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Abstract

We present a new R package which takes a numerical matrix format as data input, and
computes clusters using a support vector clustering method (SVC). We have implemented an
original 2D-grid labeling approach to speed up cluster extraction. In this sense, SVC can be
seen as an efficient cluster extraction if clusters are separable in a 2-D map. Secondly we
showed that this SVC approach using a Jaccard-Radial base kernel can help to classify well
enough a set of terms into ontological classes and help to define regular expression rules for
information extraction in documents; our case study concerns a set of terms and documents
about developmental and molecular biology.

Keywords: unsupervised learning, support vector clustering, lexical clustering, pattern discovery,
grid-based labeling, ontology, terminology, jaccard-radial kernel.

1. Introduction

Mining text archives is a great challenge since lots of documents are available and their amount
grows in the same way as the capacity of computer storage. Making rules of a domain for knowl-
edge extraction involves efficient features with low semantic ambiguity. It is not an easy task and
we try to answer this question by representing vectors of linguistic expressions (i.e. terms) by
features and using a scalable density-based distance to cluster the terms.
The first idea for our problem concerns the choice of a density-based method and the improvement
of its scalability. Clustering can be a useful knowledge-poor technique to induce organization into
scattered data (Jain and Dubes 1988). Non-parametric methods such as support vector machines
can be interesting to analyze noisy data by density processing. (Ben-Hur, Horn, Siegelmann, and
Vapnik 2001; Schölkopf, Platt, Shawe-Taylor, Smola, and Williamson 2001; Horn 2001) proposed
an unsupervised support vector algorithm to enclose data clusters by contours and based it on a
radial kernel. Diverse applications have been tested for novelty detection (Eskin, Arnold, Prerau,
Portnoy, and Stolfo 2002; Lazarevic, Ozgur, Ertoz, Srivastava, and Kumar 2003), rule extraction
(Zhang, Su, Jia, and Chu 2005), désoxyribo-nucleic acid (DNA) and chemical compounds (Bilen
2005; Eveillard and Guermeur 2002) or image processing (Campedel and Moulines 2005). The
method of point assignation to contours and related clusters is based on adjacent points between
each pair and is time-consuming. Some studies (Park, Ji, Zha, and Kasturi 2004; Puma-Villanueva,
Bezerra, Lima, and Zuben 2005) have been proposed to speed-up the method. In particular Yang,
Estivill-Castro, and Chalup (2002) and Lee and Lee (2005) proposed an improved method to label
clusters, i.e. to assign point to clusters by graph analysis.
We present a new robust method based on the computation of a hash function through surround-
ing points working with a grid which we map to data using a k-nearest neighbor method. We
developed this clustering method under the R platform R Development Core Team (2010), as
a package called svcR, and we compared our approach to other ones, especially graph-based,
on the Iris dataset (svcR is available from the Comprehensive R Archive Network at http:

http://CRAN.R-project.org/package=svcR
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//CRAN.R-project.org/package=svcR”). Kees, Marchiori, and van der Vaart (2003) have also
developed a support vector method for clustering but using a divisive way iteratively searching
a classical hyperplan separator based on classical support vector machine. The first step tries to
separate the data set and a set artificially build in the same space of attribute values and the
same size than the data set which is theoretically not justified; it seems that if not many classes
are present (2 or 3) and not many attributes describe data, the algorithm seems to find groups,
in other cases it tends to find a number of final clusters equal to the number of iterations.
The second idea presented in this paper concerns our original usage of support vector cluster-
ing (SVC) clustering methodology cited above for solving a certain form of ambiguity in natural
language. Information retrieval (Salton and McGill 1983; Daille 2003) and information extrac-
tion (Kushmerick 2000; Soderland 1999) are key methodologies to retrieve information from text
archives. But simple keywords may have several senses and assignment of term to conceptual
classes should be important (Gale, Church, and Yarowsky 1992; Hearst 1992; Riloff 1993; Grefen-
stette 1994; Fellbaum 1998). Clustering may be used to reduce the number of variables to take
into account in rules for information mining in documents. We base our assumption on two works.
Firstly that collocation analysis is useful to understand morphological structure and its link to a
conceptual space (Harris 1968; Smadja and McKeown 1990). Secondly that clustering can bring a
good approach to build semantic classes with the help of a distance of similarity (Pereira, Tishby,
and Lee 1993; Nazarenko, Zweigenbaum, Bouaud, and Habert 1997). This methodology about
clustering linguistic terms can help to get common features to build rules for information mining
in document archives. Classification of a set of terms requires to represent data as morphological
information vectors (terms themselves or parts of terms and how?) and to determine which kernel
has to be used to achieve SVC. We try to use whole terms, morphological primitives and bigrams
as morphological information. And we try to use the Levenshtein distance and the Jaccard simi-
larity index, Radial basis function, and combination Levenshtein-Radial or Jaccard-Radial kernels
to study the clustering effect.
In Section 2, we introduce the methodology of support vector clustering. Section 3 presents the
labeling approach and Section 4 gives studies of vector representation and different kernels for
term clustering. Finally Section 5 shows evaluation of the technique.

2. Support vector clustering

In this section, we recall the clustering approach.

2.1. Kernel trick

We know a priori classes of items (red circles and yellow squares) and we search a linear frontier in
a higher dimensional space. For that, data are transformed using a kernel function (dot product).
Preprocess the data with:

Φ : X → X

x→ x (1)

K is a dot product of the space (Hilbert space, H), and learn the mapping of Φ(x) to y (class).

