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1 Introduction

Advanced intercross lines (AILs) are an ideal resource for fine-scale mapping of quantitative

trait loci (QTL). Unlike populations such as F2, individuals in an AIL population are ge-

netically unequally related. The unequal relatedness among individuals requires appropriate

statistical models and computational tools. We have developed a computationally efficient R

package ‘QTLRel’ for analysis of quantitative AIL data. Users can use the package to calcu-

late condense identity coefficients (CIC) from large pedigrees, estimate variance-covariance

component parameters, perform a genome-scan for QTL, assess genome-wide significance and

plot results.

Though initially designed for analysis of AIL data, almost all of the major functions

have a very general usage. For instance, the function scanOne can be used to perform a

genome scan for nuclear family data where relatedness (or population structure) is a concern

as long as relationship matrices are available.

To help users to understand and use the package ‘QTLRel’, we provide this tutorial with

concrete examples that illustrate the process of data analyses using the package. However,

this tutorial should not take the place of the R documentation; instead, it is better regarded

as supplemental material.

Codes in this tutorial can be easily adapted for custom data.

2 Install and Load Package

We can install the package from within R using the command

> install.packages("QTLRel")

and load the package using the command

> library(QTLRel)

Package source and documentation are available on CRAN (here).

3 Data Formats

In this tutorial, we’ll use part of our real data in F8, including a pedigree ‘pedF8’, phenotype

data ‘pdatF8’, genotype data ‘gdatF8’ and a genetic map ‘gmapF8’. The sample size is 500.

The pedigree should be a data frame that includes individual ID ‘id’, father ‘sire’ and

mother ‘dam’. Other information such as sex and generation is optional. If given, ‘sex’ should

be “M”, “Male” or 1 for a male and “F”, “Female” or 2 (other than 0 and 1) for a female,
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and ‘generation’ can be numeric 0, 1, 2, ... or non-numeric “F0”, “F1”, “F2”... The special

symbol 0 is reserved for unknown IDs. The following are five lines in the pedigree ‘pedF8’.

> pedF8[137:141,]

id sex generation sire dam family

137 18411 M F2 1 2 F1-25

138 18412 M F2 1 2 F1-25

139 18871 F F3 16164 18257 BrBDF2-01

140 18843 M F3 16164 18257 BrBDF2-01

141 19418 F F3 18417 18423 BrBDF2-02

>

The genotype data should be a matrix or a data frame, with each row representing an

observation and each column a marker locus. The row names (optional) can be individual

IDs and the column names should be marker names. The following are five lines in the

genotype data ‘gdatF8’. Genotypes 1, 2 and 3 correspond to “AA”, “AB” and “BB”.

> gdatF8[1:5,1:5]

rs6269442 rs13475701 rs13475706 rs3716083 rs3722996

31521 3 3 3 3 2

33424 3 3 3 3 3

31826 2 2 2 2 2

33609 1 1 2 2 1

33275 3 3 3 3 3

>

The phenotype data ‘pdatF8’ has four columns: ‘sex’, ‘age’, ‘bwt’ and ‘cage’. The variable

‘bwt’ is the body weight of an individual, ‘age’ is the age (in days) when body weight was

measured, and ‘cage’ is the cage where the individual was bred. The following are five lines

in the phenotype data ‘pdatF8’. Note that there were a total of 163 cages.

> pdatF8[1:5,]

sex age bwt cage

31521 M 76 25.1 BDF8-57

33424 M 78 25.5 BDF8-144

31826 M 67 17.9 BDF8-63

33609 F 76 16.8 BDF8-132

33275 F 84 22.5 BDF8-119

>

> length(unique(pdatF8$cage))
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[1] 163

>

The genetic map should be a data frame with colums ‘snp’, ‘chr’, ‘dist’, where ‘snp’ is the

SNP (marker) name, ‘chr’ is the chromosome where the ‘snp’ is located, and ‘dist’ is the

genetic distance in centi-Morgan (cM) on the chromosome. In ‘gmapF8’, the extra column

‘phyPos’ is the physical location (in bp; build 37) of the SNP on the chromosome.

