
Using tileHMM for ChIP–on–Chip Analysis

Peter Humburg, David Bulger, and Glenn Stone

August 18, 2008

1 Introduction

This document provides an introduction to the tileHMM package. A rela-
tively small simulated dataset is used to illustrate the main concepts and
work flow of the package; starting with the raw data the necessary steps for
pre-processing and analysis are explained. The final output of the analysis
presented here is a file in GFF format summarising ChIP enriched regions.
While the simChIP data provided with the tileHMM package is much smaller
than a typical tiling array dataset some of the examples below may take some
time to execute, especially on older machines.

1.1 Requirements

Some additional R packages are required to run the examples in this docu-
ment.

� The packages affy and st are required for pre-processing.

� The package geneplotter is used for some of the plotting.

Both affy and geneplotter are part of the bioconductor project and can be
obtained from http://www.bioconductor.org/, st is available from CRAN
(http://cran.r-project.org/).

1.2 Data

> library(tileHMM)

> data(simChIP)

The dataset simChIP is used throughout this document. It is part of the
data used for a simulation study in [3] and is based on data published by [6].
The data consists of measurements for 210828 probes under three different
treatments with four replicates each.

Input Genomic DNA.

1

H3 ChIP sample using an antibody against histone H3.

H3K27me3 ChIP sample using an antibody against lysine 27 trimethyla-
tion at histone H3.

2 Identifying ChIP Regions

In this section we will carry out an analysis to identify H3K27me3 enriched
regions. For this analysis we use the H3 sample as control for the H3K27me3
treatment. We will ignore the genomic input for now.

> h3k27.data <- as.matrix(simChIP[, 7:14])

2.1 Pre-processing

We start by log transforming and quantile normalising the data.

> library(affy)

> h3k27.data <- log(h3k27.data, 2)

> h3k27.norm <- normalize.quantiles(h3k27.data)

Now we can look at some diagnostic plots. Here we restrict ourselves to
simple scatter plots (Figure 1), of course real data should be inspected more
carefully before any analysis is carried out. The scatter plots do not reveal
any major problems although it should be noted that there appear to be
some differences between samples. This is most apparent when comparing
the scatter plots for samples 2 and 4.

The next step is to summarise probe measurements into probe statistics.
For this we use the “shrinkage t” statistic [5]. The tileHMM package provides
the function shrinkt.st for this purpose.

> h3k27.stat <- shrinkt.st(h3k27.norm, c(rep(2, 4), rep(1, 4)),

+ verbose = 0)

This provides us with a single value for each probe. Before we move on to
build a hidden Markov model to analyse these data we take a look at the
distribution of the probe statistics (Figure 2).

2.2 Initial Parameter Estimates

To identify ChIP enriched regions in the data we use a two state hidden
Markov model with t distributions to model observations. Initial parameter
estimates can be obtained from the data using hmm.setup. This requires
information about the average probe density and fragment size. Here we
will assume that the distance between probe centres is 35bp and that ChIP

2

6 8 10 12 14

6
8

10
14

H3 sample 1

H
3K

27
m

e3
 s

am
pl

e
1

6 8 10 12 14

6
8

10
14

H3 sample 2

H
3K

27
m

e3
 s

am
pl

e
2

6 8 10 12 14

6
8

10
14

H3 sample 3

H
3K

27
m

e3
 s

am
pl

e
3

6 8 10 12 14

6
8

10
14

H3 sample 4

H
3K

27
m

e3
 s

am
pl

e
4

Figure 1: Pairwise scatter plots of the quantile normalised data

fragments are about 1kb long. The function hmm.setup accepts arguments
probe.region and frag.size to set these parameters, we will use the de-
faults. A good choice for these parameters is useful but not crucial as they
will be optimised later. We also provide names to identify the two states
of our model. For the estimation of transition probabilities it is necessary
to indicate which state should represent ChIP regions. Since hmm.setup
automatically assigns the distribution with the smaller location parameter
to the first state the second state will correspond to enriched regions.