{xi}Ni=0 learning data x in X is a multivariate data on Xd,

where d is the number of feature (2)

〈Φ(x),Φ(x′)〉 = K(x, x′) can be computed in Xd (3)

http://CRAN.R-project.org/package=svcR
http://CRAN.R-project.org/package=svcR
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(‖.‖ is the norm associated to the K dot product)
Usually dim(X) << dim(H)

2.2. Optimization

As an extreme view the distribution of data under the scope of unsupervised learning can be inter-
preted as density estimation. But in our case the approach estimates quantiles of a distribution,
not its density. In the case of SVC, we determine support vectors to delimit the distribution of
points. The goal now points out to find the minimal sphere which surrounds data. One can show:
if Φ(x),...,Φ(xN ) is separable from the origin in H, then the solution of margin minimization be-
tween two classes corresponds to the normal vector of the hyperplan separating the data from the
origin with maximum margin.
In our case we try to encapsulate data into a ball. The points inside the ball represent data to
classify (first) and the origin represents the second class. Primal problem is written as follows.
Let a the (non-fixed) center of the ball, R the radius of the ball and C is a fixed penalty constant
controlling the number of data near the ball. Let us minimize:

F
(
R, {ri}Ni=1

)
= R2 + C

∑
i

ri (4)

Under the constraints:

‖Φ(xi)− a‖2 ≤ R2 + ri , where ri ≥ 0 for all i = 1, ..., N (5)

a is the center of the ball. The dual problem (for a convex problem) is the Lagrangian written as
follows.

L(R, a, {ri}Ni=1 , {βi}
N
i=1 , {µi}

N
i=1) = R2 −

N∑
i=1

βi(R
2 + ri − ‖Φ(xi)− a‖)−

N∑
i=1

riµi + C

N∑
i=1

ri (6)

Where βi ≥ 0 and µi ≥ 0 are Lagrange multipliers. Now we minimize L to find a possible couple
(R̂, â) such that:

‖Φ(xi)− â‖2 ≤ R̂2 + ri , where ri ≥ 0 for all i = 1, ..., N (7)

Dual variables verify:

∂L(R̂, â)

∂R
= 0,

∂L(R̂, â)

∂a
= 0 (8)

We make L optimal with the constraints:

{βi}Ni=1 , {µi}
N
i=1 (9)

Hence the center can be written:

â =

N∑
i=1

βiΦ(xi) (10)
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The dual problem is rewritten (after replacing R̂, â and µ̂i ):

W ({βi}Ni=1) =

N∑
i=1

βiK(xi, xi)−
N∑
i=1

N∑
j=1

βiβjK(xi, xj) (11)

which we maximize under the constraints:

0 ≤ βi ≤ C,
N∑
j=1

βi = 1 for all i = 1, ...,N (12)

A Gaussian kernel ensures the equivalence between primal and dual forms for convex problem.
The function defining a point in the feature space is:

φ(xi) = ze−q.‖x−xi‖2 , where z is constant (13)

And the kernel:

K(xi, xj) = 〈φ(xi), φ(xj)〉 = e−q.‖xi−xj‖2 (14)

The kernel fits with Mercer’s Theorem for kernel definition (k needs to be a positive definite
operator on L2(X), X being a compact space). Only the parameter q influences clustering. Three
kinds of points results from the dual formulation:

� Inside the ball βi = 0 ( βi = C and ri = 0)

� Outside the ball βi = C ( βi = 0 so as to ri > 0) also called bound support vectors (BSV)

� On the ball, 0 < βi < C , these are support vectors (SV)

The KKT (Karush-Kuhn-Tucker) complementary conditions of Fletcher are:
ri > 0, ⇒ βi = 1

νN , then BSV is an SV.

The set of SV not being BSV is
{
i | decision function R2(xi) = ‖Φ(xi)− â‖2 , βi = 0

}
For any point xi:

rjµj = 0 (15)

(
R̂2 + rj − ‖Φ(xi)− â‖2

)
βj = 0 (16)

If x is a support vector, the radius is:

R̂2 = ‖Φ(x)− â‖2 = K(x, x)− 2

N∑
j=1

βjK(x, xj) +

N∑
i=1

N∑
j=1

βiβjK(xi, xj) (17)

For any point y the distance Ry from the center is:
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R2
y = ‖Φ(y)− â‖2 = K(x, y)− 2

N∑
j=1

βjK(y, xj) +

N∑
i=1

N∑
j=1

βiβjK(xi, xj) (18)

Hence it is possible to test if y is inside the sphere or not by comparing R̂ and Ry.

2.3. Contour deformation

The value of parameter ν = 1
N.C asymptotically represents a max bound of the BSV rate. Param-

eter C takes values in [ 1
N , 1], as C is reduced, more and more points are labeled as outliers. If q

increases the Gaussian radius decreases and the number of SV increases. Subsequently if one or
more points of a cluster become support vector a specific contour will be generated for the cluster.
From a certain value of q, support vectors appear around each cluster.

3. Geometric hashing based labeling

In this section, we describe our mapping methodology to assign data points to clusters.

3.1. 2-d grid assumption

In the previous method only support vectors guide processing to make contours but escape to
know if a given point lies inside or outside the contour. Some methods such as describe in the
foundation work by Ben-Hur et al. (2001), and Yang et al. (2002) work with an adjacency matrix

defined as follows. Given two points of the data xi and xj and R̂ (the radius of the ball), the
adjacency matrix A such that:

Aij =

{
1 if any point between xi and xj is such that R(xk) ≤ R̂;
0 else.

(19)

Hence Ben-Hur et al. (2001) define a set of points between each pair and calculate if all the points
belongs to the sphere or not, and so assign the pair of point to a cluster; In the second method
Yang et al. (2002) use a graph method to analyze the density areas of the graph defined by the
adjacency matrix. We have compared our approach to these ones we call respectively in the
following nearest-neighbors (NN) and minimum spanning tree (MST). These methods are time-
consuming and we imagined a method based on a geometric hashing function achieved with a grid
surrounding data points in the attribute space. Basically according to the SVC method we only
compute the radius for the points of the grid (that are hash keys) to build clusters, and as (Datar,
Immorlica, Indyk, and Mirrokni 2004) we assume that almost closest points can be associated to
a same hash. We use a nearest-neighbor method (Cover and Hart 1967) to associate data points
to their hash.

