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Part I

Estimating Rates for Linear

Birth-Death chain via Gibbs Sampler

MCMC by Exact Conditional

Simulation

We are demonstrating the use of the DOBAD package’s capability to do Bayesian estimation

of the rate parameters for a linear Birth-Death chain, given partial observations, using the

methods of Doss et al. (2010). Call the chain {X(t)}t∈R, and its birth rate la and its death

rate µ. We fix β ∈ R and constrain ν, the immigration rate, to be ν = βla. We will denote

θ = (la, µ). The data is the value of the process at a finite number of discrete time points.

That is, for some fixed times 0 = t0, t1, . . . , tn, we see the state of the process, X(ti). Thus

the data, D, is 2 parts: a vector of the times ti, i = 0, . . . , n and a vector of states at each of

those times, si, for i = 0, . . . , n (where X(ti) = si. The gamma prior is the conjugate prior if

we observed the chain continuously instead of partially. The way we proceed, then, is to use

independent Gamma priors on the λ and µ and augment the state space for our MCMC to

include the entire chain {Xt}t∈[0,tn] by conditionally sampling {Xt}t∈[0,tn]; θ|D.

First we generate the underlying process and the “data”, set our prior parameters, and

compute some summary statistics of the fully observed and partially observed processes.

> library(DOBAD)

> initstate = 7

> set.seed(112)

> T = 5

> L <- 0.2

> mu <- 0.4

> beta.immig <- 0.987

1



> trueParams <- c(L, mu, beta.immig)

> names(trueParams) <- c("lambda", "mu", "beta")

> dr <- 1e-10

> n.fft <- 1024

> delta <- 1

> dat <- birth.death.simulant(t = T, lambda = L, mu = mu, nu = L *

+ beta.immig, X0 = initstate)

> fullSummary <- BDsummaryStats(dat)

> fullSummary

Nplus Nminus Holdtime

12.00000 14.00000 26.73947

> MLEs <- M.step.SC(EMsuffStats = fullSummary, T = T, beta.immig = beta.immig)

> MLEs

lambdahat muhat

0.3788540 0.5235706

> partialData <- getPartialData(seq(0, T, delta), dat)

> observedSummary <- BDsummaryStats.PO(partialData)

> observedSummary

Nplus Nminus Holdtime

3 5 28

> L.mean <- 1

> M.mean <- 1.1

> aL <- 0.02

> bL <- aL/L.mean

> aM <- 0.022

> bM <- aM/M.mean

> print(paste("Variances are", aL/bL^2, "and", aM/bM^2))
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[1] "Variances are 50 and 55"

> N = 100

> burn = 0

Now we run the MCMC. It is set to run only 100 iterations, which is obviously not enough

for estimation, but does demonstrate the code.

> timer <- system.time(theMCMC <- BD.MCMC.SC(Lguess = L.mean, Mguess = M.mean,

+ alpha.L = aL, beta.L = bL, alpha.M = aM, beta.M = bM, beta.immig = beta.immig,

+ data = partialData, burnIn = burn, N = N))

[1] "BD.MCMC.SC: On the 30 th iteration params are 0.50525582705533 0.643698845152378"

[1] "BD.MCMC.SC: On the 60 th iteration params are 0.408368213696412 0.406325363782436"

[1] "BD.MCMC.SC: On the 90 th iteration params are 0.271395764173334 0.513698779398225"

> mean(theMCMC[, 1])

[1] 0.4252525

> mean(theMCMC[, 2])

[1] 0.5536474

> L

[1] 0.2

> mu

[1] 0.4

> timer

user system elapsed

11.253 0.060 13.002
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> options(continue = " ")

> hist(theMCMC[, 1], freq = FALSE, breaks = 20, xlab = "Lambda",

ylab = "Density", main = "Posterior of Lambda")

> Lmean <- mean(theMCMC[, 1])

> abline(col = "red", v = Lmean)

> abline(col = "purple", v = L.mean)

> x <- seq(from = 0, to = 1, by = 0.01)

> y <- dgamma(x, shape = aL, rate = bL)

> lines(x, y, col = "blue")

> hist(theMCMC[, 2], freq = FALSE, breaks = 20, xlab = "Mu", ylab = "Density",

main = "Posterior of Mu")

> Mmean <- mean(theMCMC[, 2])

> abline(col = "red", v = Mmean)

> abline(col = "purple", v = M.mean)

> x <- seq(from = 0, to = 1, by = 0.01)

> y <- dgamma(x, shape = aM, rate = bM)

> lines(x, y, col = "blue")
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Figure 1: Posterior Density Estimation of Lambda

5



Posterior of Mu
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Figure 2: Posterior Density Estimation of Mu
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