
Introduction to SamplerCompare

Madeleine B. Thompson
University of Toronto

Abstract

SamplerCompare is an R package for comparing the performance of Markov chain
Monte Carlo samplers. It samples from a collection of distributions with a collection of
MCMC methods over a range of tuning parameters. Then, using log density evaluations
per uncorrelated observation as a figure of merit, it generates a grid of plots showing
the results of the simulation. It comes with a collection of predefined distributions and
samplers and provides R and C interfaces for defining additional ones. It also provides
the means to import simulation data generated by external systems. This document
provides background on the package and demonstrates the basics of running simulations,
visualizing results, and defining distributions and samplers in R.

Keywords: MCMC, visualization.

A version of this document was published as Thompson (2011a).

1. Purpose of package

When a researcher develops a new Markov chain Monte Carlo (MCMC) method, they will wish
to determine how it compares to existing methods on a representative set of distributions.
Similarly, when a statistician specifies a new distribution, they may want to know which
common MCMC methods are most efficient at sampling from it. SamplerCompare (Thompson
2011b) is an R (R Development Core Team 2010) package that automates these tasks. It draws
samples from a collection of probability distributions with a collection of MCMC samplers,
with a range of tuning parameters, and presents the results of such simulations graphically.
These comparisons allow researchers to better understand which MCMC methods perform
best in which circumstances.

The main goal of SamplerCompare is to generate a grid of plots in which an individual grid
cell corresponds to a single MCMC sampler and a single distribution. In each grid cell, the
efficiency of a simulation is summarized by a plot of the product of the number of log density
evaluations per iteration multiplied by the autocorrelation time of the slowest-mixing com-
ponent of the state space for a range of scale tuning parameter values. Autocorrelation time,
like effective sample size, which can be computed by effectiveSize in the coda (Plummer,
Best, Cowles, and Vines 2010) package, accounts for the often-substantial correlation between
observations in MCMC-generated samples. Log density evaluations accounts for elapsed pro-
cessor time in a machine-independent way. By viewing the cost measure in a grid of plots, a
user can see patterns in the performance more easily than they could if they viewed the same
results as numbers in a table.

2 Introduction to SamplerCompare

2. Installation and documentation

Binary packages for MacOS and Windows and a platform-independent source package can be
obtained from CRAN at:

http://cran.r-project.org/web/packages/SamplerCompare/index.html

To install it, one must first install the mvtnorm package (Genz, Bretz, Miwa, Mi, Leisch,
Scheipl, and Hothorn 2011). To use SamplerCompare’s graphics, one must install the ggplot2
package (Wickham 2009). To use multithreading, one must install the multicore (Urbanek
2011) and synchronicity (Kane 2010) packages. These two are not available for Windows, so
Windows users are limited to single-threaded simulations.

Alternatively, one can use the install.packages R command:

R> install.packages("SamplerCompare", dependencies=c("Depends","Suggests"))

More information on SamplerCompare is available in the R online help for the package and
Thompson (2010b). After the package is installed, a list of online help topics and vignettes
can be found by typing:

R> library(help='SamplerCompare')

Vignettes can be read with the vignette command. For example:

R> vignette('glue')

PDF copies can be found in the doc directory of the installed package. Further information
on the mathematical background of the comparisons and analysis of the plots is available in
Thompson (2010a).

3. Simulations with included samplers and distributions

The three central types of objects in SamplerCompare are distributions (which have the class
dist), sampler functions, and simulation results. The function compare.samplers runs a
list of samplers on a list of distributions with a set of tuning parameters and returns a data
frame containing simulation results. Sampler functions are assumed to have a single scalar
tuning parameter. If they have more, wrapper functions can represent a single sampler with
a varying tuning parameter as multiple samplers. SamplerCompare comes with a collection
of predefined samplers (listed in Table 1) and distributions (listed in Table 2).

Suppose we would like to compare Adaptive Metropolis (adaptive.metropolis.sample) and
Adaptive Rejection Metropolis (arms.sample) with the tuning parameters 0.1, 1, 10, and 100
on two-dimensional Gaussian (make.gaussian) and Gamma (make.mv.gamma.dist) distri-
butions. We can do this with compare.samplers using the R code:

library('SamplerCompare')
gauss.cor7 <- make.gaussian(mean=c(1,2), rho=0.7)
gamma.shape23 <- make.mv.gamma.dist(shape=c(2,3))

http://cran.r-project.org/web/packages/SamplerCompare/index.html

Madeleine B. Thompson 3

R function Sampler
multivariate.metropolis.sample Metropolis–Hastings with spherically symmetric