> gmapF8[815:819,]

snp chr dist phyPos37

815 rs6191324 19 54.6570 59396320

816 rs30705190 19 57.7867 62267948

817 rs13483712 X 4.3520 9129480

818 rs13483724 X 20.3860 33548080

819 gnfX.023.543 X 23.1860 36252886

>

The above data can be downloaded from here. Suppose the data files are saved in a sub-

folder “data” under the R working directory. Then we can load the downloaded data using

commands

> pedF8<- read.csv("data/pedF8.csv",header=TRUE,check.names=FALSE)

> pdatF8<- read.csv("data/pdatF8.csv",header=TRUE,check.names=FALSE)

> gdatF8<- read.csv("data/gdatF8.csv",header=TRUE,check.names=FALSE)

> gmapF8<- read.csv("data/gmapF8.csv",header=TRUE,check.names=FALSE)

These data sets are also saved in the workspace “QTLRelEx.RData” on the above download

page, and can be loaded by command

> load("QTLRelEx.RData")

4 Statistical Models

Consider the following statistical model

yi = xxxi
′βββ + x∗

i a
∗ + z∗i d

∗ + ui + εi, i = 1, 2, · · · , n (1)

where yi is the trait value for the i-th individual, xxxi represents covariates (e.g. sex) and βββ

are the corresponding effects, x∗
i is 1, 0 or −1 if the genotype at the putative QTL is AA,

Aa or aa and a∗ is the additive effect of the putative QTL, z∗i is 1 if the genotype at the

putative QTL is heterozygous or 0 if the genotype is homozygous and d∗ is the dominance
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effect, ui represents polygenic variation, and εi denotes environmental effect. Assume that

εi ∼ N(0, σ2), i = 1, 2, · · · , n are independent, and uuu = (u1, u2, · · · , un)
′ ∼ Nn(000,GGG) with

GGG = (gij) and is independent of εεε = (ε1, ε2, · · · , εn)′. It is known that in general (e.g. Abney

et al, 2000; Cheng et al, 2010)

gij = 2Φijσ
2
a +∆ij,7σ

2
d + (4∆ij,1 +∆ij,3 +∆ij,5)Cov(a, d)

+∆ij,1σ
2
h + (∆ij,1 +∆ij,2 − fifj)µ

2
h

= ga,ijσ
2
a + gd,ijσ

2
d + gad,ijCov(a, d)

+gh,ijσ
2
h + gm,ijµ

2
h (2)

where Φij is the kinship coefficient between the i-th and j-th individuals, fi is the inbreeding

coefficient for the i-th individual, and ∆ij’s are condensed identity coefficients as defined in

Lynch and Walsh (1998, pp.133) and can be calculated from the pedigree data.

5 Condensed Identity Coefficients

To fit model (1), we need identity coefficients in (2). Condensed identity coefficients (cic)

can be calculated from the pedigree, using function cic.

Usage:

cic(ped,ids,inter,df=3,ask=FALSE,verbose=FALSE)

The ‘ped’ is the pedigree that should have at least three components ‘id’, ‘sire’ and ‘dam’.

Preferably, generation information is provided. Otherwise, the program will try to derive

generation information based on the pedigree. The ‘ids’ specifies the IDs of the individuals

for which to calculate the Jacquard condensed identity coefficients. If ‘ids’ is not specified, all

individuals in the pedigree ‘ped’ will be considered. It is recommended that ‘ids’ be specified

only for interested individuals because extra IDs may result in overwhelming computation.

Condensed identity coefficients can be derived from generalized kinship coefficients. Bottom-

up and top-down are two strategies for calculating generalized kinship coefficients from a

pedigree. The bottom-up approach starts from the target individuals and moves up till the

founders. It requires minimal storage but the computational load can be approximately

exponential in the number of generations. The bottom-up approach is not realistic if the

number of generations is large and the number of individuals in each generation is not small.

