
Cubist Models For Regression

Max Kuhn (max.kuhn@pfizer.com)
Steve Weston
Chris Keefer

June 21, 2011

1 Introduction

Cubist is an R port of the Cubist GPL C code released by RuleQuest at

http://rulequest.com/cubist-info.html

See the last section of this document for information on the porting. The other parts describes the
functionality of the R package.

2 Model Trees

Cubist is a rule–based model that is an extension of Quinlan’s M5 model tree. A tree is grown where
the terminal leaves contain linear regression models. These models are based on the predictors used
in previous splits. Also, there are intermediate linear models at each step of the tree. A prediction
is made using the linear regression model at the terminal node of the tree, but is “smoothed” by
taking into account the prediction from the linear model in the previous node of the tree (which
also occurs recursively up the tree). The tree is reduced to a set of rules, which initially are paths
from the top of the tree to the bottom. Rules are eliminated via pruning and/or combined for
simplification.

This is explained better in Quinlan (1992). Wang and Witten (1997) attempted to recreate this
model using a “rational reconstruction” of Quinlan (1992) that is the basis for the M5P model in
Weka (and the R package RWeka).

An example of a model tree can be illustrated using the Boston Housing data in the mlbench
package.

http://rulequest.com/cubist-info.html

Cubist Models For Regression

> library(Cubist)

> library(mlbench)

> data(BostonHousing)

> BostonHousing$chas <- as.numeric(BostonHousing$chas) - 1

> set.seed(1)

> inTrain <- sample(1:nrow(BostonHousing), floor(.8*nrow(BostonHousing)))

> trainingPredictors <- BostonHousing[inTrain, -14]

> testPredictors <- BostonHousing[-inTrain, -14]

> trainingOutcome <- BostonHousing$medv[inTrain]

> testOutcome <- BostonHousing$medv[-inTrain]

> modelTree <- cubist(x = trainingPredictors, y = trainingOutcome)

> modelTree

Call:

cubist.default(x = trainingPredictors, y = trainingOutcome)

Number of samples: 404

Number of predictors: 13

Number of committees: 1

Number of rules: 4

> summary(modelTree)

Call:

cubist.default(x = trainingPredictors, y = trainingOutcome)

Cubist [Release 2.07 GPL Edition] Tue Jun 21 13:00:22 2011

Target attribute `outcome'

Read 404 cases (14 attributes) from undefined.data

Model:

Rule 1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.10]

if

nox > 0.668

then

outcome = 2.07 + 3.14 dis - 0.35 lstat + 18.8 nox + 0.007 b

- 0.12 ptratio - 0.008 age - 0.02 crim

Rule 2: [153 cases, mean 19.54, range 8.1 to 31, est err 2.16]

if

nox <= 0.668

lstat > 9.59

2 of 18

Cubist Models For Regression

then

outcome = 34.81 - 1 dis - 0.72 ptratio - 0.056 age - 0.19 lstat + 1.5 rm

- 0.11 indus + 0.004 b

Rule 3: [39 cases, mean 24.10, range 11.9 to 50, est err 2.73]

if

rm <= 6.23

lstat <= 9.59

then

outcome = 11.89 + 3.69 crim - 1.25 lstat + 3.9 rm - 0.0045 tax

- 0.16 ptratio

Rule 4: [128 cases, mean 31.31, range 16.5 to 50, est err 2.95]

if

rm > 6.23

lstat <= 9.59

then

outcome = -1.13 + 1.6 crim - 0.93 lstat + 8.6 rm - 0.0141 tax

- 0.83 ptratio - 0.47 dis - 0.019 age - 1.1 nox

Evaluation on training data (404 cases):

Average |error| 2.27

Relative |error| 0.34

Correlation coefficient 0.94

Attribute usage:

Conds Model

78% 100% lstat

59% 53% nox

41% 78% rm

100% ptratio

90% age

90% dis

62% crim

59% b

41% tax

38% indus

Time: 0.0 secs

There is no formula method for cubist; the predictors are specified as matrix or data frame and the
outcome is a numeric vector.