Gaussian proposals
univar.metropolis.sample Metropolis–Hastings with single-coordinate updates
adaptive.metropolis.sample Adaptive Metropolis–Hastings (Roberts and Rosen-

thal 2009)
arms.sample Adaptive Rejection Metropolis (Gilks, Best, and

Tan 1995)
stepout.slice.sample slice sampler with stepping out (Neal 2003, §4)
interval.slice.sample slice sampler without stepping out (Neal 2003, §4)
univar.eigen.sample adaptive slice sampler with univariate steps along

eigenvectors of covariance matrix (Thompson 2011c,
ch. 3)

hyperrectangle.sample slice sampler with hypercube for initial slice approx-
imation, shrinkage using gradient (Neal 2003, §5.1)

nograd.hyperrectangle.sample slice sampler with hypercube for initial slice approxi-
mation, shrinkage in all dimensions (Neal 2003, §5.1)

oblique.hyperrect.sample adaptive slice sampler with hyperrectangle for initial
slice approximation (Thompson 2011c, ch. 3)

nonadaptive.crumb.sample slice sampler with Gaussian crumbs (Neal 2003,
§5.2)

cov.match.sample covariance-matching slice sampler (Thompson and
Neal 2010, §4)

shrinking.rank.sample shrinking rank slice sampler (Thompson and Neal
2010, §5)

Table 1: Predefined samplers; see the R help for the sampler’s R function for more information
on an individual method.

R symbol Distribution
N2weakcor.dist weakly correlated two-dimensional Gaussian
N4poscor.dist strongly positively correlated four-dimensional Gaussian
N4negcor.dist strongly negatively correlated four-dimensional Gaussian
schools.dist ten-dimensional multilevel model (Gelman, Carlin, Stern,

and Rubin 2004, pp. 138–145)
funnel.dist ten-dimensional distribution with funnel-shaped marginals

(Neal 2003, p. 732)

R function Distributions generated
make.gaussian multivariate Gaussians
make.cone.dist distributions with cone-shaped log density (Roberts and

Rosenthal 2002)
make.multimodal.dist mixtures of standard Gaussians
make.mv.gamma.dist distributions with uncorrelated gamma marginals

Table 2: Predefined distributions and functions that generate distributions; see the R help for
a symbol for more information on an individual distribution or generator.

4 Introduction to SamplerCompare

sampler.comparison <-
compare.samplers(sample.size=200,

dists=list(gauss.cor7, gamma.shape23),
samplers=list(adaptive.metropolis.sample, arms.sample),
tuning=10^seq(-1,2,by=1),
completed.file="intro-compare.rda")

The call to compare.samplers generates the following trace, with one line for each simulation:

Simulation started at 2011-08-23 21:21:06.
Writing results to intro-compare.rda.
N2,rho=0.7 Adaptive Metropolis: 557 (156,Inf) evals tuning=0.1; act.y=92.7
N2,rho=0.7 ARMS: 676 (294,9.87e+03) evals tuning=0.1; act.y=5.93
Gamma2 Adaptive Metropolis: 649 (155,Inf) evals tuning=0.1; act.y=9.88
Gamma2 ARMS: 17.8 (10.9,30.7) evals tuning=0.1; act.y=2.01
N2,rho=0.7 Adaptive Metropolis: 13.3 (8.53,21.8) evals tuning=1; act.y=6.6
N2,rho=0.7 ARMS: 656 (288,4.41e+04) evals tuning=1; act.y=9.88
Gamma2 Adaptive Metropolis: 65.8 (23.6,1.73e+03) evals tuning=1; act.y=9.42
Gamma2 ARMS: 7.01 (5.17,9.83) evals tuning=1; act.y=1.29
N2,rho=0.7 Adaptive Metropolis: 250 (80.1,Inf) evals tuning=10; act.y=44.8
N2,rho=0.7 ARMS: 2.73e+03 (893,Inf) evals tuning=10; act.y=28.4
Gamma2 Adaptive Metropolis: 76.2 (32.2,1.16e+03) evals tuning=10; act.y=3.16
Gamma2 ARMS: 12.7 (9.13,16.9) evals tuning=10; act.y=0.999
N2,rho=0.7 Adaptive Metropolis: NA (NA,NA) evals tuning=100; act.y=NA
N2,rho=0.7 ARMS: 1.34e+03 (563,Inf) evals tuning=100; act.y=15
Gamma2 Adaptive Metropolis: 644 (154,Inf) evals tuning=100; act.y=96.5
Gamma2 ARMS: 12.2 (9.13,16.3) evals tuning=100; act.y=0.94
Simulation finished at 2011-08-23 21:21:13, 7.41s elapsed.
Wrote results to intro-compare.rda.