The top-down approach starts from founders and moves down to the target individuals. The

computational load is approximately linear in the number of generations. However, the in-

termediate generalized kinship coefficients need to be stored, which may require extensive

storage if the number of individuals in a generation is large. This function allows for a hybrid
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of both bottom-up and top-down approaches by specifying intermediate generations via the

argument ‘inter’ such that generations of too many members are passed over. If ‘inter’ is

missing, the function will use ‘df’ to determine the “optimal” configuration of ‘inter’. The

default value of ‘inter’ is 3. If ‘df = 0’, then there will be no intermediate generations, which

results in implementation of the bottom-up approach. If ‘df’ is large, then all generations

will be used as intermediate generations, which calls for the top-down approach.

We can set ‘ask = TRUE’ to see if ‘inter’ produced by the program is feasible. If not, we

can tune ‘df’ until it is satisfactory. Setting ‘verbose = TRUE’ will print out some messages

to track the running process.

The output of cic is a matrix G of nine columns with G[, j] being the j-th Jacquard

identity coefficients. Once we finish cic, we can run genMatrix to extract five genetic

matrices, including additive genetic matrices “AA”, dominance genetic matrix “DD” and

other three that are described in Abney et al (2000), as well as inbreeding coefficients “ib”.

Note: You may need the administrative privilege to run this function on systems such

as Windows 7.

Example 1. Calculate condensed identity coefficients from a pedigree.

> # only interested individuals in F8

> id<- rownames(pdatF8)

> id[1:5]

[1] "31521" "33424" "31826" "33609" "33275"

> # check if phenotype and genotype data are from the same sample

> sum(!is.element(id,rownames(gdatF8)))

[1] 0

> sum(!is.element(rownames(gdatF8),id))

[1] 0

> sum(!is.element(id,pedF8$id))

[1] 0

>

> # running

> idcf<- cic(pedF8,ids=id,df=3,ask=TRUE,verbose=TRUE)

Total free disk space needed: 577.0453 Mb...

Carry-over number of individuals in each generation:

F0 F1 F2 F3 F4 F5 F6 F7 F8

2 2 72 64 44 36 53 144 500

Will go through generations: F0 F1 F2 F4 F5 F6 F7 F8

Continue? Yes/No: Yes

F1 F2 F4 F5 F6 F7 F8
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>

> # extract genetic matrices

> gmF8<- genMatrix(idcf); names(gmF8)

[1] "ib" "AA" "DD" "AD" "HH" "MH"

>

> dim(gmF8$AA)

[1] 500 500

> gmF8$AA[1:3,1:5]

31521 33424 31826 33609 33275

31521 1.3798828 0.7880859 0.3845215 0.7985840 0.7880859

33424 0.7880859 1.3793945 0.4257812 0.7678223 0.8813477

31826 0.3845215 0.4257812 1.0000000 0.3896484 0.4257812

Genetic matrices can also be estimated using genotypic data in the sense of identity-by-

state (IBS). The function genMatrix has this capability in case there are only two founder

strains or genotypes are only recorded as, say, “AA”, “AB” and “BB” (QTLRel 0.2.7 or

later).

6 Variance Components

Once we have genetic matrices, we can proceed to estimate variance components that are

needed in a genome scan. Estimating variance component parameters can be achieved via

function estVC.

Usage:

estVC(y,x,v=vector("list",6),initpar,nit=25,

method=c("Nelder-Mead","BFGS","CG","SANN"),

control=list(),hessian=FALSE)

where ‘y’ is a numeric vector or a numeric matrix of one column that represents a phenotype,

and ‘x’, if not missing, is a data frame or matrix that represents covariates. ‘v’ is a list of

interested variance components (AA, DD, HH, AD, MH, EE,...), where “AA” and “DD” are

respectively additive and dominance genetic matrices, “EE” is the residual matrix that is

usually assumed to be an identity matrix, and “...” are other random components of interest.

If a genetic component is not considered, it should be set to “NULL”. If interested in Hessian

matrix, we can set ‘hessian = TRUE’. Here is an example.

Example 2. Estimate variance components.