3.2. Algorithm

The basic idea behind random projections is a class of hash functions that are locally sensitive; that
is, if two points (a, b) are close, they will have small |p− q| values and they will hash to the same
value with a high probability. If they are distant they collide with small probability. We have the
following definitions. Let M be the size of the grid, and fixed by the user. A 2-dimension M ×M
grid is characterised with a step s. The step s is defined according the minimal/maximal value of
two first coordinates obtained by correspondence analysis (COA), c1 is the first coordinate, and c2
the second coordinate. We use the ade4 package of R-project to compute COA (Dray and Dufour
2007). Let gi be a grid point.
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Definition 3.1 (sck)
Let sck be the scale of the grid from correspondance coordinates ck

sck =
(max

{
gcki
}N
i=1
−min

{
gcki
}N
i=1

)

M
, ck = {c1, c2} (20)

We can define the set of grid points gM with each point gi by:

Definition 3.2 (gG)
Let gM be the set defined by:

gG(sck) =
{
gi : dim(gi) = 2 and (gcki − gcki+1) = sck, i ∈ [1 : G]

}
, ck = {c1, c2} (21)

For each point gi we can assess membership to clusters without specifying which one.

Definition 3.3 Let be C = {cj} the set of clusters, knowing radius R according Equation 18

gi ∈ C if
(
R̂−R(gi)

)
≥ 0 (22)

We now try to define clusters set with grid points:

Definition 3.4 (C)
We call C the set of clusters. A cluster consists of a grid point and all neighbouring grid points:

C = {ci : ∃j gj ∈ ci ∧ gk ∈ ci
if gc1k ∈

[
gc1i − 1, gc1i + 1

]
, gc2k ∈

[
gc2i − 1, gc2i + 1

]
} (23)

Now we define the ball as the neighborhood of the hash key (X,Y ) from which it is assigned a
specific cluster reference cj using a k-nearest neighbor threshold:

Definition 3.5 Bk(X,Y )
Let gG the grid, C the set of clusters and P (Pc1, Pc2) a point with coordinates (X, Y) in the grid
space GxG. Then the ball of P BkX,Y is defined by at least k neighbours belonging to a same
cluster:

Bk(X,Y ) = {cj : gi ∈ cj
∧gc1i ∈ [X − 1, X + 1], gc2i ∈ [Y − 1, Y + 1] ∧#i ≥ k} (24)

A family H = h : F → G is called locality-sensitive if, for any point a, the function p(u) is defined
as follows:

Definition 3.6 p(u)

p(u) = PrH [h(a) = h(b) = (X,Y ) : |a− b| ≤ u,
E(ac1) = E(bc1) = X,E(ac2) = E(bc2) = Y ] (25)

p(u) decreases in u. That is the probability of the collision of points a and b decreases with the
distance between them.
After defining a grid on data space, ClusterLabeling function achieves the first stage assigning a
cluster number to each point of the grid. The calculation of Lagrange coefficient gives the kernel
matrix (MK). User settles the size of grid G, and MinMax value in data space can be computed.
The main function (findSvcModel, described in next chapter) outputs a matrix called NumPoints
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linking each grid point to a cluster id. The radius Rc can be computed according algorithm shown
in Table 1.

Algorithm 1

Require: kernelmatrix MK, grid size G, MinMaxX min max value of x value in data, MinMaxY
min max value of y value in data.

Ensure: NumPoints, a GxG vector for each grid point and membership to a cluster id.

while each GxG Grid point P do {we identify if a point belongs to a possible cluster}
Associate x, y values to P from MinMaxX and MinMaxY
Calculate Radius Rp of P , if Rp <= Rc , give ball membership to P

end while

while each GxG Grid point P(i) do {we identify cluster id(s)}
while each P(k) around P(i) of one step do

if all points P(k) have no cluster membership then
Create a new cluster vector CV with a new cluster id Cm
Put CV in a list of cluster vector membership LCV
Put P(i) to CV and associate Cm in NumPoints

else
associate cluster id of P(k) to P(i) in NumPoints

end if
end while

end while

while each CV(i) in LCV do {we merge closed clusters}
while each other CV(j) in LCV != CV(i) do

if CV(i) has distance of one step from CV(j) then
Merge CV(i) and CV(j)
Update NumPoints

end if
end while

end while

Table 1: Calculate Rc radius of the ball using MK.

Finally we can assign a cluster label for any point x of the data set according the hash function
and the corresponding ball value, defined in Equation 24.

f(x) = cj if Bk(h(x)) = cj (26)

MatchGridPoint function, presented below, achieves the second stage; computation of f(x) in
Equation 26. It returns a vector we call ClassPoints associating a cluster id to each data point
in the initial dataset (see Table 2).



8 svcR: a Package for Support Vector Clustering

Algorithm 2

Require: data matrix MD, grid size G, MinMaxX, MinMaxY, NumPoints, neighbourhood of a data
point k.

Ensure: ClassPoints, a vector for data point and membership to a cluster id.

1: for each point D(i) in MD do
2: Calculate Grid coordinate of any D(i) , with MinMaxX, MinMaxY
3: end for

4: for each point D(i) in MD do
5: Init a score vector SV(i) with dimension of cluster id(s)
6: for each Grid Point P(j) in NumPoints do
7: if P(i) cluster id = k is found and distance between P(j) and D(i) = k then
8: Increment SV(i)(k)
9: Associate Max(SV) to Classpoint(i)

10: end if
11: end for
12: end for

Table 2: MatchGridPoint routine.

