
rworldmap vignette

Andy South∗

February 9, 2011

rworldmap is a package for visualising global data, concentrating on data refer-
enced by country codes or gridded at half degree resolution.

Funded by :

Contents

1 Introduction 2

2 Mapping your own country level data 3
2.1 Reading data into R . 4
2.2 Joining data to a country map . 4
2.3 Displaying a countries map . 4

3 Mapping your own half degree gridded data 5

4 Aggregating half degree gridded data to a country level 6

5 Aggregating country level data to global regions 6

6 Map display options common across the plotting methods 7

7 Example maps with settings modified 9

8 Bubble plots 11

∗Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, NR33 OHT, UK. southandy
at gmail.com

1

9 Combining rworldmap with other packages classInt and RColor-
Brewer 12

1 Introduction

Package rworldmap is loaded by

> library(rworldmap)

Note: polygon geometry computations in maptools

depend on the package gpclib, which has a

restricted licence. It is disabled by default;

to enable gpclib, type gpclibPermit()

Checking rgeos availability as gpclib substitute:

FALSE

Welcome to rworldmap

For help files type : help(rworldmap,help_type='html')

For a short introduction type : vignette('rworldmap')

This vignette shows a few examples of the main rworldmap functions to get
you started. To access the full help system, type ?rworldmap in the R console.
The functions are designed to operate with few specified parameters in which case
default values are used, but can also accept user input to allow flexibility e.g. in
size, data categorisation, and colour schemes.

BIODIVERSITY

0.2 10.9 28.3 42.4 53.7 64 78.5 100

Figure 1: An example from mapCountryData

2

0 11 1005 8182 57120 27350000

Population per half degree grid cell

Figure 2: An example from mapGriddedData

2 Mapping your own country level data

To map your own data you will need it in columns with one row per country, one
column containing country identifiers, and other columns containing your data.

The mapping process then involves 3 steps (or 2 if your data are already in an
R dataframe).

1. read data into R

2. join data to a map (using joinCountryData2Map())

3. display the map (using mapCountryData())

There is an example dataset within the package that can be accessed using the
data command, and the command below shows how to display a subset of the rows
and columns.

> data(countryExData)

> countryExData[5:10, 1:5]

ISO3V10 Country EPI_regions

5 ARM Armenia Middle East and North Africa

6 AUS Australia East Asia and the Pacific

7 AUT Austria Europe

8 AZE Azerbaijan Central and Eastern Europ

9 BDI Burundi Sub-Saharan Africa

10 BEL Belgium Europe

GEO_subregion Population2005

5 Eastern Europe 3016.3

6 Australia + New Zealand 20155.1

7 Western Europe 8189.4

8 Eastern Europe 8410.8

3

9 Eastern Africa 7547.5

10 Western Europe 10419.1

2.1 Reading data into R

To read in your own data from a space or comma delimited text file you will need to
use : read.csv(filename.csv) or read.txt(filename.txt), type ?read.table

from the R console to get help on this.

2.2 Joining data to a country map

To join the data to a map use joinCountryData2Map, and you will need to spec-
ify the name of column containing your country identifiers (nameJoinColumn) and
the type of code used (joinCode) e.g. ”ISO3” for ISO 3 letter codes or ”UN” for
numeric country codes. If you only have country names rather than codes use join-
Code=”NAME”, you can expect more mismatches because there is greater variation
in what a single country may be named.

> data(countryExData)

> sPDF <- joinCountryData2Map(countryExData, joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10")

149 codes from your data successfully matched countries in the map

0 codes from your data failed to match with a country code in the map

97 codes from the map weren't represented in your data

You can see that a summary of how many countries are successfully joined is output
to the console. You can specify verbose=TRUE to get a full list of countries. The
object returned (named sPDF in this case) is of type SpatialPolygonsDataFrame

from the package sp. This object is required for the next step, displaying the map.

2.3 Displaying a countries map

mapCountryData requires as a minimum a SpatialPolygonsDataFrame object and
a specification of the name of the column containing the data to plot. The first
line starting par ... below and in subsequent plots simply ensures the plot fills the
available space on the page.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapCountryData(sPDF, nameColumnToPlot = "BIODIVERSITY")

4

0.2 100

BIODIVERSITY

In this small map the default legend is rather large. This could be fixed by calling
the addMapLegend function as in the code below.