> idx<- !is.na(pdatF8[,"bwt"])
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> pdatTmp<- pdatF8[idx,] # remove missing values

> gdatTmp<- gdatF8[match(rownames(pdatTmp),rownames(gdatF8)),] # matching

>

> ii<- match(rownames(pdatTmp),rownames(gmF8$AA))

> vc<- estVC(y = pdatTmp[,"bwt"], x = pdatTmp[,c("sex","age")],

+ v=list(AA=gmF8$AA[ii,ii],DD=gmF8$DD[ii,ii],HH=NULL,AD=NULL,MH=NULL,

+ EE=diag(nrow(pdatTmp))))

> vc$value # likelihood

[1] -977.6066

> vc$par # parameter estimates

(Intercept) sexF sexM age AA

1.497242e+01 -5.951434e+00 0.000000e+00 1.040535e-01 1.863903e+00

DD EE

5.442390e+00 6.350363e-08

In the above example, the trait of interest is body weight ‘bwt’. We include both ad-

ditive and dominance genetic variance components but ignore the other three by setting

HH=NULL,AD=NULL and MH=NULL. We also consider ‘sex’ and ‘age’ as covariates without ques-

tioning whether it makes sense to do so. Of course, we can test an effect as illustrated

below.

Example 3. Include non-genetic variance components.

> ranMtr<- rem(~cage, data=pdatTmp) # matrice for random effect (cage)

> names(ranMtr)

[1] "cage"

> dim(ranMtr$cage)

[1] 496 496

> vc.cage<- estVC(y = pdatTmp[,"bwt"], x = pdatTmp[,c("sex","age")],

+ v=list(AA=gmF8$AA[ii,ii],DD=gmF8$DD[ii,ii],HH=NULL,AD=NULL,MH=NULL,

+ EE=diag(nrow(pdatTmp)), cage=ranMtr$cage))

>

> 2*(vc.cage$value - vc$value) # likelihood ratio test for cage effect

[1] 15.91948

The above example demonstrates how to include ‘cage’ as a non-genetic random effect, and

also gives the likelihood ratio test statistic for ‘cage’ effect. However, we will ignore ‘cage’

effect as we move on.
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Figure 1 Sex and age are non-interactive covariates.

7 Performing Genome Scans

Now we come to the point to perform a genome scan using function scanOne.

Usage:

scanOne(y, x, gdat, prdat=NULL, vc=NULL, intcovar=NULL,

numGeno=FALSE, test=c("None","F","Chisq"),

minorGenoFreq=0, rmv=TRUE)

The meanings of ‘y’ and ‘x’ are the same as in estVC. ‘gdat’ is genotype data in the format

described previously. It is ignored if an object ‘prdat’ from genoProb is specified as an

argument. ‘vc’ is an object from estVC or aicVC, or an estimated variance-covariance matrix

induced by relatedness and environment. ‘intcovar’, if provided, specifies covariates that

interact with QTL. Note that if we treat numerical coding of genotype as numerical value,

we should set ‘numGeno = TRUE’.

The function will return a list with at least the following components:

1) p: P-value at the snp (marker) if ‘test’ is “F” or “Chisq”, or the log-likelihood ratio

statistic at the SNP (marker) if ‘test’ is “None”

2) parameters: estimated parameters at all scanning loci, including additive effect ‘a’ and

dominance effect ‘d’ if ‘prdat’ is not “NULL”.

If the genome scan is based on genotype data ‘gdat’, then we need make sure there are not

missing genotypes. Otherwise, we can call function genoImpute to impute missing genotypes.
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Usage:

genoImpute(gdat,gmap,prd=NULL,step=Inf,gr=2,pos=NULL,

method=c("Haldane","Kosambi"),na.str="NA",verbose=FALSE)

where ‘gdat’ is genotype data, ‘gmap’ is genetic map, and ‘prd’ is an object from genoProb

if not “NULL”. If we only impute missing genotypes at marker loci, we can specify ‘step =

Inf’ (by default). The argument ‘gr’ indicates which generation is under consideration. The

missing genotype is randomly assigned with a probability conditional on the genotypes of

the flanking makers. Currently, this function only works for AIL. Here is an example.