3.3. Usage of the svcR package

Main function is the findSvcModel function. It computes a clustering model and returns it
as an R object which is usable to other function for display and export. Let call ret the re-
turn object, it covers some information about model parameters as the language coefficients
(getlagrangeCoeff(ret)$A attribute), the kernel matrix (getMatrixK(ret) attribute) and the
cluster memberships (getClassPoints(ret) attribute). findSvcModel takes 10 arguments :

� data.frame means data.frame parameter in standard use
or means data.frame in loadMat use
or means DatMat in Eval use, a matrix given as unic argument

� MetOpt, optimization control parameter : optimStoch (stochastic way of optimization) or
optimQuad (quadratic way of optimization)

� MetLab, labelling method: gridLabeling (grid labelling) or mstLabeling (mst labelling) or
knnLabeling (knn labelling)

� KernChoice, kernel choice: KernLinear (Euclidian) or KernGaussian (RBF) or KernGaus-

sianDist (Exponential) or KernDist (Matrix data as Kernel value)

� Nu, nu parameter

� q, q parameter

� k, k nearest neigbours for grid

� G, grid size

� Cx, x component to display (1 for 1st attribute)

� Cy, y component to display (2 for 2nd attribute)
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If Cx and Cy are 0 the correspondent analysis is used. The data is given as first argument. The
format is data.frame() (i.e. list) as the iris well known dataset. Some R libraries are required as
quadprog (Berwin, Turlach, and Weingessel 2007) for optimization, ade4 (Dray and Dufour 2007)
and spdep (Bivand 2010) for principal component analysis. This an exemple of usage in R :

> library("svcR")

> data("iris")

> retA <- findSvcModel(iris, MetOpt = "optimStoch", MetLab = "gridLabeling",

+ KernChoice = "KernGaussian", Nu = 0.5, q = 40, K = 1,

+ G = 5, Cx = 0, Cy = 0)

> plot(retA)

> ExportClusters(retA, "iris")

> findSvcModel.summary(retA)

It means as data is the iris data frame. The Kernel choice is radial-based, parameters of SVC
technique are nu = 0.5 and q = 40. Parameters for cluster labeling are k = 1 neighbor and grid
size of 5 × 5 points. Cx = Cy = 0 means that first two principal components are used. MetLab

value means that geometric-hashing method is used. Plot function permits to visualize clusters.
ExportClusters outputs clusters in a file with variables names. findSvcModel.summary displays
size and number of clusters, and averaged attributes for each cluster. Some functions can help the
user to navigate in clusters. ShowClusters(retA) returns all clusters ordered by their id (cluster
0 is a bag of variables not clusterable), GetClustersTerm(retA, term = "121") returns clusters
in which ”121” is a substring names of a member include in them, and GetClusterID(retA, Id

= 1) returns the cluster with Id = 1.

3.4. Toy example

We used the famous Fisher’s Iris data set. It contains 3 classes, 150 variables and 4 attributes.
Our clustering extraction is largely based on the topology of points localized on a 2-D map. The
dimensions of the maps are found by using a correspondence analysis and we kept the first two
coordinates. The Iris data on these projection classes 2 and 3 are not well separated as it shown
on Figure 1. So the method can catch well class 1 and from time to time it occurs a ”bridge”
between class 2 and 3 that links them to form one cluster (Figure 1). The system is not very
robust to force a so weak topological boundary. And so several iterations can force cluster 2 and
cluster 3 to appear. For a grid size of G = 13, we obtain 50% of success after a certain number of
run executions.

> library("svcR")

> data("iris")

> retB <- findSvcModel(iris, MetOpt = "optimStoch", MetLab = "gridLabeling",

+ KernChoice = "KernGaussian", Nu = 0.5, q = 40, K = 1,

+ G = 13, Cx = 0, Cy = 0)

> plot(retB)

The nearest neighbour parameter k is used to find the closest cluster for a given data point. Low
values such as k = 1 or k = 2 give same level of precision evaluation parameter to obtain 3 clusters.
But this approach is not sufficient for good level of precision when the size of the Grid is high
(G > 25) because the distance of peripheral data point is too far from their cluster.
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Figure 1: 2-D displays showing: data, clustered grid and data superimposed with clustered grid.
Top left: Data plotted with COA c1 = 1, c2 = 2; Top middle G = 11, #unclassified points is 17,
#missclassified points is 9; Top right: G = 13, #unclassified points is 2, #missclassified points is
7; Bottom: G = 30.
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Figure 2: Clustering precision on iris dataset with parameters Nu = 0.7, q = 1200, G = 13.
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A second stage of high-distance nearest neighbour should perform well at this size grid. But as
we can see on Figure 3 the running time is less interesting when G > 25 is less competitive to
other approaches. The time speed is shown on Figure 3. We can see that for G = 13 and a data
size N < 50 for any method the run time is almost the same but increases very fast for the NN
method. Precison when N is small is stable and very high (Figure 2). Our approach becomes
interesting for a much higher amount of data. For the whole Iris Data set our approach is two
times faster but the run time depends on the grid size. We can see on Figure 3 that if G > 20 it
becomes less competitive. We used the quadprog package in R-Project for optimization.

4. Representation of term sets and kernels

In this section, we describe our good representation to classify term from a specific domain with
an adapted kernel.

4.1. Data, language models and domain knowledge

In the previous chapter we have shown that a radial base function can make a suitable clustering.
But the data were made of a few attributes and not coming from natural language surrounded by
sense ambiguities. We tried to make an attempt to classify terms coming from a specific domain:
molecular and developmental biology.

Our linguistic data set consists of 1,893 terms (linguistic phrases) manually extracted from an
annotation of 1,471 documents (5,730 sentences) where annotated linguistic phrases describe tem-
poral stages of biological development. The corpus itself has been build manually grabbed from
Medline document database about spore coat formation and gene transcription specifically for
Bacillus Subtilis species. We define some ideas about the language model studied in next chapter.
Let suppose the following phrase ”septal localisation of the division”; it will be supposed to be
a term. From this term we can consider different sub-structures. ”septal” and ”localisation” are
considered to be distinct words, and for instance ”sept” is supposed to be a radical i.e a sequence
of character which can be found in other words. ”septal localisation” is considered as a bigram,
i.e. a sequence of two words. ”localisation of the” is considered as a trigram, i.e. a sequence of
three words.

