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1 Introduction

Statistical matching techniques aim at integrating two or more data sources, usually data
from sample surveys carried out on the same target population. In the basic statistical
matching framework, there are two data sources A and B sharing a set of variables X
then the variable Y is available only in A while the variable Z is observed just in B. In
practice the X variables are common to both the data sources, while the variables Y
and Z are not jointly observed. The objective of statistical matching (hereafter denoted
as SM) consists in integrating A and B in order to investigate the relationship between
Y and Z. It is worth noting that the units in the two data sources come without an
identifying code that permits to discover whether the same units has been observed in
both the surveys; generally, in sample surveys, the chance the same units is included in
both the surveys is close to zero.

The objective of SM can be achieved through a “micro” or a “macro” approach
(D’Orazio et al., 2006b). In the micro approach SM aims at creating a “synthetic”
data source in which all the variables, X, Y and Z, are available (usually A filled in
with the values of Z). In the macro approach the data sources are used to derive an
estimate of the parameter of interest, e.g. the correlation coefficient between Y and Z
or the contingency table Y ×Z. SM can be performed in a parametric or in a nonpara-
metric framework. The parametric approach requires the explicit adoption of a model
for (X,Y, Z); obviously if the model is misspecified then the results will not be reliable.
The nonparametric approach is more flexible in handling complex situations (mixed type
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Table 1: Objectives and approaches to Statistical matching.

Objectives of Approaches to statistical Matching
Statistical matching Parametric Nonparametric Mixed

MAcro yes yes no
MIcro yes yes yes

variables). The two approaches can be mixed: first a parametric model is assumed and
its parameters are estimated then a completed synthetic data set is derived through
a nonparametric micro approach. In this manner the advantages of both parametric
and nonparametric approaches are maintained: the model is parsimonious while non-
parametric techniques offer protection against model misspecification. An interesting
comparison of some mixed methods that deal with continuous X, Y and Z variables is
carried out by (Moriarity and Scheuren, 2001, 2003). A further comparison is available
in (D’Orazio et al., 2005). Table 1 provides a summary of the objectives and approaches
to SM (D’Orazio et al., 2008).

It is worth noting that in the traditional SM framework, when only A and B are
available, all the SM methods (parametric, nonparametric and mixed) that use the set of
common variables X to match A and B, implicitly assume the conditional independence
(CI) of Y and Z given X:

f (x, y, z) = f (y|x)× f (z|x)× f (x)

This assumption is particularly strong and seldom holds in practice. In order to avoid
the CI assumption the SM should incorporate some auxiliary information concerning the
relationship between Y and Z (see Chap. 3 in D’Orazio et al. 2006b). The auxiliary
information can be at micro level (a new data source in which Y and Z or X, Y and
Z are jointly observed) or at macro level (e.g. an estimate of the correlation coefficient
ρXY or an estimate of the contingency table Y ×Z, etc.) or simply consist of some logic
constraints about the relationship between Y and Z (structural zeros, etc.; for further
details see D’Orazio et al., 2006a).

An alternative approach to SM consists in evaluating the uncertainty concerning an
estimate of the parameter of interest. This uncertainty is due to the lack of joint in-
formation concerning Y and Z. For instance, let us consider a SM application whose
target consists in estimating the correlation matrix of the trivariate normal distribution
holding for (X,Y, Z); in the basic SM framework the available data allow to estimate all
the components of the correlation matrix with the exception of ρY Z ; in this case, due to
the properties of the correlation matrix (has to be semidefinite positive), it is possible
to conclude that:

ρXY ρXZ −
√(

1− ρ2Y X

) (
1− ρ2XZ

)
≤ ρY Z ≤ ρXY ρXZ +

√(
1− ρ2Y X

) (
1− ρ2XZ

)
The higher is the correlation between X and Y and between X and Z, the shorter
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will be the interval and consequently the lower will be the uncertainty. In practical
applications, by substituting the unknown correlation coefficient with the corresponding
estimates it is possible to derive a “range” of admissible values of the unknown ρY Z .
The topic of the uncertainty will be covered in the Section 6.

Section 2 will be discuss some practical aspects concerning the preliminary steps nec-
essary to apply SM techniques, with a particular emphasis on the choice of the marching
variables; moreover some example data will be introduced in Section 2.1. In Section 3
some approaches to SM at micro level based on nonparametric methods will be shown.
Section 4 is devoted to the mixed approaches to SM when dealing with continuous vari-
ables. Section 5 will discuss approaches to SM when dealing with data arising from
complex sample surveys from finite populations.

2 Practical steps in an application of statistical matching

Before applying SM methods in order to integrate two or more data sources some de-
cisions and preprocessing steps are required (Scanu, 2008). In practice, given two data
sources A and B the following steps are necessary:

� Choice of the target variables Y and Z, i.e. of the variables observed distinctly in
two sample surveys.

� Identification of all the common variables X shared by A and B. In this step some
harmonization procedures may be required because of different definitions and/or
classifications. Obviously, if two similar variables can not be harmonized they have
to be discarded. The common variables should not present missing values and the
observed values should be accurate (low or absent measurement error). It is worth
noting that the common variables in the two data sources should have the same
marginal/joint distribution, if A and B are representative samples of the same
population.

� Potentially all the X variables can be used as matching variables but actually, not
all them are used in the SM. Section 2.2 will provide more details concerning this
topic.

� The choice of the matching variables is strictly related to the choice concerning the
matching framework, i.e. micro or macro objective, parametric, nonparametric or
a mixed approach etc.

� Once decided the framework, a SM technique is used to match the samples.

� Finally the results of the matching, whereas possible, should be evaluated.

2.1 Example data

The next Sections will provide a series of examples of application of some SM techniques
in the R environment (R Development Core Team, 2011) by using the functions pro-
vided by the package StatMatch (D’Orazio, 2011). These examples will refer to data
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derived from the data set eusilcS contained in the package simPopulation (Alfons
and Kraft, 2011). This is an artificial data set generated from real Austrian EU-SILC
(European Union Statistics on Income and Living Conditions) survey data containing
11 725 observations on 18 variables (see eusilcS help pages for details):

> library(simPopulation) #loads pkg simPopulation

> data(eusilcS)

> str(eusilcS)

'data.frame': 11725 obs. of 18 variables:

$ db030 : int 1 1 2 3 4 4 4 5 5 5 ...