> hmm.init <- hmm.setup(h3k27.stat,

+ state = c("non-enriched","enriched"), pos.state = 2)

We inspect the resulting model to ensure that the parameter estimates are
reasonable. We can also plot the density functions of the two states (Fig-
ure 3).

> print(hmm.init)

An object of class "contHMM"
Slot "transition.matrix":

3

0e+00 2e+06 4e+06 6e+06

−
5

0
5

10

genomic position

pr
ob

e
st

at
is

tic

Figure 2: Distribution of probe statistic along the ‘chromosome’ with
marginal histogram. Larger probe statistics indicate probes that are likely
to be inside a ChIP-region.

non-enriched enriched
non-enriched 0.981676 0.01832392
enriched 0.035000 0.96500000

Slot "emission":
$`non-enriched`
An object of class "tDist"
Slot "components":

weight mean variance df
mean.pos 1 -0.9716776 0.6438807 9

$enriched
An object of class "tDist"
Slot "components":

weight mean variance df
mean.neg 1 1.144570 0.9099603 9

4

Slot "init":
[1] 0.6563659 0.3436341

> plot(hmm.init)

−4 −2 0 2 4

0.
0

0.
2

0.
4

non−enriched

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
2

0.
4

enriched

D
en

si
ty

Figure 3: Initial estimate for emission distributions.

2.3 Parameter Optimisation

At this stage it is necessary to consider another aspect of tiling array data.
An underlying assumption of our model is that all probes are spaced out
equally along the genome. While this is approximately true for the majority
of the tiled genome sequence, there are some large gaps between probes. It
is questionable whether the relationship between neighboring probes that is
implied by the model holds in these cases. To ensure that these gaps are
not distorting the result we will split our sequence of probe statistics into
sub-sequences whenever the gap between two probes is larger than max.gap.

5

These simulated data were generated such that it contains several gaps of
1kb between probes.

> max.gap <- 999

> h3k27.gap <- diff(simChIP[["position"]]) > max.gap

> gap.idx <- which(h3k27.gap)

Now gap.idx contains the index of the last probe in each of the sub-
sequences except the last. With this information it is straightforward to
extract subsequences that are guaranteed not to contain any gap larger than
max.gap.

> start <- c(1, gap.idx + 1)

> end <- c(gap.idx, length(h3k27.stat))

> h3k27.lst <- mapply(function(s, e, data) data[s:e], start, end,

+ MoreArgs = list(h3k27.stat))

We will now use a maximum likelihood approach to optimise the parameters
of our model. In a first step the initial parameter estimates are improved by
Viterbi training [4] and are then further optimised with the EM algorithm [2,
1]. The package tileHMM provides the function viterbiEM for this purpose.

> hmm.opt <- viterbiEM(hmm.init, h3k27.lst, df = 9)

This uses five iterations of Viterbi training to improve initial parameter
estimates. The new estimates are then used as starting point for 15 iterations
of the EM algorithm. The number of iterations for each of the two algorithms
can be adjusted via the max.iter argument of viterbiEM but 5 and 15
should be sufficient in most cases. Here we are restricting the degrees of
freedom for the t distributions of both states to 9 using the df argument.
It is possible to estimate the required degrees of freedom from the data
but this is time consuming, may not give good results and should generally
be avoided. Using the argument verbose the amount of status messages
produced during the model fitting procedure can be controlled. Above we
used the default setting verbose = 0. If you want more feedback try a
higher level of verbosity. For example using verbose = 2 would produce
something like

Viterbi training: 5 iterations

Number of iterations: 5
Log likelihood of best model: -356120.327537388
Last change in log likelihood: -15.7415983500541

EM algorithm: 15 iterations

6

Number of iterations: 7
Log likelihood of final model: -354114.807307941
Last change in log likelihood: 0.00472418434219435

Note that this indicates that the EM algorithm converged after only 7 iter-
ations. Convergence is determined by the change in log likelihood between
iterations. The threshold below which changes are considered insignificant
can be set via the argument eps. The default we used for this example is
0.01.