Textual corpus we used describes biological knowledge and especially a well known biological model
called sporulation. This biological process is activated by a microorganism to be resistant in an
environment with starvation. The bacterial is transformed into a resistant sphere with mininum
needs and activity. In information extraction from texts gene network reconstruction is a quite
interesting field to understand how a gene network is activated. Temporal and spatial information
are complementary information useful to understand when gene interactions occured. A well
studied biological process as sporulution can be a reference model with both interest:

� Gathering enough molecular information about gene-gene interactions in texts since ten
years;

� Being a well described biological model across different stages.

Six main stages describe the sporulation process. At the beginning of the process a frontier called
the septum is created and at the last stage an engulfment is created to leave out the bacterial
spore. The 1,893 terms have been also classified manually into the 6 biological stages. An average
amount of 600 terms can cover a given stage. The problem is related to morphological and fuzzy
description of language. Where a strict formal description should used for instance ”stage II”
concerning the second stage of biological development, an expert could use ”during the first stages
of sporulation” or ”at the onset of sporulation” or ”at stage I-II” or ”after septum formation” ...etc.
Moreover complexity of description, we can imagine insofar because 600 terms per class on to only
1,893, is that lots of terms are not exclusive to one stage (i.e. one class). Lots of expressions can
designate a stage and often several stages at the same time.
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Figure 3: Running time of svcR approach according (top) data size (Nu = 0.7, q = 1200, G = 13)
and (down) grid gize (N = 150, Nu = 0.7, q = 1200).
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Figure 4: Samples of terminological data sets.

Why do a clustering method such as SVC could be of interest ? We observed that:

1. Most of terms describing occurrence of a gene activation/inhibation/regulation are not ex-
pressed in a simple regular way such as ”at stage 2” or ”at stage 3”. But terminology of
temporal knowledge has a variable expressivity;

2. Lots of terms are not exclusive to a stage.

In such usage context, the svcR technique could help an expert to build rules about expressions
to get equivalence between a set of expressions and a mapping of rule with a specific class. We
decided to compare which language model can bring benefit for term description and for each
language model which kernel can be also more relevant. We had manually selected a list simple
morphological radicals (11 tokens), word bigrams (a restricted sample of 500 on to 1,477) and
word trigrams (a restricted sample of 500 on 2,179) from the whole set of terms. Figure 4 gives a
sample of some linguistic expressions. In our clustering experiments we first made a sample of 98
terms and 4 classes, similar in size with iris data (Section 3.4).

After viewing which language model (term-radical, term-term, term-bigram, term-trigram) and
which kernel are enough efficient, we apply the language model and the kernel to the whole set of
1893 terms.

4.2. Kernels

As terms (that are strings), intrinsically and without textual context, can be statistically compared
pairwise (in a Levenshtein way) or using a bag-of-words (in the Jaccard way) we compared these
approaches, in addition to robustness due to randomized non null value in the Jaccard case. The
Levenshtein distance is an editing distance based on the cost to transform a string into another
(Levenshtein 1966). Assume a and b being two strings. Let ai be the sub-string consisting of the
first i symbols of string a where 0 ≤ i ≤ ‖a‖ and bj be the sub-string consisting of the first j
symbols, iteratively we obtain the Levenshtein distance at position i and j:
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Di,j = min(Di−1,j + wI , Di−1,j−1 + wS , Di,j−1 + wD) (27)

where wI , wD and wS are weights of insertion, deletion and substitution on operations respectivaly
and D0,0 = 0 Finally Da,b represents the weighted Levenshtein distance. From its expression we
define the Levenshtein radial base kernel:

LRB(x1, x2) = e−q.‖
∑N

i=1(D1i−D2i)‖2 (28)

We also define a kernel using only the component of Levenshtein distance between a pair of terms:

RBL(x1, x2) = e−q.‖D12‖ (29)

Equation 28 and Equation 29 are a composition of a semi-positive definite kernel (the radial base
function) so the final kernels are also semi-definite positive. The Jaccard index is a similarity index
(Jaccard 1901) that is useful to assess the similarity between two objects computed only knowing
the set of their attributes, and not the whole set of attributes being often huge and not describing
the given objects. Its expression is the following knowing that a string s1 is composed with tokens
s10,..., s1m and string s2 is composed with tokens s20,..., s2k:

J12 = J(S1, S2) =
|{S10, ..., S1m} ∩ {S20, ..., S2k}|
|{S10, ..., S1m} ∪ {S20, ..., S2k}|

(30)

Hence we define a Jaccard-radial base kernel (JRB) according vector defined with Jaccard index
with other terms (the data matrix is symmetric):

JRB(x1, x2) = e−q.‖
∑N

i=1(J1i−J2i)‖2 (31)

We also define a kernel using only the component of Jaccard index between a pair of terms:

RBJ(x1, x2) = e−q.‖J12‖ (32)

Equation 31 and Equation 32 are a composition of a semi-positive definite kernel (the radial base
function) so the final kernels are also semi-definite positive. Xu and Zhang (2004) and Bilenko
and Mooney (2002) have been respectively adapted a kernel approach with a Levenshtein and
a Jaccard similarity coefficient and proved their robustness though their classical simplicity. In
our data representation we have used four Kernels: the Levenshtein-radial base (LRB), the radial
base-Levenshtein (RBL), the Jaccard-radial base (JRB) and the radial base-Jaccard (RBJ). We
also have introduced noise in the data matrix such that if the Jaccard coefficient gives 0 we assign
a random non null value to the data matrix component. We call this fuzziness, Jaccard+. The
vector approach using such distance and index heuristics in natural language processing sets the
representation of description by sets of words but property of such sets can be modulated. For
instance co-frequency in textual context (with left and right collocations) (lexical-based similarity),
or string inclusion between two terms (dictionary-based similarity), or ontological nodes shared
between two terms (conceptual-based similarity). We focused on the second way and we compared
several cases of dictionary to build the matrix of similarity. As variables to classify of course we
used the sets of terms, and as attributes the set of radicals (RD), the sets of terms itself (TM),
the sets of bigrams (BG) and the set of trigrams (TG).
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4.3. Results