Example 4. Genome scan without interactive covariates.

> sum(is.na(gdatTmp)) # number of missing genotypes

[1] 142

> gdatTmpImputed<- genoImpute(gdatTmp,gmapF8,gr=8,na.str=NA)

>

> # genome scan

> lrt<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],

+ gdat=gdatTmpImputed, vc=vc)

>

> plot(lrt,gmap=gmapF8,main="Body Weight") # plotting

>

In the above example, we first call genoImpute to impute 142 missing genotypes and then

perform a genome scan. The scan takes both sex and age as non-interactive covariates. We

can also include interactive covariates as illustrated in the following example where age is a

non-interactive covariate but sex is an interactive covariate. Figure 1 is the Manhattan plot

of the mapping results.

Example 5. Genome scan with an interactive covariate.

> # genome scan: interactive sex

> lrt.sex<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("age")],

+ gdat=gdatTmpImputed, intcovar=pdatTmp[,c("sex")],vc=vc)

>

> plot(lrt.sex,gmap=gmapF8,main="Body Weight") # plotting

>

Then QTL by sex interaction effect can be easily obtained as follows.

Example 6. Extract test statistics.

> # QTL by sex interaction
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Figure 2 Sex and age are non-interactive covariates.

> lrtTmp<- lrt

> lrtTmp$p<- lrt.sex$p - lrt$p

>

> plot(lrtTmp,gmap=gmapF8,main="Body Weight: QTL by Sex Effect") # plotting

>

In case of AIL mapping populations, the package ‘QTLRel’ can also perform Haley-Knott in-

terval mapping. This is achieved by first calling genoProb to calculate genotype probabilities

and calling scanOne to scan the genome.

Usage:

genoProb(gdat,gmap,step=Inf,gr=2,pos=NULL,method=c("Haldane",

"Kosambi"),verbose = FALSE)

where ‘gdat’ is genotype data whose entry should be 1, 2, 3 or 0, corresponding to “AA”,

“AB”, “BB” or missing genotype, and ‘gmap’ is a genetic map. The argument ‘step’ defines

scanning loci such that the “historical” genetic distance between any two adjacent loci for

which probabilities are calculated is not larger than ‘step’. If ‘step = Inf’ (or large enough),

probabilities will only be calculated at loci in both the columns of ‘gdat’ and the rows of

‘gmap’. If ‘step’ is small, a large set of putative loci will be considered, including all loci

defined by the columns of ‘gdat and the rows of ‘gmap’. The output is a list with the following

components:

10



1) pr: a 3-D array with the first dimension equal to that of ‘gdat’, the second corresponding

to three genotype and the third to the putative loci. The probabilities will be -1 if

not imputable, which happens when the genotype data is missing at all loci on the

chromosome.

2) chr: chromosome where the locus is located.

3) dist: genetic distance (in cM) of the locus from the first locus on the chromosome.

4) snp: SNP (marker) that the locus represents.

Again, it is currently only suitable for advanced intercross lines. Let’s look at an example.

Example 7. (Haley-Knott method) Genome scan without interactive covariates.

> gdTmp<- gdatTmp

> gdTmp[is.na(gdTmp)]<- 0

> unique(c(as.matrix(gdTmp)))

[1] 3 2 1 0

> prDat<- genoProb(gdat=gdTmp,gmap=gmapF8,step=3,gr=8)

>

> # genome scan: Haley-Knott method

> lrtHK<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],

+ prd=prDat, vc=vc)

>

> plot(lrtHK,main="Body Weight (HK Method)") # plotting

>

In the above example, we define ‘step = 3’, which results in 1741 scanning loci including the

847 markers. Also note that we don’t need genetic map information in plotting because the

information is contained in the object “lrtHK”. Figure 2 displays the mapping results. The

following is another example using Haley-Knott interval mapping.

Example 8. (Haley-Knott method) Genome scan with sex being an interactive covariate.