Each line in the trace has the distribution name, the sampler name, the number of evalua-
tions per uncorrelated observation with 95% confidence interval in parentheses, the tuning
parameter, and the autocorrelation time of the log density.

The return value of compare.samplers (sampler.comparison in this example) is a data
frame with one row per simulation. To see, for example, how many evaluations and how
many processor seconds Adaptive Metropolis needed to generate an uncorrelated observation
on the two-dimensional Gaussian, one would multiply the act column by the evals and cpu
columns:

s <- subset(sampler.comparison,
sampler=='Adaptive Metropolis' &
dist=='N2,rho=0.7' &
tuning==1)

print(s$act * s$evals)
print(s$act * s$cpu)

This generates the output:

Madeleine B. Thompson 5

[1] 13.27591
[1] 0.003244487

Notice that the first product is the same as the one reported in the corresponding line from
the compare.samplers trace output (the seventh, N2,rho=0.7 Adaptive Metropolis . . .
tuning=1). See the R help page for sampler.comparison for a full list of the columns of its
return value.

The returned data is also incrementally saved to the file named by completed.file. It
can be loaded in a second R process with load to see how the simulation is progressing. If
unset, a temporary file is created for this purpose and deleted on successful completion of the
simulation.

4. Visualizing results

To visually compare the efficiency of a collection of simulations, one can use the comparison.
plot function. It has a single required argument, a data frame containing results from
compare.samplers or simulation.result. The previous section has an example of the
use of compare.samplers. The online help for simulation.result contains an example of
its use to load a simulation generated by JAGS (Plummer 2010).

comparison.plot returns a ggplot2 plot object. One can call print on this object to view
the plot; it can also be edited with the grid package (Murrell 2005, ch. 5–6). To plot the
results from the previous example, one would type:

R> print(comparison.plot(sampler.comparison))

The results are shown in Figure 1.

In this figure, the columns of plots represent the samplers, and the rows of plots represent the
distributions. The scale tuning parameter is plotted on the horizontal axis; the number of log
density evaluations per uncorrelated observation is plotted as a dot on the vertical axis with
a bar for the 95% confidence interval. Log density evaluations per uncorrelated observation
is computed by multiplying the average number of log density evaluations per simulation
iteration by the autocorrelation time of the slowest-mixing component of the simulation. The
autocorrelation time is the ratio of the sample size to the effective sample size. It accounts for
linear dependence between successive states. See the help for ar.act for more information
on how it is computed.

In Figure 1, one can see that on the two distributions compared, when sampling with ARMS,
the cost measure does not vary much with the tuning parameter. Adaptive Metropolis seems
more sensitive to the tuning parameter. However, when the components of the target dis-
tribution are correlated, it performs better than ARMS when the tuning parameter is well
chosen (in this case, equal to one). For more discussion of the interpretation of these plots,
see Thompson (2010a, §5).

5. Defining a sampler

MCMC samplers are specified by functions that have the signature:

6 Introduction to SamplerCompare

scale tuning parameter

of

 e
va

ls
. o

f l
og

 d
en

si
ty

 fu
nc

tio
n

pe
r

un
co

rr
el

at
ed

 o
bs

. (
w

ith
 9

5%
 C

I)

101

102

103

104

101

102

103

104

Adaptive Metropolis

●

● ●

●

●

●

●

?

0.
1 1 10 10

0

ARMS

●

●
● ●

● ●

●

●

0.
1 1 10 10

0

Γ
2

N
2 (ρ

=
0.7)

Figure 1: A comparison between Adaptive Metropolis and ARMS on two-dimensional Gaus-
sians and gammas. See section 4 for discussion.

Madeleine B. Thompson 7

sampler(target.dist, x0, sample.size, tuning)

They must also have a name attribute, a length-one character vector. The target.dist
parameter specifies the target distribution; see the R help for make.dist for details on its
structure. x0 specifies the start state for the simulation, sample.size specifies the sample
size, and tuning specifies a scalar tuning parameter.

A sampler function should return a list with two elements: X, a matrix with one row per
observation, and evals, a count of the number of times it evaluated the log density (with
target.dist$log.density). If the sampler evaluates the gradient of the log density (with
target.dist$grad.log.density), the list should contain a grads element, indicating the
number of times it did this.