$ hsize : int 2 2 1 1 3 3 3 5 5 5 ...

$ db040 : Factor w/ 9 levels "Burgenland","Carinthia",..: 4 4 7 5 7 7 7 4 4 4 ...

$ age : int 72 66 56 67 70 46 37 41 35 9 ...

$ rb090 : Factor w/ 2 levels "male","female": 1 2 2 2 2 1 1 1 2 2 ...

$ pl030 : Factor w/ 7 levels "1","2","3","4",..: 5 5 2 5 5 3 1 1 3 NA ...

$ pb220a : Factor w/ 3 levels "AT","EU","Other": 1 1 1 1 1 1 3 1 1 NA ...

$ netIncome: num 22675 16999 19274 13319 14366 ...

$ py010n : num 0 0 19274 0 0 ...

$ py050n : num 0 0 0 0 0 ...

$ py090n : num 0 0 0 0 0 ...

$ py100n : num 22675 0 0 13319 14366 ...

$ py110n : num 0 0 0 0 0 0 0 0 0 NA ...

$ py120n : num 0 0 0 0 0 0 0 0 0 NA ...

$ py130n : num 0 16999 0 0 0 ...

$ py140n : num 0 0 0 0 0 0 0 0 0 NA ...

$ db090 : num 7.82 7.82 8.79 8.11 7.51 ...

$ rb050 : num 7.82 7.82 8.79 8.11 7.51 ...

In order to use these data to show how SM works, some manipulations are needed
to discard not relevant units (obs. with age<16, whose income and personal economic
status are missing), to categorize some variables, etc.

> # discard units with age<16

> silc.16 <- subset(eusilcS, age>15) # units

> nrow(silc.16)

[1] 9522

> #

> # categorize age

> silc.16$c.age <- cut(silc.16$age, c(16,24,49,64,100), include.lowest=T)

> #

> # truncate hsize

> aa <- as.numeric(silc.16$hsize)
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> aa[aa>6] <- 6

> silc.16$hsize6 <- factor(aa, ordered=T)

> #

> # recode personal economic status

> aa <- as.numeric(silc.16$pl030)

> aa[aa<3] <- 1

> aa[aa>1] <- 2

> silc.16$work <- factor(aa, levels=1:2, labels=c("working","not working"))

> #

> # categorize personal net income

> silc.16$c.netI <- cut(silc.16$net/1000,

+ breaks=c(-6,0,5,10,15,20,25,30,40,50,200))

In order to reproduce the basic SM framework, the data frame silc.16 is split ran-
domly in two data sets: rec.A consisting of 4 000 observations and don.B with the re-
maining 5 522 units. The two data frames rec.A and don.B share the variables X.vars;
the person’s economic status (y.var) is available only in rec.A while the net income
(z.var) is available in don.B.

> set.seed(123456)

> obs.A <- sample(nrow(silc.16), 4000, replace=F)

> X.vars <- c("hsize","hsize6","db040","age","c.age",

+ "rb090","pb220a","rb050")

> y.var <- c("pl030","work")

> z.var <- c("netIncome", "c.netI")

> rec.A <- silc.16[obs.A, c(X.vars, y.var)]

> don.B <- silc.16[-obs.A, c(X.vars, z.var)]

> #

> # determine a rough weighting

> # compute N, the est. size of pop(age>16)

> N <- round(sum(silc.16$rb050))

> N

[1] 67803

> #rescale origin weights

> rec.A$wwA <- rec.A$rb050/sum(rec.A$rb050)*N

> don.B$wwB <- don.B$rb050/sum(don.B$rb050)*N

2.2 The choice of the matching variables

In SM A and B, may share many common variables. In practice, not all the common
variables are used in SM but just the most relevant ones. The selection of the common
variables to be used in SM, usually called matching variables, should be performed
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through opportune statistical methods (descriptive, inferential, etc.) and by consulting
subject matter experts.

From a statistical point of view, the choice of the marching variables XM (XM ⊆ X)
should be carried out in a “multivariate sense” in order to identify the subset of the
XM variables connected at the same time with Y and Z (Cohen, 1991); unfortunately
this would require the availability of an auxiliary data source in which all the variables
(X,Y, Z) are observed. In the basic SM framework the data in A permit to explore
the relationship between Y and X, while the relationship between Z and X can be
investigated in the file B. Then the results of the two separate analyses have to be
combined in some manner; usually the subset of the matching variables is obtained as
XM = XY ∪ XZ , being XY the subset of the common variables that better explains
Y (XY ⊆ X), while XZ is the subset of the common variables that better explain Z
(XZ ⊆ X).

The simplest procedure to identify XY consists in fitting regression models to data
available in A. The same procedure is carried out with data in B in order to identify
the subset of the common variables XZ that better explains Z.

The following R examples provide an idea of how to proceed. In particular, in the
example data, the variable Y in A is a categorical binary variable (work), therefore a
logistic regression model is fitted in order to identify XY .