As we see in the Section 2 for the presentation of the SVC method coupled to our geometric
approach for cluster extraction, if no clear geometric separation in data occurred on the 2-D map
of correspondence analysis coordinates, the method is unsuccessful. Figure 5 shows different plots
of the different cross between data attributes and distances. We see on these maps that TM-TM
Levenshtein, TM-RD-Jaccard and TM-RD Jaccard+ can produced interesting maps for SVC ap-
plication. Thus on each set of the data matrix we applied the cluster extraction to compare the
efficiency of class retrieval. Figure 6 shows performance of the method. The Jaccard kernel gives
best results with a good separation and extraction of classes. And the variant set introducing
random noise in the matrix still becomes successful with 2 misclassified items on 98.

> library("svcR")

> data("term")

> retC <- findSvcModel(term, MetOpt = "optimStoch", MetLab = "gridLabeling",

+ KernChoice = "KernGaussian", Nu = 0.9, q = 2000,

+ K = 1, G = 13, Cx = 0, Cy = 0)

> plot(retC)

Now we adopt the best obtained clustering setting that is a term-radical matrix (language model)
and Jaccard Radial base kernel. Now to study scalability efficiency we expand amount of terms
and radicals taken into account for Jaccard distance computation. Independently of clusters pu-
rity (class homogeneity), impact of features (radicals) is a warranty to make a good separation
between similar terms. We do not forget that support vector machine is a non linear method
which is efficient only if data are separable. Hence recall that role of features is to make similarity
clue between terms, role of Jaccard index is to capture similarity, role of 2D component analysis
is to capture main features that make separation between data, and finally role of support vector
clustering is to capture bounds of cluster thanks to their geometric separation. Figure 7 shows
that too many features do not make separation of data (attribute DName is changing for each
four data sets):

> library("svcR")

> data("term")

> retD <- findSvcModel(term, MetOpt = "optimStoch", MetLab = "gridLabeling",

+ KernChoice = "KernGaussian", Nu = 0.9, q = 2000,

+ K = 1, G = 13, Cx = 0, Cy = 0)

> plot(retD)

But too few features make too few set of clusters. A medium set of features can lead to a good
number of clusters. In our case 38 features describing structure of terms induce 15 clusters easily
distinguishable visually. Recall the set of terms is made of 1893 terms describing 6 stages of
sporulation process as we mentioned in Section 4.1.

Lots of terms belong to several stages (in the sense of classes). Even typical string token relevant of
a class can belong to different stages. It is mainly due to biological stage results from microscopy
studies, so visual patterns and often a co-occurrence of patterns can be simultaneously typical of
a stage but individually we can observe a pattern occurs during several stages as mother cell and
compartmentalization (beginning at stage 2 and staying at stages 3, 4, 5, 6), engulfment (beginning
at stage 3 and staying at stages 4, 5, 6), septum (beginning at stage 1 and staying at stages 2, 3,
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Figure 5: In this table each display is dependant upon features describing linguistic phrases (TM
or terms) i.e. with terms themselves (TM-TM), with radicals (TM-RD), with bigrams (TM-BG)
or with trigrams (TM-TG), secondly results depends upon kernel used for clustering Levenshtein,
Jaccard or Jaccard with artificial noise. Displays represent data classes in green, red, blue, yellow
colors and in 2-d maps of the COA components.
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Figure 6: Clustering with SVC-geometric hashing (Nu = 0.9, G = 13, q chosen at best between 1
and 10000).

Figure 7: Clustering with SVC-geometric hashing (Nu = 1, G = 30, q = 2000, JRB+); Each
column means different number of terms and number of features, datasets sizes increase from left
to right. Below are the number of clusters extracted with svcR. Yellow color represent clusters,
red is data color for major class of a cluster and green is data color but not belonging to major
class of a cluster.
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4). This property of cross-membership is hard enough to compute as a mapping between a specific
term to a unique class. In our results (Figure 7) getting more clusters (15) than classes (6) induces
that terms can be misclassified (green points) but make a variety of specific clusters from which
we expect they capture patterns association that should be used to define rule of an automaton.
For instance among the 15 clusters, a specific one gives the following members :

compartmentalized activation , compartment-specific activation
We can imagine a rule associated to stage 2, 3, 4 and 5 : ”compartment activation”. Another one
gives the following members :

slow postseptational, prespore-specific SpoIIIE synthesis, endospore coat,
endospore coat assembly, endospore coat component, forespore coat, from the endospore coat,

cortex and/or coat assembly, spore coat and cortex.
We can imagine a rule associated to stages 3, 4, 5 and 6 : ”endospore coat”, ”coat cortex”, ”cortex
coat”. From these clusters of terms coat, cort, prespore, endospore, postseptational, forespore are

in the sets of features. In this process of lexical rule definition the user plays an important role in
such way a cluster do not give information directly exportable as an automatically defined rule.
Visualization of clusters by an expert leads to identification of patterns association to include in
lexical rules. Especially by the fact that elements taken into account are features and knowledge
about features is required to say that these rules will be applicable to a set of classes (biological
stages). The methodology makes us to understand, but it is not a discovery, that clustering mixes
several components of different categories. Nevertheless it can be efficient to identify relevant
features to identify as a lexical pattern to build rules for information extraction, in our case
information extraction of a biomolecular process described linguistically and formally by several
stages (i.e. a scenario in the domain of biology).