The following code specifies a Metropolis sampler with multivariate proposals:

metropolis.sample <- function(target.dist, x0, sample.size, tuning) {
X <- matrix(nrow=sample.size, ncol=target.dist$ndim)
state <- x0
evals <- 1
state.log.dens <- target.dist$log.density(state)
for (obs in 1:sample.size) {
proposal <- rnorm(target.dist$ndim, state, tuning)
evals <- evals + 1
proposal.log.dens <- target.dist$log.density(proposal)
if (runif(1) < exp(proposal.log.dens-state.log.dens)) {
state <- proposal
state.log.dens <- proposal.log.dens

}
X[obs,] <- state

}
return(list(X=X, evals=evals))

}
attr(metropolis.sample, 'name') <- 'Metropolis'

See the R help for compare.samplers for more information on writing samplers in R. See the
R help for wrap.c.sampler and Thompson (2010b) for more information on writing samplers
in C.

6. Defining a distribution

make.dist can be used to specify a distribution whose log density is expressed in R. (See the R
help for make.c.dist and Thompson (2010b) for more information on specifying distributions
in C.) Its most important arguments are ndim, name, and log.density. ndim specifies the
dimension of the distribution and name names the distribution. log.density is a function
of one vector argument of length ndim that returns the log density at that point; it should
return -Inf if the point is outside the support of the distribution. The log density does not
need to be normalized.

The following R code defines a Beta(2,3) distribution:

8 Introduction to SamplerCompare

beta23.log.dens <- function(x) ifelse(x<0 | x>1, -Inf, log(x) + 2*log(1-x))
beta23.dist <- make.dist(ndim=1, name='Beta(2,3)',

log.density=beta23.log.dens, mean=2/(2+3))

The optional mean argument to make.dist makes the autocorrelation time computation in
compare.samplers more accurate, so it is advisable to specify it when the mean is known.

7. Comparing user-defined distributions and samplers

User-defined samplers and distributions can be used just like the included samplers and dis-
tributions. To use the Metropolis sampler defined in section 5 to sample from the beta
distribution defined in section 6, one can run the code from those two sections and then run:

sim <- metropolis.sample(beta23.dist, x0=0.5, sample.size=100, tuning=1)

User-defined samplers can also be used with compare.samplers:

sampler.comparison <- compare.samplers(sample.size=1000,
dists=list(beta23.dist),
samplers=list(metropolis.sample),
tuning=c(0.1,1,10),
trace=FALSE)

print(subset(sampler.comparison,
select=c('dist','sampler','tuning','act','evals','cpu','err')))

The call to print(subset(...)) shows some of the columns of the result object:

dist sampler tuning act evals cpu err
1 Beta(2,3) Metropolis 0.1 18.308804 1.001 8.0e-05 0.009270565
2 Beta(2,3) Metropolis 1.0 6.166051 1.001 7.0e-05 0.027165487
3 Beta(2,3) Metropolis 10.0 230.008586 1.001 6.8e-05 0.036684207

One can see that since the evaluations per iteration (evals) and processor-seconds per itera-
tion (cpu) are similar for each simulation, and the autocorrelation time (act) is lowest for a
tuning parameter of 1.0, that choice would seem to be better than the other two. However,
the plots produced by comparison.plot are easier to interpret when more than a few chains
are run.

8. Limitations

SamplerCompare was created to support my own research; I am releasing it with the hope
that others find it useful. Some current limitations include:

• Distributions are assumed to be continuous and to be of a constant dimension.

• Samplers are assumed to have exactly one scalar tuning parameter.

Madeleine B. Thompson 9

• All samplers in a given invocation of compare.samplers are run with the same simula-
tion length and set of tuning parameters.

• Distributions are defined entirely in terms of their log density; there is no way to specify
that a distribution is unimodal or that a particular parameter is always positive.

• Multithreading is not supported on Windows.

References

Gelman A, Carlin JB, Stern HS, Rubin DB (2004). Bayesian Data Analysis, Second Edition.
Chapman and Hall/CRC. URL http://www.stat.columbia.edu/~gelman/book/.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2011). mvtnorm: Multivari-
ate Normal and t Distributions. R package version 0.9-96, URL http://CRAN.R-project.
org/package=mvtnorm.

Gilks WR, Best NG, Tan KKC (1995). “Adaptive Rejection Metropolis Sampling within Gibbs
Sampling.” Applied Statistics, 44(4), 455–472. URL http://www.jstor.org/stable/
2986138.

Kane MJ (2010). synchronicity: Boost mutex functionality for R. R package version 1.0.9,
URL http://CRAN.R-project.org/package=synchronicity.

Murrell P (2005). R Graphics. Chapman and Hall/CRC. URL http://www.stat.auckland.
ac.nz/~paul/RGraphics/rgraphics.html.

Neal RM (2003). “Slice Sampling.” The Annals of Statistics, 31, 705–767. URL http:
//projecteuclid.org/getRecord?id=euclid.aos/1056562461.