3 of 18

Cubist Models For Regression

There is a predict method for the model:

> mtPred <- predict(modelTree, testPredictors)

> ## Test set RMSE

> sqrt(mean((mtPred - testOutcome)^2))

[1] 3.337924

> ## Test set R^2

> cor(mtPred, testOutcome)^2

[1] 0.8573504

3 Boosting

The Cubist model can also use a boosting–like scheme called committees where iterative model
trees are created in sequence. The first tree follows the procedure described in the last section.
Subsequent trees are created using adjusted versions to the training set outcome: if the model
over–predicted a value, the response is adjusted downward for the next model (and so on). Unlike
traditional boosting, stage weights for each committee are not used to average the predictions from
each model tree; the final prediction is a simple average of the predictions from each model tree.

The committee option can be used to control number of model trees:

> set.seed(1)

> committeeModel <- cubist(x = trainingPredictors, y = trainingOutcome,

+ committees = 5)

> summary(committeeModel)

Call:

cubist.default(x = trainingPredictors, y = trainingOutcome, committees = 5)

Cubist [Release 2.07 GPL Edition] Tue Jun 21 13:00:23 2011

Target attribute `outcome'

Read 404 cases (14 attributes) from undefined.data

Model 1:

Rule 1/1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.10]

if

4 of 18

Cubist Models For Regression

nox > 0.668

then

outcome = 2.07 + 3.14 dis - 0.35 lstat + 18.8 nox + 0.007 b

- 0.12 ptratio - 0.008 age - 0.02 crim

Rule 1/2: [153 cases, mean 19.54, range 8.1 to 31, est err 2.16]

if

nox <= 0.668

lstat > 9.59

then

outcome = 34.81 - 1 dis - 0.72 ptratio - 0.056 age - 0.19 lstat + 1.5 rm

- 0.11 indus + 0.004 b

Rule 1/3: [39 cases, mean 24.10, range 11.9 to 50, est err 2.73]

if

rm <= 6.23

lstat <= 9.59

then

outcome = 11.89 + 3.69 crim - 1.25 lstat + 3.9 rm - 0.0045 tax

- 0.16 ptratio

Rule 1/4: [128 cases, mean 31.31, range 16.5 to 50, est err 2.95]

if

rm > 6.23

lstat <= 9.59

then

outcome = -1.13 + 1.6 crim - 0.93 lstat + 8.6 rm - 0.0141 tax

- 0.83 ptratio - 0.47 dis - 0.019 age - 1.1 nox

Model 2:

Rule 2/1: [71 cases, mean 13.41, range 5 to 27.5, est err 2.66]

if

crim > 5.69175

dis > 1.4254

then

outcome = 42.13 + 2.45 dis - 0.47 lstat - 0.71 ptratio - 1.8 rm

Rule 2/2: [84 cases, mean 18.75, range 8.1 to 27.5, est err 2.25]

if

crim <= 5.69175

nox > 0.532

dis > 1.4254

tax > 222

ptratio > 17

then

5 of 18

Cubist Models For Regression

outcome = 44.08 + 1.19 crim - 0.43 lstat - 1.05 ptratio - 0.011 age

Rule 2/3: [15 cases, mean 23.43, range 5 to 50, est err 5.62]

if

dis <= 1.4254

ptratio > 17

then

outcome = 174.86 - 100.95 dis - 1.07 lstat - 0.09 ptratio

Rule 2/4: [77 cases, mean 23.90, range 11.8 to 50, est err 2.37]

if

ptratio <= 17

lstat > 5.12

then

outcome = -3.3 + 8.3 rm - 0.0238 tax - 1.66 dis - 0.063 age - 0.1 lstat

- 0.21 ptratio - 3.8 nox + 0.007 zn

Rule 2/5: [128 cases, mean 25.56, range 14.4 to 50, est err 3.12]

if

crim <= 5.69175

nox <= 0.532

ptratio > 17

then

outcome = -15.58 + 2.43 crim + 7.1 rm - 0.075 age + 0.24 lstat

- 0.41 dis - 0.16 ptratio

Rule 2/6: [16 cases, mean 27.91, range 15.7 to 39.8, est err 5.25]

if

tax <= 222

lstat > 5.12

then

outcome = 274.62 - 12.31 ptratio - 0.212 age - 0.03 lstat

Rule 2/7: [18 cases, mean 30.49, range 22.5 to 50, est err 3.69]