> # analyses on A

> # logistic regression

> work.glm <- glm(work~hsize+db040+age+rb090+pb220a, data=rec.A,

+ family=binomial(link = "logit"))

> summary(work.glm)

Call:

glm(formula = work ~ hsize + db040 + age + rb090 + pb220a, family = binomial(link = "logit"),

data = rec.A)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7327 -0.9511 -0.5405 0.9211 2.2492

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.105822 0.259524 -11.967 <2e-16 ***

hsize 0.010677 0.025941 0.412 0.6807

db040Carinthia -0.065318 0.229838 -0.284 0.7763

db040Lower Austria -0.207209 0.209499 -0.989 0.3226

db040Salzburg -0.028442 0.236368 -0.120 0.9042

db040Styria -0.102106 0.212338 -0.481 0.6306

db040Tyrol -0.258700 0.225449 -1.147 0.2512

db040Upper Austria -0.135302 0.210093 -0.644 0.5196
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db040Vienna -0.193611 0.214358 -0.903 0.3664

db040Vorarlberg 0.008169 0.250389 0.033 0.9740

age 0.055375 0.002434 22.750 <2e-16 ***

rb090female 0.880804 0.072125 12.212 <2e-16 ***

pb220aEU -0.237560 0.239145 -0.993 0.3205

pb220aOther 0.242078 0.141839 1.707 0.0879 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 5513.8 on 3999 degrees of freedom

Residual deviance: 4607.6 on 3986 degrees of freedom

AIC: 4635.6

Number of Fisher Scoring iterations: 3

In order to identify XY an automatic selection procedure can be used (forward, back-
ward or stepwise selection):

> # stepwise selection

> new.work.glm <- step(work.glm, trace=0)

> summary(new.work.glm)

Call:

glm(formula = work ~ age + rb090 + pb220a, family = binomial(link = "logit"),

data = rec.A)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7394 -0.9536 -0.5341 0.9137 2.1955

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.198019 0.123036 -25.993 <2e-16 ***

age 0.055118 0.002277 24.212 <2e-16 ***

rb090female 0.879327 0.072009 12.211 <2e-16 ***

pb220aEU -0.276207 0.236205 -1.169 0.2423

pb220aOther 0.244811 0.139171 1.759 0.0786 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 5513.8 on 3999 degrees of freedom

Residual deviance: 4612.5 on 3995 degrees of freedom

AIC: 4622.5

Number of Fisher Scoring iterations: 3

> # X_Y

> X.Y.glm <- c("age","rb090", "pb220a")

According to the automatic selection procedure it comes out that XY is composed by
the three variables "age", "rb090" and "pb220a".

In complex situations when a nonlinear relationship is supposed to exist, the selection
of the subset XY can be demanded to nonparametric procedures such as Classification
And Regression Trees (Breiman et al., 1984). Instead of fitting a single tree it may be
better to fit a random forest (Breiman, 2001) by using the functions available in the
package randomForest (Liaw and Wiener, 2002). This technique provides a measure
of importance for the predictors (that has to be used with caution). Alternatively
conditional inference trees (Hothorn et al., 2006) can be fitted; in this case the tree fitting
is based on hypothesis testing and by considering explicitly the association between
responses and covariates. In R these procedures are made available by the functions in
the package party (Hothorn et al., 2006).

The same analysis carried out in A should be carried out in B. In the example data,
the target variable Z in B is the netIncome (better to consider its log).

> summary(don.B$netIncome)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4373 6080 14130 14810 20810 185500

> don.B$lognetI <- log(don.B$netIncome+4373+1)

> summary(don.B$lognetI)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.2877 9.2550 9.8260 9.6520 10.1300 12.1500

> #regression

> lnetI.lm <- lm(lognetI~hsize+db040+age+rb090+pb220a, data=don.B)

> summary(lnetI.lm)

Call:

lm(formula = lognetI ~ hsize + db040 + age + rb090 + pb220a,

data = don.B)

Residuals:

Min 1Q Median 3Q Max
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-9.7620 -0.3785 0.0878 0.4253 2.2285

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.7753007 0.0551851 177.137 < 2e-16 ***

hsize -0.0596160 0.0062136 -9.594 < 2e-16 ***

db040Carinthia 0.0451692 0.0498676 0.906 0.36509

db040Lower Austria 0.0121853 0.0446170 0.273 0.78478

db040Salzburg 0.1303552 0.0520001 2.507 0.01221 *

db040Styria 0.0381493 0.0452166 0.844 0.39887

db040Tyrol 0.0701096 0.0486102 1.442 0.14928

db040Upper Austria 0.0844992 0.0446713 1.892 0.05860 .

db040Vienna 0.1364211 0.0455115 2.998 0.00273 **

db040Vorarlberg 0.0722760 0.0551028 1.312 0.18969

age 0.0060719 0.0005054 12.015 < 2e-16 ***

rb090female -0.5218040 0.0169144 -30.850 < 2e-16 ***

pb220aEU -0.0897179 0.0584009 -1.536 0.12454

pb220aOther -0.2975103 0.0353512 -8.416 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6268 on 5508 degrees of freedom

Multiple R-squared: 0.2029, Adjusted R-squared: 0.201

F-statistic: 107.9 on 13 and 5508 DF, p-value: < 2.2e-16

> # stepwise selection

> new.lnetI.lm <- step(lnetI.lm, trace=0)

> summary(new.lnetI.lm)

Call:

lm(formula = lognetI ~ hsize + db040 + age + rb090 + pb220a,

data = don.B)

Residuals:

Min 1Q Median 3Q Max

-9.7620 -0.3785 0.0878 0.4253 2.2285

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.7753007 0.0551851 177.137 < 2e-16 ***

hsize -0.0596160 0.0062136 -9.594 < 2e-16 ***

db040Carinthia 0.0451692 0.0498676 0.906 0.36509

db040Lower Austria 0.0121853 0.0446170 0.273 0.78478

db040Salzburg 0.1303552 0.0520001 2.507 0.01221 *
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db040Styria 0.0381493 0.0452166 0.844 0.39887

db040Tyrol 0.0701096 0.0486102 1.442 0.14928

db040Upper Austria 0.0844992 0.0446713 1.892 0.05860 .

db040Vienna 0.1364211 0.0455115 2.998 0.00273 **

db040Vorarlberg 0.0722760 0.0551028 1.312 0.18969

age 0.0060719 0.0005054 12.015 < 2e-16 ***

rb090female -0.5218040 0.0169144 -30.850 < 2e-16 ***

pb220aEU -0.0897179 0.0584009 -1.536 0.12454

pb220aOther -0.2975103 0.0353512 -8.416 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6268 on 5508 degrees of freedom

Multiple R-squared: 0.2029, Adjusted R-squared: 0.201

F-statistic: 107.9 on 13 and 5508 DF, p-value: < 2.2e-16

> # X_Z

> X.Z.lm <- c("hsize","db040","age","rb090", "pb220a")

This regression analysis ends with a model including all the available predictors. Then,
according to the results of the two separate analyses on the example data, if it is decided
that the matching variables are obtained as XM = XY ∪XZ , it comes out that all the
available common variables should be used in the SM application.