Plummer M (2010). JAGS Version 2.2.0 User Manual. URL http://surfnet.dl.
sourceforge.net/project/mcmc-jags/Manuals/2.x/jags_user_manual.pdf.

Plummer M, Best N, Cowles K, Vines K (2010). CODA Reference Manual.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Roberts GO, Rosenthal JS (2002). “The Polar Slice Sampler.” Stochastic Models, 18(2),
257–280. URL http://www.informaworld.com/openurl?genre=article&issn=1532%
2d6349&volume=18&issue=2&spage=257.

Roberts GO, Rosenthal JS (2009). “Examples of Adaptive MCMC.” Journal of Computational
and Graphical Statistics, 18(2), 349–367. URL http://pubs.amstat.org/doi/abs/10.
1198/jcgs.2009.06134.

Thompson MB (2010a). “Graphical Comparison of MCMC Performance.” Technical Report
1010, Dept. of Statistics, University of Toronto. ArXiv:1011.4457v1 [stat.CO], URL http:
//arxiv.org/abs/1011.4457.

http://www.stat.columbia.edu/~gelman/book/
http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=mvtnorm
http://www.jstor.org/stable/2986138
http://www.jstor.org/stable/2986138
http://CRAN.R-project.org/package=synchronicity
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://projecteuclid.org/getRecord?id=euclid.aos/1056562461
http://projecteuclid.org/getRecord?id=euclid.aos/1056562461
http://surfnet.dl.sourceforge.net/project/mcmc-jags/Manuals/2.x/jags_user_manual.pdf
http://surfnet.dl.sourceforge.net/project/mcmc-jags/Manuals/2.x/jags_user_manual.pdf
http://www.R-project.org
http://www.R-project.org
http://www.informaworld.com/openurl?genre=article&issn=1532%2d6349&volume=18&issue=2&spage=257
http://www.informaworld.com/openurl?genre=article&issn=1532%2d6349&volume=18&issue=2&spage=257
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2009.06134
http://pubs.amstat.org/doi/abs/10.1198/jcgs.2009.06134
http://arxiv.org/abs/1011.4457
http://arxiv.org/abs/1011.4457

10 Introduction to SamplerCompare

Thompson MB (2010b). “R/C Glue in SamplerCompare.” URL http://cran.r-project.
org/web/packages/SamplerCompare/vignettes/glue.pdf.

Thompson MB (2011a). “Introduction to SamplerCompare.” Journal of Statistical Software,
43(12), 1–10. URL http://www.jstatsoft.org/v43/i12/.

Thompson MB (2011b). SamplerCompare: A Framework for Comparing the Per-
formance of MCMC Samplers. URL http://cran.r-project.org/web/packages/
SamplerCompare/index.html.

Thompson MB (2011c). Slice Sampling with Multivariate Steps. Ph.D. thesis, University of
Toronto. Forthcoming.

Thompson MB, Neal RM (2010). “Covariance-Adaptive Slice Sampling.” Technical Report
1002, Dept. of Statistics, University of Toronto. ArXiv:1003.3201v1 [stat.CO], URL http:
//www.cs.toronto.edu/~radford/cass.abstract.html.

Urbanek S (2011). multicore: Parallel Processing of R Code on Machines with Multiple
Cores or CPUs. R package version 0.1-5, URL http://www.rforge.net/multicore/.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer–Verlag. URL
http://had.co.nz/ggplot2/book.

Affiliation:

Madeleine B. Thompson
Dept. of Statistics, University of Toronto
100 St. George Street Room 6022
Toronto, Ontario, M5S 3G3, Canada
E-mail: mthompson@utstat.toronto.edu
URL: http://www.utstat.toronto.edu/mthompson

http://cran.r-project.org/web/packages/SamplerCompare/vignettes/glue.pdf
http://cran.r-project.org/web/packages/SamplerCompare/vignettes/glue.pdf
http://www.jstatsoft.org/v43/i12/
http://cran.r-project.org/web/packages/SamplerCompare/index.html
http://cran.r-project.org/web/packages/SamplerCompare/index.html
http://www.cs.toronto.edu/~radford/cass.abstract.html
http://www.cs.toronto.edu/~radford/cass.abstract.html
http://www.rforge.net/multicore/
http://had.co.nz/ggplot2/book
mailto:mthompson@utstat.toronto.edu
http://www.utstat.toronto.edu/mthompson

	Purpose of package
	Installation and documentation
	Simulations with included samplers and distributions
	Visualizing results
	Defining a sampler
	Defining a distribution
	Comparing user-defined distributions and samplers
	Limitations