> # genome scan: Haley-Knott method, interactive sex

> lrtHK.sex<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("age")],

+ prd=prDat, intcovar=pdatTmp[,c("sex")],vc=vc)

>

> plot(lrtHK.sex,main="Body Weight (HK Method)") # plotting

>

> # Haley-Knott method, QTL by sex interaction

> lrtHKTmp<- lrtHK
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> lrtHKTmp$p<- lrtHK.sex$p - lrtHK$p

>

> plot(lrtHKTmp,main="Body Weight (HK Method): QTL by Sex Effect")

>

8 Empirical Thresholds

Empirical thresholds can be obtained by permutation. This simply repeats the genome scan

with genotype data being shuffled among individuals. The function nullSim in the package

can be called to estimate thresholds. However, we may write our own code to gain a better

control. First, let’s look at two permutation examples.

Example 9. Permutation test using marker genotype data.

> nn<- nrow(gdatTmpImputed) # sample size

> ntimes<- 1000 # number of simulations

> cvMtr<- NULL # matrix to save results of permuted data

> for(n in 1:ntimes){

+ idx<- sample(1:nn,replace=FALSE) # permutation

+ tmp<- scanOne(y=pdatTmp[,"bwt"],x=pdatTmp[,c("sex","age")],

+ gdat=gdatTmpImputed[idx,], vc=vc)

+ cvMtr<- rbind(cvMtr,tmp$p)

+ cat(n,"/",ntimes,"\r") # track process

+ }

> 00 / 1000

In the above example, we shuffle the order of observations and store the shuffled order

in variable “idx” so that “gdatTmpImputed[idx,]” is the permuted genotype data from

“gdatTmpImputed”. The code for genome scan is the same otherwise. The results are

stored in the matrix “cvMtr”. This process is repeated “ntimes = 1000” times. The 0.05

genome-wide significance threshold can be estimated by

> quantile(apply(cvMtr,1,max),0.95) # in LRT

95%

18.36371

> quantile(apply(cvMtr,1,max),0.95)/(2*log(10)) # in LOD

95%

3.98763

Example 10. Permutation test in Haley-Knott interval mapping.
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> # for HK method...

> cvMtrHK<- NULL

> for(n in 1:ntimes){

+ idx<- sample(1:nn,replace=FALSE)

+ prdTmp<- prDat

+ prdTmp$pr<- prdTmp$pr[idx,,]

+ tmp<- scanOne(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],

+ prd=prdTmp, vc=vc)

+ cvMtrHK<- rbind(cvMtrHK,tmp$p)

+ cat(n,"/",ntimes,"\r") # track process

+ }

> 00 / 1000

>

Since we have a pedigree here, we can perform gene dropping test. In the following example,

we first call genoSim, which does gene dropping, to generate genotype data set “gdatTmp”,

and then perform the genome scan using “gdatTmp”. This example can be easily adapted

to the Haley-Knott version.

Example 11. Gene dropping test.

> pedR<- pedRecode(pedF8) # recode the pedigree

> ids<- rownames(gdatTmpImputed) # relevant individual IDs

> cvMtrGD<- NULL

> for(n in 1:ntimes){

+ gdatTmp<- genoSim(pedR, gmapF8, ids=ids)

+ tmp<- scanOne(y=pdatTmp[,"bwt"],x=pdatTmp[,c("sex","age")],

+ gdat=gdatTmp, vc=vc)

+ cvMtrGD<- rbind(cvMtrGD,tmp$p)

+ cat(n,"/",ntimes,"\r")

+ }

9 Plotting

Object of scanOne can be plotted using R function plot, as illustrated in example 4 and 7.

Here is one more example, in which we feed a threshold with ‘cv’ and tune the symbol size

with ‘cex’.

Example 12. Plotting scanOne objects (Figure 3).

> plot(lrt,cv=3,gmap=gmapF8,main="Body Weight (HK Method)",cex=1)
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Figure 3 Plotting scanOne objects. Sex and age are non-interactive covariates.

We can gain more control using function plotit. Here are two examples of calling function

plotit. Users may check the documentation (here) for its usage.