> # the matching variables

> union(X.Y.glm, X.Z.lm)

[1] "age" "rb090" "pb220a" "hsize" "db040"

If a smaller subset of the matching variables is necessary, then by considering XM =
XY ∩XZ , it would result a subset consisting of just three X variables:

> #the smallest subset of matching variables

> intersect(X.Y.glm, X.Z.lm)

[1] "age" "rb090" "pb220a"

The approach to SM based on the study of uncertainty offers the possibility of choosing
the matching variables in a better way: by selecting just those common variables with the
highest contribution to the reduction of the uncertainty. The function Fbwidths.by.x

in StatMatch permits to explore the reduction of uncertainty when all the variables
(X,Y, Z) are categorical. In particular, in the basic SM framework it is possible to show
that

P
(low)
j,k ≤ P (Y = j, Z = k) ≤ P (up)

j,k ,
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being

P
(low)
j,k =

∑
i

P (X = i) max {0;P (Y = j|X = i) + P (Z = k|X = i)− 1}

P
(up)
j,k =

∑
i

P (X = i) min {P (Y = j|X = i);P (Z = k|X = i)}

for j = 1, . . . , J and k = 1, . . . ,K, being J and K the categories of Y and Z respectively.

The function Fbwidths.by.x estimates
[
P

(low)
j,k , P

(up)
j,k

]
for each cell in the contingency

table Y × Z in correspondence of all the possible combinations of the X variables; then
the reduction of uncertainty is measured naively by considering the average widths of
the intervals:

d̄ =
1

J ×K

J∑
j=1

K∑
k=1

(P̂
(up)
j,k − P̂

(low)
j,k )

> xx <- xtabs(~db040+hsize6+c.age+rb090+pb220a, data=rec.A)

> xy <- xtabs(~db040+hsize6+c.age+rb090+pb220a+work, data=rec.A)

> xz <- xtabs(~db040+hsize6+c.age+rb090+pb220a+c.netI, data=don.B)

> #

> library(StatMatch) #loads StatMatch

> out.fbw <- Fbwidths.by.x(tab.x=xx, tab.xy=xy, tab.xz=xz)

> # average widhts of uncertainty bounds

> out.fbw$av.widths

n.vars av.width

|db040 1 0.10000000

|hsize6 1 0.10000000

|pb220a 1 0.10000000

|rb090 1 0.10000000

|c.age 1 0.08439346

|hsize6+rb090 2 0.10000000

|db040+rb090 2 0.10000000

|rb090+pb220a 2 0.09997147

|db040+hsize6 2 0.09985849

|hsize6+pb220a 2 0.09977896

|db040+pb220a 2 0.09970130

|c.age+pb220a 2 0.08432518

|db040+c.age 2 0.08374131

|hsize6+c.age 2 0.08282457

|c.age+rb090 2 0.07738444

|hsize6+rb090+pb220a 3 0.09918992

|db040+rb090+pb220a 3 0.09869455

|db040+hsize6+pb220a 3 0.09768879
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|db040+hsize6+rb090 3 0.09688779

|db040+c.age+pb220a 3 0.08171158

|hsize6+c.age+pb220a 3 0.08137625

|db040+hsize6+c.age 3 0.07711730

|c.age+rb090+pb220a 3 0.07642623

|hsize6+c.age+rb090 3 0.07623534

|db040+c.age+rb090 3 0.07580610

|db040+hsize6+rb090+pb220a 4 0.09232628

|hsize6+c.age+rb090+pb220a 4 0.07360024

|db040+hsize6+c.age+pb220a 4 0.07197990

|db040+c.age+rb090+pb220a 4 0.07175106

|db040+hsize6+c.age+rb090 4 0.06411282

|db040+hsize6+c.age+rb090+pb220a 5 0.05775534

The results show that there is a marked reduction of the average width when passing
from three to four common variables; the model with the matching variables "db040",
"hsize6", "c.age" and "rb090" seems a good compromise among reduction of uncer-
tainty and the necessity of not having too many matching variables. If there is the need
of having less matching variables, in this example one should consider just two variables:
"c.age" and "rb090"; in fact, the models with three matching variables do not provide
a great decrease of average uncertainty with respect to the ones with just two.

The choice of the matching variables is a crucial phase in most of the SM applications.
Choosing too many variables increases the complexity of the problem and may affect
negatively the results of SM. In particular, in the micro approach it may introduce
additional undesired variability and bias in estimating the joint (marginal) distribution
of XM and Z.

3 Nonparametric micro techniques

Nonparametric approach is very popular in SM when the objective is micro, i.e. the
creation of a synthetic data set. Most of the nonparametric micro approaches consist
in filling in the data set chosen as the recipient with the values of the variable which
is available only in the other data set, the donor one. In this approach it is important
to decide which data set plays the role of the recipient. Usually this is the data set
which should be used ad the basis for further statistical analysis; a natural choice would
appear that of using the larger ones because it would provide more accurate results.
Unfortunately, such a way of working may provide inaccurate SM results, especially
when the sizes of the two data sources are very different. The reason is quite simple,
the larger is the recipient with respect to the donor, the more times a unit in the latter
could be selected as a donor; in this manner, there is a high risk that the distribution
of the imputed variable does not reflect the original one (estimated form the donor data
set).

In the following it will be assumed that A is the recipient while B is the donor, being
nA ≤ nB (nA and nB are the sample sizes of A and B respectively). Hence the objective
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of SM will be that of filling in A with values of Z (variable available only in B).
In StatMatch the following nonparametric micro techniques are available: random

hot deck, nearest neighbor hot deck and rank hot deck (see Section 2.4 in D’Orazio et al.,
2006b; Singh et al., 1993).