Again we can inspect the parameters of our model. This time they should
be more meaningful. Compare the parameter estimates to the initial ones
above. Figure 4 is a plot of the newly estimated emission distributions.

> print(hmm.opt)

An object of class "contHMM"
Slot "transition.matrix":

non-enriched enriched
non-enriched 0.99841633 0.001583671
enriched 0.03694841 0.963051591

Slot "emission":
$`non-enriched`
An object of class "tDist"
Slot "components":

weight mean variance df
[1,] 1 -0.06256513 1.299466 9

$enriched
An object of class "tDist"
Slot "components":

weight mean variance df
[1,] 1 2.229261 2.053111 9

Slot "init":
[1] 0.95449261 0.04550739

> plot(hmm.opt)

7

−4 −2 0 2 4 6 8

0.
00

0.
15

0.
30

non−enriched
D

en
si

ty

−4 −2 0 2 4 6 8

0.
00

0.
15

enriched

D
en

si
ty

Figure 4: Emission distributions of optimised HMM.

2.4 Calling Probes

Now that we have fitted our model we are ready to identify enriched probes.
One way of doing this is to determine the most likely state for each individual
probe. This can be achieved with the function posterior which calculates
the posterior probability for each state.

> post <- lapply(h3k27.lst, posterior, hmm.opt)

> state.seq <- lapply(post, apply, 2, which.max)

> state.seq <- states(hmm.opt)[c(state.seq, recursive = TRUE)]

This provides us with a single sequence of states to explain the observed
probe statistics. Before we move on to combining these individual probe
calls into enriched and non-enriched regions we can use the probe level in-
formation to produce a slightly different plot of the result.

> ratio <- sum(state.seq == "enriched")/length(state.seq)

> hist(h3k27.stat, breaks = 100, probability = TRUE, main = "",

+ xlab = "probe statistic")

> plot(hmm.opt@emission$enriched, new.plot = FALSE, lty = 1, lwd = 2,

8

+ col = 4, weight = ratio)

> plot(hmm.opt@emission$"non-enriched", new.plot = FALSE, lty = 2,

+ lwd = 2, col = 2, weight = 1 - ratio)

> legend("topright", legend = c("enriched", "non-enriched"), lty = 1:2,

+ lwd = 2, col = c(4, 2))

This produces the plot in Figure 5. It shows a histogram of the probe
statistics with superimposed density functions of emission distributions. The
density functions are scaled according to the relative frequency of probe calls
from the corresponding states.

probe statistic

D
en

si
ty

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30 enriched

non−enriched

Figure 5: Probe statistics and emission distributions of optimised HMM.
The density functions for both states are scaled according to the relative
number of probes assigned to the corresponding state.

2.5 Calling Regions

We are now ready to combine individual probe calls into regions. The iden-
tified ChIP enriched regions are then summarised in a GFF file. The first
step is to identify continuous runs of probes that were called ‘enriched’. The
function region.position provides an easy way to do just that.

9

> regions.idx <- region.position(state.seq, region = "enriched")

Now regions.idx is a matrix with the index of the first probe in each
enriched region in the first row and the index of the last probe in the second
row. The number of columns in this matrix tells us how many enriched
regions our model identified. In this case there are 275.

The next step is to convert probe indices into genomic coordinates. Using
the information about probe positions provided with the data we can do this
easily.

> regions.pos <- matrix(simChIP[regions.idx, 2],

+ nrow = 2, ncol = dim(regions.idx)[2])

At this point there are a few things about the identified ChIP regions that
we should consider. It is important to note that we used the complete
sequence of probe calls to identify the regions of interest rather than the set
of subsequences that we created earlier. This is fine in some cases but it
means that enriched regions from neighbouring subsequences may be joined
into one region. This may not be desired in which case regions have to be
called for each subsequence. This can be done in the same way as above.