Example 13. Plotting mapping results using function plotit (Figure 4).

> idx<- match(colnames(gdatTmpImputed),gmapF8$snp)

> Tmp<- data.frame(chr=gmapF8$chr[idx],

+ dist=gmapF8$dist[idx],

+ y=lrt$p)

> Tmp$chr<- reorder(Tmp$chr)

> Tmp<- Tmp[order(Tmp$chr,Tmp$dist),] # order by chromosome and distance

>

> plotit(Tmp, cv=12, main="Mapping Plot of Body Weight", xlab="Chromosome",

+ ylab="LRT", col=as.integer(Tmp$ch)%%2+2,type="p",lty=2)

Example 14. Plotting mapping results by chromosome using function plotit (Figure

5).

> library(lattice) # dependency package

>

> tmp<- plotit(Tmp,cv=12,type="p",lty=2,col=4,cex=0.65,

+ xlab="Genetic Position (cM)",ylab="LRT",

+ main="Body Weight",bychr=TRUE)

> print(tmp)
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Figure 4 Plotting mapping results using function plotit. Sex and age are non-interactive
covariates.

10 Miscellaneous

In the package, there are a few other functions that may be useful.

• kinship calculates kinship coefficients from a pedigree.

• mAIC performs multiple QTL model section via AIC criterion. This function allows

additive covariates but not interactive covariates.

• lodci calculates LOD support intervals.

Example 15. LOD support intervals based on Haley-Knott interval mapping.

> Tmp<- data.frame(chr=lrtHK$chr,

+ dist=lrtHK$dist,

+ y=lrtHK$p/(2*log(10))) # convert to LOD

> Tmp$chr<- reorder(Tmp$chr)

> Tmp<- Tmp[order(Tmp$chr,Tmp$dist),]

> lc<- lodci(Tmp,cv=3,lod=1.5,drop=1.5)

> lc

chr lower upper index

1 7 24.45371 29.6560 674

2 15 34.36767 52.8378 1365
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Figure 5 Plotting mapping results by chromosome using function plotit. Sex and age are
non-interactive covariates.

• gls can estimate QTL effects and standard errors by fitting a multiple QTL model.

The following example show how to fit a model including two putative QTL at the

674-th and 1365-th scanning loci.

Example 16. Estimated QTL effects and standard errors.

> # multiple QTL model estimates

> dtfTmp<- data.frame(

+ y=pdatTmp[,"bwt"],

+ age=pdatTmp[,"age"],

+ sex=pdatTmp[,"sex"],

+ a1=prDat$pr[,1,lc$index[1]]-prDat$pr[,3,lc$index[1]],

+ d1=prDat$pr[,2,lc$index[1]],

+ a2=prDat$pr[,1,lc$index[2]]-prDat$pr[,3,lc$index[2]],

+ d2=prDat$pr[,2,lc$index[2]]

+ )

> est1<- gls(y~age+sex+a1+d1+a2+d2,data=dtfTmp,vc=vc)

> est2<- gls(y~age+sex*(a1+d1+a2+d2),data=dtfTmp,vc=vc)

> est1 # with age and sex being additive covariates

Estimate Std. Error t value Pr(>|t|)

16



Intercept 13.97465243 1.60575967 8.7028294 4.977152e-17

age 0.11225920 0.01591673 7.0529061 6.014461e-12

sexF -5.94624248 0.14404054 -41.2817281 1.798428e-161

a1 0.47577484 0.13217157 3.5996761 3.511094e-04

d1 0.02658025 0.16582602 0.1602900 8.727189e-01

a2 -0.35522971 0.13403200 -2.6503350 8.301803e-03

d2 0.42040674 0.17596958 2.3890876 1.726836e-02

> est2 # with sex being an interactive covariate

Estimate Std. Error t value Pr(>|t|)