3.1 Nearest neighbor distance hot deck

The nearest neighbor distance hot deck techniques is implemented in the function NND.hotdeck.
This function searches in data.don the nearest neighbor of each unit in data.rec ac-
cording to a distance computed on the matching variables XM specified with the ar-
gument match.vars. By default the Manhattan (city block) distance is considered
(dist.fun="Manhattan"). In order to reduce the computation effort due to computa-
tion of distances it is preferable to define some donation classes (argument don.class):
for a record in given imputation class it will be selected a donor in the same class (the
distances are computed only among units belonging to the same class). Usually, the
donation classes are defined according to one or more categorical common variables (ge-
ographic area, etc.). In the following, a simple example of usage of NND.hotdeck is
reported.

> group.v <- c("rb090","db040")

> X.mtc <- c("hsize","age")

> out.nnd <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

The function NND.hotdeck does not create the synthetic data set; for each unit in
A the corresponding closest donor in B is identified according to the chosen distance
function; the recipient-donor units’ identifiers are saved in the data.frame mtc.ids stored
in the output list returned by NND.hotdeck. The output list provides also the distance
between each couple recipient-donor (saved in the dist.rd component of the output
list) and the number of available donors at the minimum distance for each recipient
(component noad). Note that when there are more donors at the minimum distance
then one of them is picked up at random.

> summary(out.nnd$dist.rd) # summary distances rec-don

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 0.3278 0.0000 8.0000

> summary(out.nnd$noad) # summary available donors at min. dist.
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Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.000 2.000 2.882 4.000 16.000

> table(out.nnd$noad)

1 2 3 4 5 6 7 8 9 10 11 12 13

1288 921 638 421 275 192 113 49 39 22 11 18 4

14 16

6 3

In order to derive the synthetic data set it is necessary to run the function cre-

ate.fused:

> head(out.nnd$mtc.ids)

rec.id don.id

[1,] "401" "376"

[2,] "71" "118"

[3,] "92" "106"

[4,] "225" "253"

[5,] "364" "288"

[6,] "370" "380"

> fA.nnd.m <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

> head(fA.nnd.m) #first 6 obs.

hsize hsize6 db040 age c.age rb090 pb220a rb050

401 5 5 Burgenland 45 (24,49] male AT 4.545916

71 2 2 Burgenland 65 (64,100] male AT 6.151409

92 2 2 Burgenland 81 (64,100] male AT 6.151409

225 3 3 Burgenland 51 (49,64] male AT 5.860364

364 4 4 Burgenland 18 [16,24] male AT 6.316554

370 5 5 Burgenland 50 (49,64] male AT 4.545916

pl030 work wwA netIncome c.netI

401 1 working 10.85782 47159.21 (40,50]

71 5 not working 14.69250 21316.32 (20,25]

92 5 not working 14.69250 21667.53 (20,25]

225 1 working 13.99734 34166.20 (30,40]

364 1 working 15.08694 10228.02 (10,15]

370 1 working 10.85782 9456.25 (5,10]

As far as distances are concerned (argument dist.fun), all the distance functions
in the package proxy (Meyer and Butchta, 2011) are available. Anyway, for some
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particular distances it was decided to write specific R functions. In particular, when
dealing with continuous matching variables it is possible to use the maximum distance
(L∞ norm) implemented in maximum.dist; this function works on the true observed
values (continuous variables) or on transformed ranked values (argument rank=TRUE) as
suggested in (Kovar et al., 1988); the transformation (ranks divided by the number of
units) removes the effect of different scales and the new values are distributed in the
interval [0, 1]. The Mahalanobis distance can be computed by using mahalanobis.dist

which allows an external estimate of the covariance matrix (argument vc). When dealing
with mixed type matching variables, the Gowers’s dissimilarity (Gower, 1981) can be
computed (function gower.dist): it is an average of the distances computed on the
single variables according to different rules, depending on the type of the variable. All
the distances are scaled to range from 0 to 1, hence the overall distance cat take a value
in [0, 1]. It is worth noting that when dealing with mixed types matching variables it
is still possible to use the distance functions for continuous variables but NND.hotdeck

transforms factors into dummies (by means of the function fact2dummy).

> group.v <- c("rb090","db040")

> X.mtc <- c("hsize","age","pb220a")

> out.nnd.g <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Gower")

> summary(out.nnd.g$dist.rd) # summary distances rec-don

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.000000 0.005218 0.004329 0.148500

> fA.nnd.g <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd.g$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

By default NND.hotdeck does not pose constraints on the “usage” of donors: a record
in the donor data set can be selected many times as a donor. The multiple usage
of a donor can be avoided by resorting to a constrained hot deck (argument con-

strained=TRUE in NND.hotdeck); in such a case, a donor can be used just once and
all the donors are selected in order to minimize the overall matching distance (assuming
that nA ≤ nB). In practice, the donors are identified by solving a traveling salesper-
son problem; two alternative algorithms are available the classic one (argument con-

str.alg="lpSolve") (Berkelaar et al., 2011) and the RELAX-IV algorithm (Bertsekas
and Tseng, 1994) (argument constr.alg="relax"). This latter one is much faster but
there are some restrictions on its license.

> group.v <- c("rb090","db040")

> X.mtc <- c("hsize","age")

> out.nnd.mc <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,
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+ dist.fun="Manhattan", constrained=T,

+ constr.alg="lpSolve")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> fA.nnd.mc <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd.mc$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

The constrained matching requires a higher computational effort but preserves better
the marginal distribution of the variable imputed in the synthetic data set. Obviously
the overall matching distance tends to be greater than the one in the unconstrained case.