> mapParams <- mapCountryData(sPDF, nameColumnToPlot = "BIODIVERSITY",

+ addLegend = FALSE)

> do.call(addMapLegend, c(mapParams, legendWidth = 0.5,

+ legendMar = 2))

Using do.call allows the output from mapCountryData to be used in addMapLe-
gend to ensure the legend matches the map while also allowing easy modification of
extra parameters such as legendWidth.

3 Mapping your own half degree gridded data

The mapGriddedData function can accept either

1. an object of type SpatialGridDataFrame, as defined in the package sp

2. the name of an ESRI gridAscii file as a character string

3. a 2D R matrix or array (rows by columns)

rworldmap contains an example SpatialGridDataFrame that can be accessed and
printed as shown in the code below.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> data(gridExData)

> mapGriddedData(gridExData)

5

0 27350000

4 Aggregating half degree gridded data to a country level

mapHalfDegreeGridToCountries() takes a gridded input file, and aggregates, to a
country level and plots the map, it accepts most of the same arguments as map-

CountryData(). In the example below the trick from above of modifying the legend
using addMapLegend() is repeated.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapParams <- mapHalfDegreeGridToCountries(gridExData,

+ addLegend = FALSE)

> do.call(addMapLegend, c(mapParams, legendWidth = 0.5,

+ legendMar = 2))

sum_pa2000.asc

0 1.25e+09

5 Aggregating country level data to global regions

Country level data can be aggregated to global regions specified by regionType in
country2Region which outputs as text, and mapByRegion which produces a map
plot. The regional classifications available include SRES, GEO3, Stern and GBD.

6

> sternEnvHealth <- country2Region(inFile = countryExData,

+ nameDataColumn = "ENVHEALTH", joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10", regionType = "Stern",

+ FUN = "mean")

> print(sternEnvHealth)

meanENVHEALTHbyStern

Australasia 78.86000

Caribbean 82.18000

Central America 82.78750

Central Asia 77.24000

East Asia 75.52308

Europe 95.19762

North Africa 77.38000

North America 98.70000

South America 83.62727

South Asia 61.96000

South+E Africa 49.06316

West Africa 36.99474

West Asia 82.78000

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapByRegion(countryExData, nameDataColumn = "CLIMATE",

+ joinCode = "ISO3", nameJoinColumn = "ISO3V10", regionType = "Stern",

+ FUN = "mean")

49.6 78.7

mean CLIMATE by Stern regions

6 Map display options common across the plotting methods

The following arguments can be specified to alter the appearance of your plots.

� catMethod method for categorisation of data ”pretty”, ”fixedWidth”, ”diverg-
ing”,”logfixedWidth”,”quantiles”,”categorical”, or a numeric vector defining breaks.

7

� numCats number of categories to classify the data into, may be modified if that
exact number is not possible for the chosen catMethod.

� colourPalette a string describing the colour palette to use, choice of :

1. ”palette” for the current palette

2. a vector of valid colours, e.g. c(”red”,”white”,”blue”) or output from RColour-
Brewer

3. one of ”heat”, ”diverging”, ”white2Black”, ”black2White”, ”topo”, ”rain-
bow”, ”terrain”, ”negpos8”, ”negpos9”

� addLegend set to TRUE for a default legend, if set to FALSE the function ad-
dMapLegend() or addMapLegendBoxes() can be used to create a more flexible
legend.

� mapRegion a region to zoom in on, can be set to a country name from getMap()$NAME
or one of ”eurasia”,”africa”,”latin america”,”uk”,”oceania”,”asia”

8

7 Example maps with settings modified

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> sPDF <- joinCountryData2Map(countryExData, joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10", projection = "none",

+)

> op <- palette(c("green", "yellow", "orange", "red"))

> cutVector <- quantile(sPDF@data[["BIODIVERSITY"]], na.rm = TRUE)

> sPDF@data[["BIOcategories"]] <- cut(sPDF@data[["BIODIVERSITY"]],

+ cutVector, include.lowest = TRUE)

> levels(sPDF@data[["BIOcategories"]]) <- c("low", "med",

+ "high", "vhigh")

> mapCountryData(sPDF, nameColumnToPlot = "BIOcategories",

+ catMethod = "categorical", mapTitle = "Biodiversity categories",

+ colourPalette = "palette", oceanCol = "lightblue",

+ missingCountryCol = "white")

category

low
med
high
vhigh

Biodiversity categories

Figure 3: An example of a categorical map produced from mapCountryData

This demonstrates how continuous data can be put into categories outside of the
rworldmap functions and how a user defined colour palette can be used. Because
the catMethod=”categorical” was used a legend with separate boxes rather than a
colour bar is added.