Once regions of interest are identified there are several possible post-
processing steps that should be considered. We could join neighbouring
enriched regions that are close together to avoid the fragmentation of en-
riched regions caused by some analysis methods. The model used for the
analysis here is very sensitive and is not expected to fragment enriched re-
gions into many smaller ones [3]. Thus, we are not recommending this type
of post-processing. It is, however, possible that the analysis produced some
small spurious regions. We can try to identify and remove these regions by
looking for short regions with low posterior probability of enrichment. Here
we will use the mean probability of all probes in the enriched region as a
score for that region.

> post.enriched <- lapply(post,"[",2,)

> post.enriched <- exp(c(post.enriched, recursive = TRUE))

> region.score <- apply(regions.idx, 2,

+ function(reg, post) mean(post[reg[1]:reg[2]]), post.enriched)

We also calculate the length of all enriched regions identified by our analysis.

> region.len <- apply(regions.pos, 2, diff)

A plot of this information is presented in Figure 6. Regions shorter than
400bp with an average posterior probability of less than 0.8 are marked with
a red ‘×’ , these are low confidence regions that we may want to remove.
The function remove.short can be used to remove these suspect regions.

10

0 1000 2000 3000 4000 5000

0.
6

0.
7

0.
8

0.
9

1.
0

region length

sc
or

e

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●
●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
● ●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●●

●

●

●●

●

●

●

●
●

● ●●
●

●

●●
●●●

●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

Figure 6: Length and score of enriched regions. Regions shorter than 400bp
with a score of less than 0.8 are indicated by red×s. These are low confidence
regions that may have to be removed.

> regions.clean <- remove.short(regions.idx, post.enriched,

+ simChIP[, 1:2], min.length = 400, min.score = 0.8)

Note that remove.short expects regions to be identified in terms of probe
indices, not genomic coordinates (which is why we used regions.idx instead
of regions.pos). Some care should be taken in choosing the parameters for
this post-processing step to avoid excluding large numbers of regions that
really are enriched but are for some reason difficult to detect, which may
result in short regions with low scores. Where possible, information about
the size of ChIP fragments should be used to inform parameter choices.

Now that we have identified ChIP enriched regions we can save the in-
formation about these regions to a GFF formatted file.

> gff <- reg2gff(regions.clean, post.enriched, simChIP[, 1:2],

+ file = "simRegions.gff")

This creates a GFF file called ‘simRegions.gff’ with an entry for each en-
riched region. The score for each region is again calculated by summarising

11

the posterior probabilities of all probes inside the region. The function used
to calculate this summary is determined by the score.fun argument which
defaults to mean. Other functions like median and max may be useful as
well. It may be desirable to employ a more complex scoring function. Any
function that accepts a single numeric argument and returns a scalar value
will work, although the usefulness of the resulting score can vary substan-
tially. The contents of the fields containing meta information can be set via
the arguments of reg2gff, see the help page for more details on this.

The GFF file can then be used for further down stream analysis and
visualisation, e.g., in a genome browser.

References

[1] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization tech-
nique occuring in the statistical analysis of probabilistic functions of
markov chains. The Annals of Mathematical Statistics, 41(1):164-171,
1970.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
for incomplete data via the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B, 39(1), 1977.

[3] P. Humburg, D. Bulger, and G. Stone. Parameter estimation for robust
HMM analysis of ChIP-chip data. BMC Bioinformatics, 9:343, 2008.

[4] B-H. Juang and L. R. Rabiner. A segmental k-means algorithm for
estimating parameters of hidden Markov models. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 38(9):1639-1641, 1990.

[5] R. Opgen-Rhein and K. Strimmer. Accurate ranking of differentially
expressed genes by a distribution-free shrinkage approach. Statistical
applications in Genetics and Molecular Biology, 6(1):Article 9, 2007.

[6] X. Zhang, O. Clarenz, S. Cokus, Y. V. Bernatavichute, J. Goodrich,
and S. E. Jacobsen. Whole-genome analysis of histone H3 lysine 27
trimethylation in Arabidopsis. PLoS Biology, 5(5), May 2007.

12