> # comparing marginal distribution of C.netI

> tt.0 <- prop.table(xtabs(~c.netI, data=don.B))

> tt.m <- prop.table(xtabs(~c.netI, data=fA.nnd.m))

> tt.g <- prop.table(xtabs(~c.netI, data=fA.nnd.g))

> tt.mc <- prop.table(xtabs(~c.netI, data=fA.nnd.mc))

> tt <- cbind(origin=c(tt.0), m4.unc=c(tt.m),

+ g5.unc=c(tt.g), m4.constr=c(tt.mc))

> round(tt*100, 2)

origin m4.unc g5.unc m4.constr

(-6,0] 12.89 13.18 12.38 12.78

(0,5] 9.25 9.18 9.10 9.50

(5,10] 14.03 13.80 13.85 13.95

(10,15] 17.35 17.38 17.40 17.15

(15,20] 18.60 18.68 18.95 18.65

(20,25] 13.27 12.68 12.62 13.25

(25,30] 6.61 7.00 7.50 6.53

(30,40] 5.11 5.22 4.98 5.22

(40,50] 1.32 1.25 1.52 1.38

(50,200] 1.56 1.65 1.70 1.60

> # distance wrt to the origin distr.

> 1/2*colSums(abs(tt-tt[,1]))

origin m4.unc g5.unc m4.constr

0.000000000 0.009848243 0.016385639 0.005115357

> #overall matching distances

> sum(out.nnd$dist.rd) #unconstrained

[1] 1311

> sum(out.nnd.mc$dist.rd) #constrained

[1] 2906
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3.2 Random hot deck

The function RANDwNND.hotdeck carries out the random selection of each donor from
a suitable subset of all the available donors. This subset can be formed in different
ways, e.g. by considering all the donors sharing the same characteristics of the recipient
(defined according to some XM variables, such as geographic region, etc.) or simply the
closest donors according to a particular rule. The traditional random hot deck within
imputation classes (Singh et al., 1993) is performed by simply specifying the donation
classes via the argument don.class (the classes are formed by crossing the categories
of the categorical variables being considered). For each record in the recipient data set
in a given donation class, a donor is picked up completely at random within the same
donation class.

> group.v <- c("db040","rb090")

> rnd.1 <- RANDwNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=NULL, don.class=group.v)

> fA.rnd <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnd.1$mtc.ids,

+ z.vars=c("netIncome", "c.netI"))

As for NND.hotdeck, the function RANDwNND.hotdeck does not create the synthetic
data set; the recipient-donor units’ identifiers are saved in the component mtc.ids of
the list returned in output by RANDwNND.hotdeck. The number of donors available in
each donation class are saved in the component noad.

It is worth noting that the donors can also be selected with probability proportional
to a weight (specified with the argument weight.don); an example will be provided in
Section 5.
RANDwNND.hotdeck implements various alternative methods to restrict the subset of

the potential donors. These methods are based essentially on a distance measure com-
puted on the matching variables provided via the argument match.vars. In practice,
when cut.don="k.dist" only the donors whose distance from the recipient is less
or equal to threshold k are considered (see Andridge and Little, 2010). By setting
cut.don="exact" the k (0 < k ≤ nD) closest donors are retained (nD is the number of
available donors for a given recipient). With cut.don="span" a proportion k (0 < k ≤ 1)
of the closest available donors it is considered while with cut.don="rot" only the subset
reduces to the

[√
nD
]

closest donors. Finally, when cut.don="min" only the donors at
the minimum distance from the recipient are retained.

> # random choiches of a donor among the closest k=20 wrt age

> group.v <- c("db040","rb090")

> X.mtc <- "age"

> rnd.2 <- RANDwNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan",

+ cut.don="exact", k=20)
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Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don data.frames,

if present, are recoded into dummies

> fA.knnd <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnd.2$mtc.ids,

+ z.vars=c("netIncome", "c.netI"))

When distances are computed on the matching variables, then the output of RAND-

wNND.hotdeck provides some information concerning the distances of the possible avail-
able donors for each recipient observation in the data.frame.

> head(rnd.2$sum.dist)

min max sd cut dist.rd

[1,] 0 47 11.02087 5 3

[2,] 0 49 14.54555 4 1

[3,] 0 65 19.01027 9 2

[4,] 1 41 10.09283 6 5

[5,] 1 74 19.53088 11 2

[6,] 0 42 10.16749 5 2

In particular, "min", "max" and "sd" columns report respectively the minimum, the
maximum and the standard deviation of the distances (all the available donors are
considered), while "cut" refers to the distance of the kth closest donor; "dist.rd" is
distance existing among the recipient and the randomly chosen donor.

> tt.0 <- prop.table(xtabs(~c.netI, data=don.B))

> tt.rnd <- prop.table(xtabs(~c.netI, data=fA.rnd))

> tt.knnd <- prop.table(xtabs(~c.netI, data=fA.knnd))

> tt <- cbind(origin=c(tt.0), rnd=c(tt.rnd), k.nnd=c(tt.knnd))

> round(tt*100, 2)

origin rnd k.nnd

(-6,0] 12.89 13.53 13.70

(0,5] 9.25 9.72 9.47

(5,10] 14.03 13.58 13.53

(10,15] 17.35 16.35 17.80

(15,20] 18.60 18.35 18.50

(20,25] 13.27 13.15 12.47

(25,30] 6.61 6.78 6.90

(30,40] 5.11 5.83 4.88

(40,50] 1.32 1.43 1.38

(50,200] 1.56 1.30 1.38
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> # distance wrt to the origin distr.

> 1/2*colSums(abs(tt-tt[,1]))

origin rnd k.nnd

0.00000000 0.02088473 0.01821532

When selecting a donor among those available in the subset identified by cut.don

and k it is possible to use a weighted selection by specifying a weighting variable via
weight.don argument. The aspects related to the usage of weights will be covered in
Section 5.

3.3 Rank hot deck

The rank hot deck distance method has been introduced by Singh et al. (1993). It
searches for the donor at a minimum distance from the given recipient record but, in
this case, the distance is computed on the percentage points of the empirical cumulative
distribution function of the unique (continuous) common variable XM being considered.
The empirical cumulative distribution function is estimated by:

F̂ (xk) =
1

n

n∑
i=1

I (xi ≤ xk)

being I() = 1 if xi ≤ xk and 0 otherwise. This transformation provides values uniformly
distributed in the interval [0, 1]; moreover, it can be useful when the values of XM can
not be directly compared because of measurement errors which however do not affect the
“position” of a unit in the whole distribution (D’Orazio et al., 2006b). This method is
implemented in the function rankNND.hotdeck. In the following just a simple example
of usage is reported.