9

You can zoom in on a map by specifying mapRegion=”Eurasia” (or by specifiying
xlim and ylim) and the country outlines can be changed by borderCol=”black”.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapCountryData(sPDF, nameColumnToPlot = "BIOcategories",

+ catMethod = "categorical", mapTitle = "Biodiversity categories",

+ colourPalette = "palette", oceanCol = "lightblue",

+ missingCountryCol = "white", mapRegion = "Eurasia",

+ borderCol = "black")

> palette(op)

category

low
med
high
vhigh

Biodiversity categories

10

8 Bubble plots

The mapBubbles function allows flexible creation of bubble plots on global maps.
You can specifiy data columns that will determine the sizing and colouring of the
bubbles (using nameZsize and nameZColour). The function also accepts other
spatialDataFrame objects or data frames as long as they contain columns specifiying
the x and y coordinates. The interactive function identifyCountries allows the
user to click on bubbles and the country name and optionally an attribute variable
will be printed on the map.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapBubbles(dF = getMap(), nameZSize = "POP2005", nameZColour = "REGION",

+ colourPalette = "rainbow", oceanCol = "lightblue",

+ landCol = "wheat")

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

POP2005

0

6.56e+08

1.31e+09

REGION

0
2
9
19
142
150

11

9 Combining rworldmap with other packages classInt and
RColorBrewer

Whilst rworldmap sets many defaults internally there is also an option to use other
packages to have greater flexibility. In this example the package classInt is used
to create the classification and RColorBrewer to specify the colours. The following
page demonstrates how multiple maps can be generated in the same figure and
shows a selection of different RColorBrewer palettes.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> library(classInt)

> library(RColorBrewer)

> data("countryExData", envir = environment(), package = "rworldmap")

> sPDF <- joinCountryData2Map(countryExData, joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10", mapResolution = "coarse")

> classInt <- classIntervals(sPDF[["EPI"]], n = 5, style = "jenks")

> catMethod = classInt[["brks"]]

> colourPalette <- brewer.pal(5, "RdPu")

> mapParams <- mapCountryData(sPDF, nameColumnToPlot = "EPI",

+ addLegend = FALSE, catMethod = catMethod, colourPalette = colourPalette)

> do.call(addMapLegend, c(mapParams, legendLabels = "all",

+ legendWidth = 0.5, legendIntervals = "data", legendMar = 2))

EPI

39.1 50.5 62.3 72.8 81.8 95.5

12

> op <- par(fin = c(7, 9), mfcol = c(5, 2), mai = c(0,

+ 0, 0.2, 0), xaxs = "i", yaxs = "i")

> brewerList <- c("Greens", "Greys", "Oranges", "OrRd",

+ "PuBuGn", "Purples", "YlGn", "YlGnBu", "YlOrBr",

+ "YlOrRd")

> for (i in 1:10) {

+ colourPalette <- brewer.pal(7, brewerList[i])

+ mapParams <- mapCountryData(sPDF, nameColumnToPlot = "CLIMATE",

+ addLegend = FALSE, colourPalette = colourPalette,

+ mapTitle = brewerList[i])

+ do.call(addMapLegend, c(mapParams, horizontal = FALSE,

+ legendLabels = "none", legendWidth = 0.7))

+ }

> par(op)

Greens Greys

Oranges OrRd

PuBuGn Purples

YlGn YlGnBu

YlOrBr YlOrRd

Figure 4: Different RColorBrewer palettes applied to the same data

13

	Introduction
	Mapping your own country level data
	Reading data into R
	Joining data to a country map
	Displaying a countries map

	Mapping your own half degree gridded data
	Aggregating half degree gridded data to a country level
	Aggregating country level data to global regions
	Map display options common across the plotting methods
	Example maps with settings modified
	Bubble plots
	Combining rworldmap with other packages classInt and RColorBrewer