5. Comparison with other techniques

In this section, we discuss behavior of concurrent clustering methods, existing kernels and interpre-
tation of SVC clustering capacity. Below a simple general R utility function, gets outputs of used
R clustering functions (k-means, svcR, hierarchical) and exploits a data property that is insertion
of the class number in each term (as ”4 coat protein” meaning ”coat protein” belongs to class 4).
Hence using grep function it is very easy to find the repartition of classes over clusters :

TabEval <- function(Dat) {

M <- matrix(nrow = (max(Dat[]) + 1), ncol = 8, 0)

for( k in 1:max(Dat[]) ){

Stat <- c()

Size <- length(Dat[ Dat == k])

for(i in 1:6) {

GR <- grep(i, names(Dat[ Dat == k]) )

Stat <- c(Stat, 100 * length(GR) / Size )

}

Stat= c(Stat, 0, Size )

M[k,] <- Stat

}

Stat <- c()

for(i in 1:6) {

Size <- length(Dat[])

GR <- grep(i, names(Dat[]) )

Stat <- c(Stat, 100 * length(GR) / Size )

}

Stat <- c(Stat, 0, Size )

M[nrow(M), ] <- Stat

print(M, digits = 1)
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Figure 8: Clustering with SVC-geometric hashing (left), hierarchical agglomerative clustering
(centre), k-means (right); Data are 1893 terms with 6 classes and 37 features using a Jaccard-
radial base kernel.

5.1. Classical clustering

Algorithms such as k-means (KM) and hierarchical clustering (HC) are widespread poor knowl-
edge techniques using metrics to find automatically clusters in any kind of data. Figure 8 shows
graphically how such clusters could be represented.

About svcR and KM, 2-dimensional coordinates come from component analysis. On the KM map
only centroids represent clusters (as star plotting characters). HC (Figure 8, center) displays a
dendrogram where branches mean clustered points and require a cut-off at a level of the tree to
catch clusters. In R, we used kmeans function from stats package (R Development Core Team
2010):

> library("stats")

> data("Cterm")

> res_km <- kmeans(na.omit(Cterm[, 1:1893]), 30)

> plot(Cterm[, 1:2], col = res_km$size)

> points(res_km$centers, col = 1:30, pch = 8, cex = 2)

> TabEval(res_km$cluster)

and hclusterpar function from amap package (Lucas 2007)

> library("amap")

> data("Cterm")

> res_HC <- hclusterpar(na.omit(Cterm[, 1:1893]), method = "euclidean",

+ link = "complete", nbproc = 1)

> plot(res_HC, labels = FALSE, hang = -1, main = "Original Tree")

> memb <- cutree(res_HC, k = 30)

> TabEval(memb)

As Data contains 6 classes and svcR approaches with JRB kernel induces extraction of 17 clusters
we settle 30 clusters extraction as settings for both KM and HC function. Figure 9 shows the
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content of clusters and class distribution for each approach (hierarchical, k-means and SVC). The
right column of each result set means the size of each cluster. The last line means distribution
over classes from the whole dataset as baseline (it means that 12% of terms belong to class 1, 19%
to class 2, 20% to class 3, 20% to class 4, 16% to class 4, 12% to class 6 and size of set is 1893
terms). First we can observe that distribution profile in cluster size is similar between HC and
svcR :

> library("svcR")

> data("Cterm")

> retE <- findSvcModel(Cterm, MetOpt = "optimStoch", MetLab = "gridLabeling",

+ KernChoice = "KernGaussian", Nu = 0.5, q = 2000,

+ K = 1, G = 40, Cx = 0, Cy = 0)

> memb <- retE@ClassPoints

> names(memb) <- retE@Matrice$Var[[1]]

> TabEval(memb)

Secondly, looking at over-representation of classes over clusters HC and KM do not achieve better
discrimination of terms across the 6 classes some clusters are better over. Language ambiguities
seem to be a real bottleneck for all methods when usage is based on a Jaccard-Radial Kernel. But
what happens when string kernels are used ?

5.2. String kernels

Lodhi, Saunders, Taylor, Cristianini, and Watkins (2002) and Moschitti (2009) promoted kernel
strings to get semantic knowledge from texts. The string kernels calculate similarities between two
strings by matching the common substring in the strings. A standard string kernel is the constant
one (SK-constant) and assess similarities even is characters are matching in any order, and higher
is the return value when order is respected and size of matching is bigger. Exact matching of n
characters is called spectrum kernel (SK-spectrum) (Teo and Vishwanathan 2006). For instance
let suppose a string of 29 characters and estimate value of a string with itself, SK-constant return
3165, SK-spectrum return 430.

If we pick two termes from our biology term data set : SK-constant (”inner coat”, ”in the mother
cell”) = 22, and SK-spectrum (”inner coat”, ”in the mother cell”) = 15 ; another pair give SK-

constant (”inner coat”, ”initiation of sporulation”) = 27, and SK-spectrum (”inner coat”, ”initi-
ation of sporulation”) = 24. Variation between both pairs are not far according string kernels,
though terms of the first pair are from one class (class 2) and the other pair compares terms from
different classes (class 1 and class 2). We built a kernel matrix using both string kernels and
achieved cluster labelling with this similarity information. Result is shown in Figure 10 :

> library("svcR")

> data("sk")

> retF <- findSvcModel(sk, MetOpt = "optimStoch", MetLab = "gridLabeling",

+ KernChoice = "KernGaussian", Nu = 0.5, q = 2000,

+ K = 1, G = 40, Cx = 0, Cy = 0)

> findSvcModel.summary(retF)

Even if SK-constant shows some capability to isolate clusters, a big cluster contains 1600 items,
hence 85% of information. Such kernel is though challenging, perhaps including more lexical
knowledge.
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HC KM svcR

