
rworldmap FAQ

Andy South∗

February 9, 2011

HOW DO I ...

Contents

1 find out what rworldmap is ? 2

2 install rworldmap ? 2

3 load the package into R after installation ? 2

4 access latest version of rworldmap source code ? 2

5 access this FAQ ? 2

6 map my own country level data ? 2
6.1 Reading data into R . 3
6.2 Joining data to a country map . 3
6.3 Displaying a countries map . 3

7 map my own half degree gridded data ? 4

8 aggregate half degree gridded data to countries ? 5

9 aggregate country level data to global regions ? 5

10 alter the appearance of my maps ? 6

11 create my own colour palette ? 7

12 zoom in on defined regions ? 7

13 create map bubble plots ? 8

14 combine rworldmap with other packages classInt and RColorBrewer ? 9

15 ensure plots fill the panel space available? 9

16 create multi-panel plots ? 9

17 add lines of latitude and longitude to a map ? 11

∗Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, NR33 OHT, UK. southandy
at gmail.com

1

1 find out what rworldmap is ?

rworldmap is an R package for visualising global scale data, concentrating on data referenced by
country codes or gridded at half degree resolution. http://cran.r-project.org/web/packages/
rworldmap/index.html

2 install rworldmap ?

To install rworldmap from R, including other required packages :
install.packages(’rworldmap’,dependencies=TRUE)

Alternatively download from :
http://cran.r-project.org/web/packages/rworldmap/index.html

3 load the package into R after installation ?

Package rworldmap must be loaded into R at the start of each session by either of the following 2
lines :

> require(rworldmap)

> library(rworldmap)

4 access latest version of rworldmap source code ?

http://code.google.com/p/rworld/downloads/list

5 access this FAQ ?

From within R :
vignette(’rworldmapFAQ’)
From the web :
http://cran.r-project.org/web/packages/rworldmap/rworldmapFAQ.pdf

6 map my own country level data ?

To map your own data you will need it in columns with one row per country, one column containing
country identifiers, and other columns containing your data.

The mapping process then involves 3 steps (or 2 if your data are already in an R dataframe).

1. read data into R

2. join data to a map (using joinCountryData2Map())

3. display the map (using mapCountryData())

There is an example dataset within the package that can be accessed using the data command,
and the command below shows how to display a subset of the rows and columns.

> data(countryExData)

> countryExData[5:10, 1:5]

2

http://cran.r-project.org/web/packages/rworldmap/index.html
http://cran.r-project.org/web/packages/rworldmap/index.html
http://cran.r-project.org/web/packages/rworldmap/index.html
http://code.google.com/p/rworld/downloads/list
http://cran.r-project.org/web/packages/rworldmap/rworldmapFAQ.pdf

ISO3V10 Country EPI_regions

5 ARM Armenia Middle East and North Africa

6 AUS Australia East Asia and the Pacific

7 AUT Austria Europe

8 AZE Azerbaijan Central and Eastern Europ

9 BDI Burundi Sub-Saharan Africa

10 BEL Belgium Europe

GEO_subregion Population2005

5 Eastern Europe 3016.3

6 Australia + New Zealand 20155.1

7 Western Europe 8189.4

8 Eastern Europe 8410.8

9 Eastern Africa 7547.5

10 Western Europe 10419.1

6.1 Reading data into R

To read in your own data from a space or comma delimited text file you will need to use :
read.csv(filename.csv) or read.txt(filename.txt), type ?read.table from the R console
to get help on this.

6.2 Joining data to a country map

To join the data to a map use joinCountryData2Map, and you will need to specify the name of col-
umn containing your country identifiers (nameJoinColumn) and the type of code used (joinCode)
e.g. ”ISO3” for ISO 3 letter codes or ”UN” for numeric country codes. If you only have country
names rather than codes use joinCode=”NAME”, you can expect more mismatches because there
is greater variation in what a single country may be named.

> data(countryExData)

> sPDF <- joinCountryData2Map(countryExData, joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10")

149 codes from your data successfully matched countries in the map

0 codes from your data failed to match with a country code in the map

97 codes from the map weren't represented in your data

You can see that a summary of how many countries are successfully joined is output to the console.
You can specify verbose=TRUE to get a full list of countries. The object returned (named sPDF
in this case) is of type SpatialPolygonsDataFrame from the package sp. This object is required
for the next step, displaying the map.

6.3 Displaying a countries map

mapCountryData requires as a minimum a SpatialPolygonsDataFrame object and a specification
of the name of the column containing the data to plot. The first line starting par ... below and in
subsequent plots simply ensures the plot fills the available space on the page.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapCountryData(sPDF, nameColumnToPlot = "BIODIVERSITY")

3

0.2 100

BIODIVERSITY

In this small map the default legend is rather large. This could be fixed by calling the ad-
dMapLegend function as in the code below.