> rnk.1 <- rankNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ var.rec="age", var.don="age")

> #create the synthetic data set

> fA.rnk <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnk.1$mtc.ids,

+ z.vars=c("netIncome", "c.netI"),

+ dup.x=TRUE, match.vars="age")

> head(fA.rnk)

hsize hsize6 db040 age c.age rb090 pb220a

4547 2 2 Carinthia 45 (24,49] male AT

9819 4 4 Salzburg 35 (24,49] female AT

4461 2 2 Carinthia 57 (49,64] male AT

10222 2 2 Tyrol 69 (64,100] female AT

8228 4 4 Upper Austria 25 (24,49] female AT

3361 3 3 Vienna 22 [16,24] male Other
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rb050 pl030 work wwA age.don netIncome

4547 6.863162 1 working 16.39250 45 14337.87

9819 6.089967 1 working 14.54575 35 9350.56

4461 6.863162 1 working 16.39250 58 4331.63

10222 6.857877 5 not working 16.37988 70 16343.10

8228 6.945309 4 not working 16.58871 25 13167.76

3361 8.374000 1 working 20.00110 22 11626.29

c.netI

4547 (10,15]

9819 (5,10]

4461 (0,5]

10222 (15,20]

8228 (10,15]

3361 (10,15]

The function rankNND.hotdeck allows defining some donation classes with the argu-
ment don.class; in this case the empirical cumulative distribution is estimated sepa-
rately class by class.

> rnk.2 <- rankNND.hotdeck(data.rec=rec.A, data.don=don.B, var.rec="age",

+ var.don="age", don.class="db040")

> fA.grnk <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnk.2$mtc.ids,

+ z.vars=c("netIncome", "c.netI"),

+ dup.x=TRUE, match.vars="age")

> head(fA.grnk)

hsize hsize6 db040 age c.age rb090 pb220a rb050

401 5 5 Burgenland 45 (24,49] male AT 4.545916

245 3 3 Burgenland 64 (49,64] female AT 5.860364

71 2 2 Burgenland 65 (64,100] male AT 6.151409

92 2 2 Burgenland 81 (64,100] male AT 6.151409

86 2 2 Burgenland 27 (24,49] female AT 6.151409

113 2 2 Burgenland 58 (49,64] female AT 6.151409

pl030 work wwA age.don netIncome c.netI

401 1 working 10.85782 39 15308.91 (15,20]

245 5 not working 13.99734 63 21639.69 (20,25]

71 5 not working 14.69250 64 8988.24 (5,10]

92 5 not working 14.69250 77 15648.92 (15,20]

86 2 working 14.69250 26 16607.60 (15,20]

113 1 working 14.69250 55 21745.87 (20,25]

In estimating the empirical cumulative distribution it is possible to consider the
weights of the observations (arguments weight.rec and weight.don). This topic will
be covered in Section 5.
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3.4 Using functions in StatMatch to impute missing values in a survey

All the functions in StatMatch that implement the hot deck imputation techniques
can be used to impute missing values in a single data set. In this case it is necessary to
separate the observations in two data sets: the file A plays the role of recipient and will
contain the units with missing values on the target variable while the file B is the donor
and will contain all the available donors (units with non missing values for the target
variable). In the following a simple example with the iris data.frame is reported.

> # introduce missing values in iris

> set.seed(1324)

> miss <- rbinom(150, 1, 0.30) #generates randomly missing

> iris.miss <- iris

> iris.miss$Petal.Length[miss==1] <- NA

> summary(iris.miss$Petal.L)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.1 1.6 4.3 3.8 5.1 6.9 46.0

> # separate units in two data sets

> rec <- subset(iris.miss, is.na(Petal.Length), select=-Petal.Length)

> don <- subset(iris.miss, !is.na(Petal.Length))

Once the starting data set has been split in two (recipient and donor) a nonparametric
imputation technique can be used to search for a donor for each observation in the
recipient data set. In the following example the nearest neighbor hotdeck is considered.

> # search for closest donors

> X.mtc <- c("Sepal.Length", "Sepal.Width", "Petal.Width")

> nnd <- NND.hotdeck(data.rec=rec, data.don=don,

+ match.vars=X.mtc, don.class="Species",

+ dist.fun="Manhattan")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

At this point the function create.fused is used to fill in the target variable ("Petal.Length"
in the example) in the recipient data set. Then the filled recipient and the donor one
can be concatenated to obtain the origin dataset with imputed values.

> # fills rec

> imp.rec <- create.fused(data.rec=rec, data.don=don,

+ mtc.ids=nnd$mtc.ids, z.vars="Petal.Length")

> imp.rec$imp.PL <- 1 # flag for imputed

> #
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> # re-aggregate data sets

> don$imp.PL <- 0

> imp.iris <- rbind(imp.rec, don)

> summary(imp.iris)

Sepal.Length Sepal.Width Petal.Width Species

Min. :4.300 Min. :2.000 Min. :0.100 setosa :50

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:0.300 versicolor:50

Median :5.800 Median :3.000 Median :1.300 virginica :50

Mean :5.843 Mean :3.057 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :2.500

Petal.Length imp.PL

Min. :1.100 Min. :0.0000

1st Qu.:1.500 1st Qu.:0.0000

Median :4.250 Median :0.0000

Mean :3.736 Mean :0.3067

3rd Qu.:5.100 3rd Qu.:1.0000

Max. :6.900 Max. :1.0000

> #summary stat of imputed and non imputed Petal.Length

> tapply(imp.iris$Petal.Length, imp.iris$imp.PL, summary)

$`0`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.1 1.6 4.3 3.8 5.1 6.9

$`1`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.300 1.425 4.200 3.591 5.100 6.700