if

rm <= 6.861

lstat <= 5.12

then

outcome = -58.03 + 10.96 crim + 13.3 rm - 0.03 lstat - 0.08 dis

- 0.06 ptratio - 1.1 nox

Rule 2/8: [19 cases, mean 41.54, range 31.2 to 50, est err 3.63]

if

rm > 6.861

age <= 71

6 of 18

Cubist Models For Regression

lstat <= 5.12

then

outcome = -56.93 + 14.2 rm - 0.07 lstat - 0.2 dis - 2.6 nox

- 0.13 ptratio + 0.006 zn

Rule 2/9: [14 cases, mean 43.48, range 22.8 to 50, est err 5.55]

if

age > 71

lstat <= 5.12

then

outcome = -24.48 + 1.99 crim + 0.467 age + 3.5 rm

Model 3:

Rule 3/1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.32]

if

nox > 0.668

then

outcome = -9 + 5.5 dis + 19.4 nox + 0.014 b - 0.12 lstat - 0.16 ptratio

- 0.04 crim

Rule 3/2: [10 cases, mean 17.64, range 11.7 to 27.5, est err 11.68]

if

nox <= 0.668

b <= 179.36

then

outcome = -2.07 + 0.149 b + 0.77 lstat

Rule 3/3: [156 cases, mean 19.68, range 8.1 to 33.8, est err 2.23]

if

nox <= 0.668

lstat > 9.53

then

outcome = 28.56 - 1.09 dis - 0.27 lstat - 0.068 age + 2.6 rm

- 0.6 ptratio

Rule 3/4: [164 cases, mean 29.68, range 11.9 to 50, est err 3.44]

if

lstat <= 9.53

then

outcome = 6.57 + 4.08 crim - 0.75 lstat + 7.6 rm - 0.0301 tax

- 0.79 ptratio - 0.15 dis - 2.2 nox + 0.001 b

Model 4:

Rule 4/1: [335 cases, mean 19.44, range 5 to 50, est err 2.69]

7 of 18

Cubist Models For Regression

if

rm <= 7.079

lstat > 5.12

then

outcome = 45.08 - 0.4 lstat + 0.27 rad - 0.0124 tax - 0.2 crim

- 0.6 ptratio - 8.5 nox - 0.36 dis - 0.04 indus

Rule 4/2: [19 cases, mean 20.96, range 5 to 50, est err 6.81]

if

rm <= 7.079

dis <= 1.4261

then

outcome = 163.2 - 85.4 dis - 1.21 lstat - 0.15 crim

Rule 4/3: [111 cases, mean 23.01, range 14.4 to 32, est err 1.92]

if

nox <= 0.51

rm <= 7.079

tax > 193

lstat > 5.12

then

outcome = 9.18 + 12.12 crim + 2.8 rm - 0.031 age - 0.05 lstat + 0.04 rad

- 0.002 tax - 0.1 ptratio - 0.1 dis - 1.6 nox

Rule 4/4: [9 cases, mean 24.33, range 15.7 to 36.2, est err 7.38]

if

rm <= 7.079

tax <= 193

lstat > 5.12

then

outcome = 22.72

Rule 4/5: [18 cases, mean 30.49, range 22.5 to 50, est err 4.91]

if

rm <= 6.861

lstat <= 5.12

then

outcome = 20.95 + 8.16 crim - 0.54 lstat + 0.23 rad + 1.3 rm

Rule 4/6: [35 cases, mean 36.15, range 22.5 to 50, est err 3.61]

if

age <= 71

lstat <= 5.12

then

outcome = -67.4 + 15.9 rm - 1.05 rad - 0.005 b - 0.05 lstat

8 of 18

Cubist Models For Regression

Rule 4/7: [43 cases, mean 39.37, range 15 to 50, est err 6.37]

if

rm > 7.079

then

outcome = -123.73 + 0.308 b + 8.8 rm - 0.45 rad - 1.38 ptratio

- 0.04 lstat - 0.0016 tax - 0.1 dis - 1.2 nox - 0.02 indus

- 0.01 crim

Rule 4/8: [14 cases, mean 43.48, range 22.8 to 50, est err 5.14]

if

age > 71

lstat <= 5.12

then

outcome = -34.28 + 0.598 age - 0.75 lstat + 6.1 rm - 0.047 b + 0.16 rad

Model 5:

Rule 5/1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.73]

if

nox > 0.668

then

outcome = -35.12 + 8.59 dis + 38.7 nox + 0.017 b - 0.04 lstat

- 0.07 ptratio + 0.01 rad + 0.1 rm

Rule 5/2: [156 cases, mean 19.68, range 8.1 to 33.8, est err 2.53]

if

nox <= 0.668

lstat > 9.53

then

outcome = 44.88 - 1.48 dis - 0.076 age - 0.28 lstat - 0.8 ptratio

+ 0.012 b + 0.1 rad + 0.3 rm - 1.6 nox - 0.0007 tax

Rule 5/3: [189 cases, mean 24.76, range 12.7 to 50, est err 2.41]

if

dis > 3.3175

then

outcome = -24.62 + 1.13 crim + 10.4 rm - 0.0183 tax - 0.69 dis

- 0.19 lstat - 0.043 age - 0.26 ptratio + 0.022 zn

Rule 5/4: [44 cases, mean 35.04, range 11.9 to 50, est err 6.37]

if

dis <= 3.3175

lstat <= 9.53

then

9 of 18

Cubist Models For Regression

outcome = 32.74 + 6.34 crim - 0.0468 tax - 0.87 lstat + 5.5 rm

- 1.16 ptratio

Evaluation on training data (404 cases):

Average |error| 1.91

Relative |error| 0.29

Correlation coefficient 0.96

Attribute usage:

Conds Model

65% 99% lstat

46% 56% nox

32% 71% rm

18% 88% dis

13% 95% ptratio

12% 65% crim

9% 55% tax

4% 56% age

36% b

34% rad

23% indus

12% zn

Time: 0.1 secs

For this model:

> cmPred <- predict(committeeModel, testPredictors)

> ## RMSE

> sqrt(mean((cmPred - testOutcome)^2))

[1] 2.870122

> ## R^2

> cor(cmPred, testOutcome)^2

[1] 0.8955536

4 Instance–Based Corrections

Another innovation in Cubist using nearest–neighbors to adjust the predictions from the rule–based
model. First, a model tree (with or without committees) is created. Once a sample is predicted by

10 of 18

Cubist Models For Regression

this model, Cubist can find it’s nearest neighbors and determine the average of these training set
points. See Quinlan (1993a) for the details of the adjustment.

The development of rules and committees is independent of the choice of using instances. The
original C code allowed the program to choose whether to use instances, not use them or let the
program decide. Our approach is to build a model with the cubist function that is ignorant to
the decision about instances. When samples are predicted, the argument neighbors can be used to
adjust the rule–based model predictions (or not).

We can add instances to the previously fit committee model:

> instancePred <- predict(committeeModel, testPredictors, neighbors = 5)

> ## RMSE

> sqrt(mean((instancePred - testOutcome)^2))

[1] 2.693565

> ## R^2

> cor(instancePred, testOutcome)^2

[1] 0.9111374

Note that the previous models used the implicit default of neighbors = 0 for their predictions.

To tune the model over different values of neighbors and committees, the train function in the
caret package can be used to optimize these parameters. For example:

> library(caret)

> set.seed(1)

> cTune <- train(x = trainingPredictors, y = trainingOutcome,

+ "cubist",

+ tuneGrid = expand.grid(.committees = c(1, 10, 50, 100),

+ .neighbors = c(0, 1, 5, 9)),

+ trControl = trainControl(method = "cv"))

Fitting: committees=1, neighbors=9

Fitting: committees=10, neighbors=9

Fitting: committees=50, neighbors=9

Fitting: committees=100, neighbors=9

Aggregating results

Selecting tuning parameters

Fitting model on full training set

> cTune

404 samples

13 predictors

Pre-processing: None

11 of 18

http://cran.r-project.org/web/packages/caret/index.html

Cubist Models For Regression

Resampling: Cross-Validation (10 fold)

Summary of sample sizes: 364, 364, 361, 364, 364, 364, ...