> mapParams <- mapCountryData(sPDF, nameColumnToPlot = "BIODIVERSITY",

+ addLegend = FALSE)

> do.call(addMapLegend, c(mapParams, legendWidth = 0.5,

+ legendMar = 2))

Using do.call allows the output from mapCountryData to be used in addMapLegend to ensure
the legend matches the map while also allowing easy modification of extra parameters such as
legendWidth.

7 map my own half degree gridded data ?

The mapGriddedData function can accept either

1. an object of type SpatialGridDataFrame, as defined in the package sp

2. the name of an ESRI gridAscii file as a character string

rworldmap contains an example SpatialGridDataFrame that can be accessed and printed as
shown in the code below.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> data(gridExData)

> mapGriddedData(gridExData)

4

0 27350000

8 aggregate half degree gridded data to countries ?

mapHalfDegreeGridToCountries() takes a gridded input file, and aggregates, to a country level
and plots the map, it accepts most of the same arguments as mapCountryData(). In the example
below the trick from above of modifying the legend using addMapLegend() is repeated.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapParams <- mapHalfDegreeGridToCountries(gridExData,

+ addLegend = FALSE)

> do.call(addMapLegend, c(mapParams, legendWidth = 0.5,

+ legendMar = 2))

sum_pa2000.asc

0 1.25e+09

9 aggregate country level data to global regions ?

Country level data can be aggregated to global regions specified by regionType in country2Region

which outputs as text, and mapByRegion which produces a map plot. The regional classifications
available include SRES, GEO3, Stern and GBD.

> sternEnvHealth <- country2Region(inFile = countryExData,

+ nameDataColumn = "ENVHEALTH", joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10", regionType = "Stern",

5

+ FUN = "mean")

> print(sternEnvHealth)

meanENVHEALTHbyStern

Australasia 78.86000

Caribbean 82.18000

Central America 82.78750

Central Asia 77.24000

East Asia 75.52308

Europe 95.19762

North Africa 77.38000

North America 98.70000

South America 83.62727

South Asia 61.96000

South+E Africa 49.06316

West Africa 36.99474

West Asia 82.78000

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapByRegion(countryExData, nameDataColumn = "CLIMATE",

+ joinCode = "ISO3", nameJoinColumn = "ISO3V10", regionType = "Stern",

+ FUN = "mean")

49.6 78.7

mean CLIMATE by Stern regions

10 alter the appearance of my maps ?

The following arguments can be specified to alter the appearance of your plots.

� catMethod method for categorisation of data ”pretty”, ”fixedWidth”, ”diverging”,”logfixedWidth”,”quantiles”,”categorical”,
or a numeric vector defining breaks.

� numCats number of categories to classify the data into, may be modified if that exact number
is not possible for the chosen catMethod.

� colourPalette a string describing the colour palette to use, choice of :

1. ”palette” for the current palette

2. a vector of valid colours, e.g. c(”red”,”white”,”blue”) or output from RColourBrewer

3. one of ”heat”, ”diverging”, ”white2Black”, ”black2White”, ”topo”, ”rainbow”, ”terrain”,
”negpos8”, ”negpos9”

6

� addLegend set to TRUE for a default legend, if set to FALSE the function addMapLegend()
or addMapLegendBoxes() can be used to create a more flexible legend.

� mapRegion a region to zoom in on, can be set to a country name from getMap()$NAME or
one of ”eurasia”,”africa”,”latin america”,”uk”,”oceania”,”asia”

11 create my own colour palette ?

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> sPDF <- joinCountryData2Map(countryExData, joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10", projection = "none",

+)

> op <- palette(c("green", "yellow", "orange", "red"))

> cutVector <- quantile(sPDF@data[["BIODIVERSITY"]], na.rm = TRUE)

> sPDF@data[["BIOcategories"]] <- cut(sPDF@data[["BIODIVERSITY"]],

+ cutVector, include.lowest = TRUE)

> levels(sPDF@data[["BIOcategories"]]) <- c("low", "med",

+ "high", "vhigh")

> mapCountryData(sPDF, nameColumnToPlot = "BIOcategories",

+ catMethod = "categorical", mapTitle = "Biodiversity categories",

+ colourPalette = "palette", oceanCol = "lightblue",

+ missingCountryCol = "white")

category

low
med
high
vhigh

Biodiversity categories

Figure 1: An example of a categorical map produced from mapCountryData

12 zoom in on defined regions ?

You can zoom in on a map by specifying mapRegion=”Eurasia” (or by specifiying xlim and ylim)
and the country outlines can be changed by borderCol=”black”.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapCountryData(sPDF, nameColumnToPlot = "BIOcategories",

+ catMethod = "categorical", mapTitle = "Biodiversity categories",

+ colourPalette = "palette", oceanCol = "lightblue",

+ missingCountryCol = "white", mapRegion = "Eurasia",

7

+ borderCol = "black")

> palette(op)

category

low
med
high
vhigh

Biodiversity categories

13 create map bubble plots ?

