of the difference between (Qnew and Quq. In
particular, the symmetric Broyden formula (see Fletcher, 1987, for instance) gen-
erates the second derivative matrix V2Qpew by minimizing the Frobenius norm
IV2Qunew — V?Qowa| 7, subject to symmetry and the quasi-Newton equation

(V2Qnew) (g1 — 2p) = VF(2py1) — VF(zy). (5.2)

In other words, the sum of squares
n n)
{(V2Qnew)ij - (VZQold)ij} (53)

1

i=1j

17

is made as small as possible, subject to the constraints that have been mentioned.
We are going to consider briefly whether a version of this updating method may
be useful for unconstrained minimization without derivatives.

There are usually m—m independent degrees of freedom in the solution of the
equations (5.1) by a quadratic polynomial Q € M. Let Qpew be the model function
that is being generated, and let QQ,q be the model function at the beginning of
the current iteration. As in the previous paragraph, we take up the freedom
in Qnew by minimizing the sum of squares (5.3). Further, we ensure that Qew
is well defined by imposing the following two conditions on the positions of the

interpolation points z;, i=1,2, ..., m. Firstly, we require the (n+41)xm matrix
1 1 --- 1
X = () (5.4)
il £2 e Efﬁ

to have rank n-+1, because otherwise a nonzero polynomial, p say, of degree at
most one, would satisfy p(z;)=0, i=1,2,...,m. Then Qe could be changed by
the addition of any multiple of p, which would preserve the interpolation equations
without altering V2Quew. Secondly, letting b;, 7 =1,2,...,m, be a basis of M,
we require the m xm matrix B with the elements

By = bj(z;), 1<i<m, 1<j<m, (5.5)

to have rank m. Thus the equations (5.1) have a solution for any right hand sides.
It follows from these conditions that m is in the interval [n+1, m], and a technique
for satisfying them is given later. The freedom in the initial quadratic interpolant
@ is removed by minimizing ||[V2Q||F.

It would be inconvenient to include first derivatives in the expression that is
minimized to take up the freedom in Qyey, partly because the value of VQpew ()
requires a particular vector z € R"” to be chosen. Moreover, the proposed use
of Frobenius norms provides a very welcome projection property when F' is a
quadratic polynomial. Specifically, in this case, the updating of the quadratic
model gives the inequality

||V2F - VZC)new”%‘ = ||v2F - v2C)old“%‘ - ||V2Qnew - VZC)old”%‘
< |IVPF = V*Qouall (5.6)
which is proved by the following elementary argument. The difference F'—Qyey is
a quadratic polynomial that vanishes at the points z;, i=1,2,...,m. Therefore
the construction of ()., implies that the least value of the function
(V2 Quew — V?Qota) + 0 (V°F = V2Quew)ll7, 0€R, (5.7)

occurs when @ is zero, which is the condition

(V2Qnew - VZC)old)ij (V2F - VZC)new)z’j = 0. (58)

1

n
1=

n
1 j=

18

Hence the first line of expression (5.6) is true, and the second line is obvious.
Thus, in the quadratic case F'€ M, we can take the view that the errors of the
approximations) ~ F' decrease monotonically as the iterations proceed, except
for the effects of computer rounding errors.

The calculation of Qe in the way that has been suggested is a quadratic pro-
gramming problem with only equality constraints. Therefore it can be expressed
as the solution of a linear system of equations. Further, the KKT conditions of
this problem imply that the second derivative matrix of (Qnew has the form

~

VZQnew = Vonld + Z)\]Ej&]r, (5.9)

J=1

where the Lagrange multipliers \;, 7 =1,2,...,m, satisfy XA =0, X being the
matrix (5.4). Therefore, if we write Qpew as the quadratic polynomial

Quew(2) = o+ 9’z + 22" (VQuew)z, z€ER", (5.10)

then, because of the interpolation conditions (5.1) and XA =0, the coefficients
AER™, go€R and g € R" are defined by the (m+n+1)x(m+n+1) system of

equations
<§)f))(%) B (%) (5.11)

where A is the m xm matrix that has the elements

Ajj=3% (zfz;)?, 1<ij<m, (5.12)

where g is the vector in R™! whose components are g, followed by the components
of g, and where the components of F are the known function values F(z;), i =
1,2,...,m. Thus the amount of work to calculate Qne by a direct method is of
magnitude (m+n)?, which is a major improvement over UOBYQA for sufficiently
large n, due to our restriction m=Q(n). Further, the author expects to develop an
updating technique for generating the sequence of quadratic models that is faster
than the use of direct methods. Another improvement over UOBYQA is that the
method of this section requires less computer storage. Moreover, equation (5.12)
implies that A is not only symmetric but also has no negative eigenvalues.

The author started his research on the material of this section in January,
2002, so it is not complete. The reason for jumping the gun in the publication of
results is that it is easy to include the least Frobenius norm updating method in a
version of UOBDQA. Specifically, we retain the number of interpolation equations
m=2n+1, but, instead of applying formula (2.11), the new algorithm generates
Qnew by the method of the previous paragraph. Hence V2Qew is usually a full
matrix, although the choice of the initial interpolation points by UOBDQA causes
V2Q to be diagonal at the beginning of the first iteration. Therefore no sparsity

19

Test Problem

Table 2 (v=n) Table 2 (v=2n) Table 3 (v=2n)

n=3 37-141 32-60 46-66

n=>5 95-232 56-87 114-186
n=10 303-1067 156-230 326-395
n=20 1370-3316 428-474 785-941

Table 5: Numbers of values of F' for the new version of UOBDQA

is assumed when solving the trust region subproblem of Section 2 by the method
of Moré and Sorensen (1983). All other features of UOBDQA are present in the
new algorithm, however, including the use of Lagrange functions with diagonal
second derivative matrices to control the changes that are made to the positions
of the interpolation points. Further, these Lagrange functions are still updated by
formula (2.12). Thus the ranks of the matrices X and B are always n+1 and m,
respectively, as required. An objection to this way of maintaining nonsingularity
of the system (5.11), however, is that it is not invariant under orthogonal rotations
of the space of the variables. Therefore the new version of UOBDQA is intended
only for some preliminary investigations of least Frobenius norm updating.