Resampling results across tuning parameters:

committees neighbors RMSE Rsquared RMSE SD Rsquared SD

1 0 4.63 0.757 1.44 0.159

1 1 4.59 0.753 1.8 0.18

1 5 4.3 0.78 1.56 0.15

1 9 4.36 0.776 1.58 0.157

10 0 3.54 0.838 1.52 0.153

10 1 3.62 0.835 1.57 0.151

10 5 3.34 0.854 1.56 0.143

10 9 3.37 0.851 1.61 0.152

50 0 3.47 0.845 1.45 0.143

50 1 3.52 0.844 1.49 0.141

50 5 3.27 0.859 1.51 0.136

50 9 3.29 0.857 1.55 0.144

100 0 3.44 0.848 1.43 0.139

100 1 3.45 0.848 1.47 0.137

100 5 3.23 0.863 1.48 0.132

100 9 3.25 0.86 1.53 0.14

RMSE was used to select the optimal model using the smallest value.

The final values used for the model were committees = 100 and neighbors = 5.

Figure 1 shows the profiles of the tuning parameters produced using plot(cTune).

It may also be useful to see how different models fit a single predictor:

> lstat <- trainingPredictors[, "lstat", drop = FALSE]

> justRules <- cubist(lstat, trainingOutcome)

> andCommittees <- cubist(lstat, trainingOutcome, committees = 100)

Figure 2 shows the model fits for the test data. For these data, there doesn’t appear to be much
of a improvement when committees or instances are added to the based rules.

5 Variable Importance

The modelTree method for Cubist shows the usage of each variable in either the rule conditions or
the (terminal) linear model. In actuality, many more linear models are used in prediction that are
shown in the output. Because of this, the variable usage statistics shown at the end of the output
of the summary function will probably be inconsistent with the rules also shown in the output. At
each split of the tree, Cubist saves a linear model (after feature selection) that is allowed to have
terms for each variable used in the current split or any split above it. Quinlan (1992) discusses a

12 of 18

Cubist Models For Regression

#Committees

R
M

S
E

 (
C

ro
ss

−
V

al
id

at
io

n)

3.5

4.0

4.5

0 20 40 60 80 100

●

●

●
●

#Instances
0 1 5 9●

Figure 1: The relationship between performance and the two tuning parameters, as estimated using
cross–validation.

smoothing algorithm where each model prediction is a linear combination of the parent and child
model along the tree. As such, the final prediction is a function of all the linear models from the
initial node to the terminal node. The percentages shown in the Cubist output reflects all the
models involved in prediction (as opposed to the terminal models shown in the output).

The raw usage statistics are contained in a data frame called usage in the cubist object.

The caret package has a general variable importance method varImp. When using this function
on a cubist argument, the variable importance is a linear combination of the usage in the rule
conditions and the model.

For example:

> summary(modelTree)

Call:

cubist.default(x = trainingPredictors, y = trainingOutcome)

Cubist [Release 2.07 GPL Edition] Tue Jun 21 13:00:22 2011

13 of 18

Cubist Models For Regression

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●
●
●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

5 10 15 20 25 30 35

10
20

30
40

50

lstat

M
ed

ia
n

H
om

e
V

al
ue

Rules
100 Committees
Rules + 5 Neighbors

Figure 2: Different Cubist models for a single predictor.

Target attribute `outcome'

Read 404 cases (14 attributes) from undefined.data

Model:

Rule 1: [88 cases, mean 13.81, range 5 to 27.5, est err 2.10]

if

nox > 0.668

then

outcome = 2.07 + 3.14 dis - 0.35 lstat + 18.8 nox + 0.007 b

- 0.12 ptratio - 0.008 age - 0.02 crim

Rule 2: [153 cases, mean 19.54, range 8.1 to 31, est err 2.16]

if

nox <= 0.668

lstat > 9.59

then

outcome = 34.81 - 1 dis - 0.72 ptratio - 0.056 age - 0.19 lstat + 1.5 rm

14 of 18

Cubist Models For Regression

- 0.11 indus + 0.004 b

Rule 3: [39 cases, mean 24.10, range 11.9 to 50, est err 2.73]

if

rm <= 6.23

lstat <= 9.59

then

outcome = 11.89 + 3.69 crim - 1.25 lstat + 3.9 rm - 0.0045 tax

- 0.16 ptratio

Rule 4: [128 cases, mean 31.31, range 16.5 to 50, est err 2.95]

if

rm > 6.23

lstat <= 9.59

then

outcome = -1.13 + 1.6 crim - 0.93 lstat + 8.6 rm - 0.0141 tax

- 0.83 ptratio - 0.47 dis - 0.019 age - 1.1 nox

Evaluation on training data (404 cases):