C1 C2 C3 C4 C5 C6 # C1 C2 C3 C4 C5 C6 # C1 C2 C3 C4 C5 C6 #

17 17 16 17 17 16 481 23 27 16 12 12 9 153 17 17 16 17 17 16 481

22 24 16 14 12 10 152 4 18 24 18 29 6 49 11 17 23 21 13 14 283

14 16 25 22 11 12 199 22 16 20 11 20 11 64 3 25 22 22 22 6 156

27 27 0 7 13 27 15 3 22 22 17 17 18 103 4 20 21 25 25 5 113

17 17 17 17 17 17 78 9 27 18 0 27 18 11 15 31 26 16 6 6 81

30 49 7 7 3 5 61 0 10 31 52 3 3 29 6 21 19 19 19 16 63

13 13 20 20 13 20 15 17 11 19 22 11 20 54 17 17 17 17 17 17 78

12 8 27 15 19 19 26 4 28 20 22 16 10 50 0 28 39 17 6 11 18

4 24 21 21 21 9 219 0 0 48 52 0 0 44 0 0 25 75 0 0 4

25 0 25 25 0 25 4 17 24 17 12 22 7 41 8 75 17 0 0 0 12

4 21 23 23 22 7 137 0 20 20 43 13 3 30 11 14 22 25 14 14 276

4 19 19 19 19 20 84 23 8 8 27 10 23 48 10 24 19 19 19 10 21

60 40 0 0 0 0 10 17 19 18 15 16 16 245 0 25 25 25 25 0 4

12 19 19 19 15 15 26 9 20 7 28 17 20 46 17 17 17 17 17 17 6

5 18 20 27 26 4 104 8 21 19 19 19 15 53 7 20 20 20 20 13 15

10 24 19 19 19 10 21 21 5 19 21 19 16 43 0 20 20 20 20 20 5

14 14 14 14 21 24 29 17 6 11 22 17 28 18 14 14 19 17 19 17 42

3 24 38 18 9 9 34 5 22 20 20 20 13 55 0 0 26 32 21 21 19

7 20 20 20 20 13 15 14 16 16 20 18 14 49 0 25 25 25 25 0 8

11 33 11 22 11 11 9 3 18 26 21 29 3 34 0 25 50 25 0 0 4

0 24 24 24 24 6 17 3 18 24 33 18 3 33 17 17 17 17 17 17 6

0 12 39 41 4 4 51 4 21 14 25 29 7 28 5 18 20 27 26 4 104

0 20 20 20 20 20 25 12 19 23 23 11 12 328 25 75 0 0 0 0 4

0 100 0 0 0 0 1 15 24 20 13 15 13 46 35 34 11 7 7 7 74

0 11 22 22 44 0 9 10 24 26 5 19 17 42 0 23 23 23 23 8 13

0 0 40 20 20 20 5 2 28 21 25 21 4 57

0 0 25 25 25 25 16 10 18 15 20 32 5 40 12 19 20 20 16 12 1893

0 0 25 35 20 20 20 7 15 26 22 26 4 27

0 0 44 56 0 0 25 17 23 12 12 15 21 48

0 0 0 80 0 20 5 0 28 20 16 28 8 25

12 19 20 20 16 12 1893 12 19 20 20 16 12 1893

Figure 9: Class distribution over clusters HC (left), KM (centre) and svcR (right). C1 to C6
represent given classes. A line represents the content (i.e. distribution as % of classes) of a cluster.
Columns # represent the size of the cluster. Last line represents the content of the whole set of
terms.

Figure 10: SVC using string kernel-constant (left), or using string kernel-spectrum (right).
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5.3. Clusterability of a SVC model

Section 2.1 presents a general framework of a kernel method. It does not mean any assumption
about clustering but moreover about classification. Nevertheless SVC is not a new technique in
itself. SVC has been seen as one-cluster discovery since a ball in the dual space is targeted. Hence
it was described in detail for a long time as a one class approach applied to novelty detection when
information is deviating from a block of well known information. In R-project, kernlab package
(Karatzoglou, Smola, Hornik, and Zeileis 2004; Karatzoglou, Meyer, and Hornik 2006) implements
novelty detection task. When running one-class kernel to our dataset it returns a model of 394
support vectors

> library("kernlab")

> data("Cterm")

> tsv <- ksvm(Cterm, kernel = "stringdot", kpar = list(length = 5),

+ cross = 3, C = 10)

> tsv

, with nu = 0.2 and cross-validation 0.205. Our observation is that SVC performs well cluster
extraction (or labeling) from a 2-dimensional map, depending on existence condition of clusters.
It means that data ought to be separable in the 2-d map. Separability can be managed by
composition of a metric with a radial-based function over the whole input matrix dimensions. A
possible explanation for capability of SVC to identify clusters is related to the same problem as
trying to flatten the skin of an orange onto a tabletop. In this case, projection is a procedure
to transform locations and features from the three-dimensional surface onto the two-dimensional
paper in a defined and consistent way. The result is some slight bulges and a lot of gaps. The
transformation of map information from a sphere to a flat sheet can be accomplished in many ways
but no single projection can accurately portray area, shape, scale, and direction. SVC clustering
takes origin from capacity within projections to distort.

6. Conclusion

We developed, improved and applied a density and kernel based method called support vector
clustering (SVC) we implemented as an R-project package (svcR). The package is available from
the CRAN R project server (http://cran.r-project.org/ see Software, Packages; svcR version 1.4),
and downloadable from the R graphical user interface (required R libraries : quadprog, ade4 and
spdep). First we proved that mapping points in the data space to a grid and using the sphere
radius from the attribute space and a k-nearest-neighbor approach improves time consumption for
cluster labeling. In this sense, SVC can be seen as an efficient cluster extraction if clusters are
separable in a 2-D map. Secondly we found a representation for term clustering using a mixed
Jaccard-Radial base kernel and we proved its efficiency with SVC for term clustering in a natural
language processing task as lexical classification (i.e. oriented ontology knowledge acquisition).
Some investigations remain under R implementation to integrate C functions for matrix acquisition
so as to make the toolkit more scalable in data size. Semantic and lexical-based kernels are
promising for application in text mining frameworks. Yet it must understand how to select and
integrate attributes for the description of terms.
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