The new algorithm was applied to all the test problems of Section 4. It may be
misleading to draw conclusions from the objective functions of Table 1, because
of the effects of sparsity. We note, however, that the numbers of calculations
of F' by the new algorithm when n =20, for example, are 341, 2779 and 825 for
ARWHEAD, BDQRTIC and CHROSEN, respectively, and that comparisons with
the entries in Table 1 for other values of n are similar to comparisons in the case
n = 20. Moreover, the results for the objective functions of Tables 2 and 3 are
given in Table 5. We welcome the fact that the change to UOBDQA corrects the
severe inefficiencies for v =n that are shown in the last column of Table 2, which
suggests that the least Frobenius norm updating method is useful when V2F is
ill conditioned. The other entries in Table 5 also compare favourably with the
corresponding results of UOBDQA in Tables 2 and 3. Experiments with the new
algorithm are also promising for larger numbers of variables. Indeed, the change
to the updating procedure of UOBDQA decreases the n=40 value of #F in Table
4 from 6831 to 2179. Further, in similar tests with n=_80 and n =160, the value of
#F is reduced from 15147 to 4623 and from 34854 to 9688, respectively. Only two
sets of random numbers were tried for the new algorithm when n=160, however,
because the time of each experiment was about 25 hours. Nevertheless, good
accuracy is achieved in both cases, the ratio of the initial to the final calculated
value of F' being of magnitude 10'4.

These results for n=160 are reminiscent of an important property of gradient

20

methods for unconstrained optimization that was discovered about 30 years ago. It
is that the sequence of calculated vectors of variables can converge at a superlinear
rate to a solution of the optimization problem, z, say, without V2Q converging
to V2F(z,), where @ is still the current quadratic model. Further, fewer than
n iterations often provide enough accuracy in practice, although n iterations are
usually necessary if V2@ is required to be a good approximation to V?F(z,). In
the present situation without derivatives, we recall that a quadratic model has
+(n+1)(n+2) independent parameters. This number is 13122 when n=160, but
we have found in this case that the new version of UOBDQA employs fewer than
10000 values of F', when it is applied to the scaled trigonometric function of Tables
3 and 4. In other words, assuming that the amount of work is proportional to the
number of function values, the new method solves the minimization problem while
UOBYQA is constructing the quadratic model for the first iteration. It follows
that trying to achieve good accuracy in all the parameters of the model may
be inefficient. Therefore we expect the updating technique of this section to be
highly useful to the development of new algorithms for unconstrained optimization
calculations.

Acknowledgements

The author is very grateful to the Mathematics Department of the City University
of Hong Kong for hospitality and facilities that supported the research that is
reported in Section 5. Moreover, Benoit Colson provided helpful advice on the
sparse test problems of Table 1, and Beresford Parlett kindly confirmed that the
matrix A with the elements (5.12) has no negative eigenvalues.

References

A.R. Conn, N.J.M. Gould, M. Lescrenier and Ph.L. Toint (1994), “Performance
of a multifrontal scheme for partially separable optimization”, in Advances
in Optimization and Numerical Analysis, eds. S. Gomez & J-P. Hennart,
Kluwer Academic (Dordrecht), pp. 79-96.

A.R. Conn, K. Scheinberg and Ph.L. Toint (1997), “Recent progress in uncon-
strained nonlinear optimization without derivatives”, Math. Programming,
Vol. 79, pp. 397-414.

R. Fletcher (1987), Practical Methods of Optimization, John Wiley & Sons
(Chichester).

R. Fletcher and M.J.D. Powell (1963), “A rapidly convergent descent method for
minimization”, Comput. J., Vol. 6, pp. 163—168.

21

J.J. Moré and D.C. Sorensen (1983), “Computing a trust region step”, STAM J.
Sci. Stat. Comput., Vol. 4, pp. 553-572.

M.J.D. Powell (1994), “A direct search optimization method that models the
objective and constraint functions by linear interpolation”, in Advances
in Optimization and Numerical Analysis, eds. S. Gomez & J-P. Hennart,
Kluwer Academic (Dordrecht), pp. 51-67.

M.J.D. Powell (2000), “UOBYQA: unconstrained optimization by quadratic ap-
proximation”, Report No. DAMTP 2000/NA14, University of Cambridge.

M.J.D. Powell (2001), “On the Lagrange functions of quadratic models that are
defined by interpolation”, Optim. Meth. Software, Vol. 16, pp. 289-309.

Ph.L. Toint (1978), “Some numerical results using a sparse matrix updating
formula in unconstrained optimization”, Math. Comp., Vol. 32, pp. 839-851.

D. Winfield (1973), “Function minimization by interpolation in a data table”, J.
Inst. Maths Applics, Vol. 12, pp. 339-347.

22