Intercept 13.92886461 1.62037947 8.59605103 1.142566e-16

age 0.11215587 0.01603033 6.99647702 8.762561e-12

sexF -5.82819712 0.27981590 -20.82868431 2.680314e-69

a1 0.46295588 0.16061317 2.88242786 4.121370e-03

d1 -0.01350022 0.21945982 -0.06151568 9.509739e-01

a2 -0.29150868 0.17076744 -1.70705070 8.845267e-02

d2 0.54345166 0.23708915 2.29218277 2.232256e-02

sexF.a1 0.03156263 0.21682315 0.14556853 8.843225e-01

sexF.d1 0.07661133 0.30043387 0.25500231 7.988294e-01

sexF.a2 -0.14042193 0.22564183 -0.62232222 5.340225e-01

sexF.d2 -0.26528404 0.33162794 -0.79994479 4.241344e-01

>

• qtlVar calculates variance induced by QTL in a quantitative trait.

Example 17. QTL induced variation based on Haley-Knott interval mapping.

> ii<- match(rownames(pdatTmp),rownames(gmF8$AA))

> vc0<- estVC(y = pdatTmp[,"bwt"], v=list(AA=gmF8$AA[ii,ii],

+ DD=gmF8$DD[ii,ii], HH=NULL,AD=NULL, MH=NULL,

+ EE=diag(nrow(pdatTmp))))

> nb<- length(vc0$par) - sum(vc0$nnl)

> nr<- nrow(vc0$y)

> cov<- matrix(0,nrow=nr,ncol=nr)

> for(i in 1:vc0$nv)

+ if(vc0$nnl[i]) cov<- cov + vc0$v[[i]]*vc0$par[nb+vc0$nn[i]]

> tv<- mean(diag(cov)) # total variation

>

> eff<- NULL # QTL effects

> for(n in 1:length(lrtHK$par)){

17



Figure 6 Plotting scanTwo objects. Sex and age are non-interactive covariates.

+ eff<- rbind(eff,lrtHK$par[[n]][c("a","d")])

+ }

> eff<- data.frame(chr=lrtHK$chr,dist=lrtHK$dist,eff)

> qv<- qtlVar(eff,prDat$pr) # per QTL variation

> qv[lc$index]/tv*100 # per QTL heritability

[1] 0.9486277 0.9897365

The last command calculates variation percentage in body weight that are associated

with two highest peaks in figure 2

• scanTwo calculates QTL-by-QTL interaction. Sometimes, people are interested in epis-

tasis. The package provides this facility though it can be computationally expensive if

the number of scanning loci is large. In the following example we calculate epistatic

effect with sex and age being additive covariates and plot the results.

Example 18. Calculating epistasis and plotting.

> qqInt.1<- scanTwo(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],

+ gdat=gdatTmpImputed, vc=vc)

>

> qqInt.2<- scanTwo(y=pdatTmp[,"bwt"], x=pdatTmp[,c("sex","age")],

+ prdat=prDat, vc=vc)

>

> par(mfrow=c(1,2))

> plot(qqInt.1/(2*log(10)),

+ gmap=gmapF8[match(rownames(qqInt.1),gmapF8$snp),],

18



+ main="Body Weight: Epistasis (A)\n\n",xlab="",ylab="")

> plot(qqInt.2/(2*log(10)),

+ gmap=data.frame(snp=prDat$snp,chr=prDat$chr,dist=prDat$dist),

+ main="Body Weight: Epistasis (B)\n\n",xlab="",ylab="")

Note that we need a genetic map ‘gmap’ to plot the scanTwo objects. Refer to the R

documentation for usage of scanTwo.

11 Citation

Package ‘QTLRel’ was built on the R and C code that implemented the methodology de-

scribed in Cheng et al (2010). We ask users of the package to kindly cite the following

papers:

Cheng R, Abney M, Palmer PP and Skol AD (2011). QTLRel: an R Package for Genome-

wide Association Studies in which Relatedness is a Concern. BMC Genet. (Minor revisions).

Cheng R, Lim JE, Samocha KE, Sokoloff G, Abney M, Skol AD and Palmer AA (2010).

Genome-wide association studies and the problem of relatedness among advanced intercross

lines and other highly recombinant populations. Genetics 185: 1033-1044.

We wish you success in your research!
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