The mapBubbles function allows flexible creation of bubble plots on global maps. You can specifiy
data columns that will determine the sizing and colouring of the bubbles (using nameZsize and
nameZColour). The function also accepts other spatialDataFrame objects or data frames as long
as they contain columns specifiying the x and y coordinates. The interactive function identify-

Countries allows the user to click on bubbles and the country name and optionally an attribute
variable will be printed on the map.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> mapBubbles(dF = getMap(), nameZSize = "POP2005", nameZColour = "REGION",

+ colourPalette = "rainbow", oceanCol = "lightblue",

+ landCol = "wheat")

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

POP2005

0

6.56e+08

1.31e+09

REGION

0
2
9
19
142
150

8

14 combine rworldmap with other packages classInt and
RColorBrewer ?

Whilst rworldmap sets many defaults internally there is also an option to use other packages to
have greater flexibility. In this example the package classInt is used to create the classification and
RColorBrewer to specify the colours. The following page demonstrates how multiple maps can be
generated in the same figure and shows a selection of different RColorBrewer palettes.

> par(mai = c(0, 0, 0.2, 0), xaxs = "i", yaxs = "i")

> library(classInt)

> library(RColorBrewer)

> data("countryExData", envir = environment(), package = "rworldmap")

> sPDF <- joinCountryData2Map(countryExData, joinCode = "ISO3",

+ nameJoinColumn = "ISO3V10", mapResolution = "coarse")

> classInt <- classIntervals(sPDF[["EPI"]], n = 5, style = "jenks")

> catMethod = classInt[["brks"]]

> colourPalette <- brewer.pal(5, "RdPu")

> mapParams <- mapCountryData(sPDF, nameColumnToPlot = "EPI",

+ addLegend = FALSE, catMethod = catMethod, colourPalette = colourPalette)

> do.call(addMapLegend, c(mapParams, legendLabels = "all",

+ legendWidth = 0.5, legendIntervals = "data", legendMar = 2))

EPI

39.1 50.5 62.3 72.8 81.8 95.5

15 ensure plots fill the panel space available?

Use par(mar=c(bottom,top,left,right)) to set margins. This returns the previous settings so you
can use oldPar <- par(...) then par(oldPar) to reset.

> oldPar <- par(mar = c(0, 0, 0, 0))

> par(oldPar)

16 create multi-panel plots ?

using the layout() command as shown below, layout.show() indicates how the panels are arranged
Beware that the colour bar legends used when addLegend=TRUE can interfere with this ordering
(addLegend=FALSE or addMapLegendBoxes() are OK)

Creating 2 columns 5 rows with a 0.5cm gap at the top

9

> oldPar <- par(mar = c(0, 0, 0, 0))

> nPanels <- layout(cbind(c(0, 1, 2, 3, 4, 5), c(0, 6,

+ 7, 8, 9, 10)), heights = c(lcm(0.5), 1, 1, 1, 1,

+ 1), respect = F)

> layout.show(nPanels)

> par(oldPar)

1

2

3

4

5

6

7

8

9

10

Creating 3 columns 4 rows (with a gap at the top) appropriate for showing monthly data

> oldPar <- par(mar = c(0, 0, 0, 0))

> nPanels <- layout(rbind(c(0, 0, 0), c(1, 2, 3), c(4,

+ 5, 6), c(7, 8, 9), c(10, 11, 12)), heights = c(lcm(0.5),

+ 1, 1, 1, 1), respect = F)

> layout.show(nPanels)

> par(oldPar)

10

1 2 3

4 5 6

7 8 9

10 11 12

17 add lines of latitude and longitude to a map ?

For the latitude longitude projection used in most rworldmap maps the following adds respectively
: 1) Equator 2) Greenwich meridian 3) Tropics of capricorn and cancer as dashed grey lines

> abline(h = 0)

> abline(v = 0)

> abline(h = c(-20, 20), lty = 2, col = "grey")

11

	find out what rworldmap is ?
	install rworldmap ?
	load the package into R after installation ?
	access latest version of rworldmap source code ?
	access this FAQ ?
	map my own country level data ?
	Reading data into R
	Joining data to a country map
	Displaying a countries map

	map my own half degree gridded data ?
	aggregate half degree gridded data to countries ?
	aggregate country level data to global regions ?
	alter the appearance of my maps ?
	create my own colour palette ?
	zoom in on defined regions ?
	create map bubble plots ?
	combine rworldmap with other packages classInt and RColorBrewer ?
	ensure plots fill the panel space available?
	create multi-panel plots ?
	add lines of latitude and longitude to a map ?