Average |error| 2.27

Relative |error| 0.34

Correlation coefficient 0.94

Attribute usage:

Conds Model

78% 100% lstat

59% 53% nox

41% 78% rm

100% ptratio

90% age

90% dis

62% crim

59% b

41% tax

38% indus

Time: 0.0 secs

> modelTree$usage

Conditions Model Variable

1 78 100 lstat

2 59 53 nox

3 41 78 rm

15 of 18

Cubist Models For Regression

4 0 100 ptratio

5 0 90 age

6 0 90 dis

7 0 62 crim

8 0 59 b

9 0 41 tax

10 0 38 indus

11 0 0 zn

12 0 0 chas

13 0 0 rad

> library(caret)

> varImp(modelTree)

Overall

lstat 89.0

nox 56.0

rm 59.5

ptratio 50.0

age 45.0

dis 45.0

crim 31.0

b 29.5

tax 20.5

indus 19.0

zn 0.0

chas 0.0

rad 0.0

It should be noted that this variable importance measure does not capture the influence of the
predictors when using the instance–based correction.

6 Exporting the Model

As previously mentioned, this code is a port of the command–line C code. To run the C code, the
training set data must be converted to a specific file format as detailed on the RuleQuest website.
Two files are created. The file.data file is a header–less, comma delimited version of the data
(the file part is a name given by the user). The file.names file provides information about the
columns (eg. levels for categorical data and so on). After running the C program, another text file
called file.models, which contains the information needed for prediction.

Once a model has been built with the R cubist package, the exportCubistFiles can be used to
create the .data, .names and .model files so that the same model can be run at the command–line.

16 of 18

Cubist Models For Regression

7 Current Limitations

There are a few features in the C code that are not yet operational in the R package:

• variable usage/importance haven’t been ported into R objects

• only continuous and categorical predictors can be used (the C allows for other data types)

• there is an option to let the C code decide on using instances or not. The choice is more
explicit in this package

• non–standard predictor names are not currently checked/fixed

• the C code supports binning of predictors

Many of these features will be implemented in the future.

8 About the Cubist C Code and Our Approach

This section may be interesting or important to those of you who care about the implementation
(if you exist at all).

The cubist sources are written to take specific data files from the file system, pull them into
memory, run the computations, then write the results to a text file that is also saved to the file
system. The code makes use of a lot of global variables (especially for the data). The code has
been around for a while and, after reading it, one can tell that the author put in a lot of time to
catch many special cases. At Pfizer, we have pushed millions of samples through the non–GPL code
without any substantive errors.

So the approach here is to pass in the training data as strings that mimic the formats that one
would use with the command line version and get back the textual representation that would be
saved to the .model file also as a string. The prediction function would then pass the model text
string (and the data text string if instances are used) to the C code for prediction.

We did this for a few reasons. First, this approach would require us to re–write main() and touch
as little of the original code as possible (otherwise we would have to write a parser for the data
and try to get it into the global variable structure with complete fidelity). Second, most modeling
functions implicitly assume that the data matrix is all numeric, thus factors are converted to dummy
variables etc. Cubist doesn’t want categorical data split into dummy variables based on how it does
splits. Thus, we would have to pass in the numeric and categorical predictors separately unless we
want to get really fancy.

17 of 18

Cubist Models For Regression

9 Session Information

• R version 2.11.1 (2010-05-31), x86_64-apple-darwin9.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

• Other packages: caret 4.91, cluster 1.12.3, Cubist 0.0.8, lattice 0.18-8, mlbench 2.1-0,
plyr 1.2.1, reshape 0.8.3, reshape2 1.1

• Loaded via a namespace (and not attached): grid 2.11.1, stringr 0.4

10 References

Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference
On Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993a) pp. 236-243

Quinlan. C4.5: Programs For Machine Learning (1993b) Morgan Kaufmann Publishers Inc. San
Francisco, CA

Wang and Witten. Inducing model trees for continuous classes. Proceedings of the Ninth European
Conference on Machine Learning (1997) pp. 128-137

http://rulequest.com/cubist-info.html

18 of 18

http://rulequest.com/cubist-info.html

	Introduction
	Model Trees
	Boosting
	Instance–Based Corrections
	Variable Importance
	Exporting the Model
	Current Limitations
	About the Cubist C Code and Our Approach
	Session Information
	References