4 Mixed methods

A SM mixed method consists of two steps: (1) a model is fitted and all its parameters
are estimated, then (2) a nonparametric approach is used to create the synthetic data
set. The model is more parsimonious while the nonparametric approach offers “protec-
tion” against model misspecification. The proposed mixed approaches for SM are based
essentially on predictive mean matching imputation methods (see D’Orazio et al. 2006b,
Section 2.5 and 3.6). The function mixed.mtc in StatMatch implements two similar
mixed methods that deal with variables (XM , Y, Z) following the the multivariate normal
distribution. The main difference consists in the estimation of the parameters of the two
regressions Y vs. XM and Z vs. XM . By default the parameters are estimated through
maximum likelihood (argument method="ML"); in alternative a method proposed by Mo-
riarity and Scheuren (2001, 2003) (argument method="MS") is available. D’Orazio et al.
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(2005) compared these methods in an extensive simulation study: in general ML tends
to perform better, moreover it permits to avoid some incoherencies in the estimation of
the parameters that are possible with the Moriarity and Scheuren approach.

At the end of the first step, after the estimation of the parameters of the two regression
models, the data set A is filled in with the “intermediate” values z̃a = ẑa + ea (a =
1, . . . , nA) obtained by adding a random residual term ea to the predicted values ẑa.
The same happens in B which is filled in with the values ỹb = ŷb + eb (b = 1, . . . , nB).
Finally, in the step (2) each record in A is filled in with the value of Z observed on
the donor found in B according to a constrained distance hot deck; the Mahalanobis
distance is computed by considering the intermediate and live values: couples (ya, z̃a) in
A and (ỹb, zb) in B.

Such a two steps procedure offers various advantages: it offers protection against
model misspecification and also reduces the risk of bias in the marginal distribution
of the imputed variable because the distances are computed on intermediate and truly
observed values of the target variables, Y and Z, instead of the matching variables XM .
In fact when computing the distances by considering all the matching variables, variables
with low predictive power on the target variable may influence negatively the distances.

In the following example the iris data set is used just to show how mixed.mtc works.

> # uses iris data set

> iris.A <- iris[101:150, 1:3]

> iris.B <- iris[1:100, c(1:2,4)]

> X.mtc <- c("Sepal.Length","Sepal.Width") # matching variables

> # parameters estimated using ML

> mix.1 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="ML", rho.yz=0,

+ micro=TRUE, constr.alg="lpSolve")

> mix.1$mu #estimated means

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.843333 3.057333 4.996706 1.037109

> mix.1$cor #estimated cor. matrix

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.9131794 0.8490516

Sepal.Width -0.1175698 1.0000000 -0.0992586 -0.4415012

Petal.Length 0.9131794 -0.0992586 1.0000000 0.7725288

Petal.Width 0.8490516 -0.4415012 0.7725288 1.0000000

> head(mix.1$filled.rec) # A filled in with Z

Sepal.Length Sepal.Width Petal.Length Petal.Width

101 6.3 3.3 6.0 1.0
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102 5.8 2.7 5.1 1.3

103 7.1 3.0 5.9 1.5

104 6.3 2.9 5.6 1.0

105 6.5 3.0 5.8 1.5

106 7.6 3.0 6.6 1.6

> cor(mix.1$filled.rec)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 0.4572278 0.8642247 0.5049387

Sepal.Width 0.4572278 1.0000000 0.4010446 0.1100799

Petal.Length 0.8642247 0.4010446 1.0000000 0.4052548

Petal.Width 0.5049387 0.1100799 0.4052548 1.0000000

When using mixed.mtc the synthetic data set is provided in output as the compo-
nent filled.rec of the list returned by calling it with the argument micro=TRUE. When
micro=FALSE the function mixed.mtc returns just the estimates of the parameters (para-
metric macro approach).

The function mixed.mtc by default performs mixed SM under the CI assumption
(ρY Z|XM

= 0 argument rho.yz=0). When some additional auxiliary information about
the correlation between Y and Z is available (estimates from previous surveys or form
external sources) then it can be exploited in SM by specifying a value (6= 0) for the
argument rho.yz; it represents guess for ρY Z|XM

when using the ML estimation or a
guess for ρY Z when estimating the parameters by using the Moriarity and Scheuren
method.

> # parameters estimated using ML and rho_YZ|X=0.85

> mix.2 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="ML", rho.yz=0.85,

+ micro=TRUE, constr.alg="lpSolve")

> mix.2$cor

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.9131794 0.8490516

Sepal.Width -0.1175698 1.0000000 -0.0992586 -0.4415012

Petal.Length 0.9131794 -0.0992586 1.0000000 0.9113867

Petal.Width 0.8490516 -0.4415012 0.9113867 1.0000000

> head(mix.2$filled.rec)

Sepal.Length Sepal.Width Petal.Length Petal.Width

101 6.3 3.3 6.0 1.5

102 5.8 2.7 5.1 1.3

103 7.1 3.0 5.9 1.6
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104 6.3 2.9 5.6 1.4

105 6.5 3.0 5.8 1.5

106 7.6 3.0 6.6 1.5

Special attention is required when specifying a guess for ρY Z under the Moriarity
and Scheuren estimation approach (method="MS"); in particular it may happen that
the specified value for ρY Z is not compatible with the given SM framework (remember
that the correlation matrix must be positive semidefinite). If this is the case, then the
mixed.mtc substitutes the input value rho.yz by its closest admissible value, as shown
in the following example.

> mix.3 <- mixed.mtc(data.rec=iris.A, data.don=iris.B, match.vars=X.mtc,

+ y.rec="Petal.Length", z.don="Petal.Width",

+ method="MS", rho.yz=0.75,

+ micro=TRUE, constr.alg="lpSolve")

input value for rho.yz is 0.75

low(rho.yz)= -0.1662

up(rho.yz)= 0.5565

Warning: value for rho.yz is not admissible: a new value is chosen for it

The new value for rho.yz is 0.5465

> mix.3$rho.yz

start low.lim up.lim used

0.7500 -0.1662 0.5565 0.5465

5 Statistical matching of data from complex sample surveys

The SM techniques presented in the previous Sections implicitly or explicitly assume
that the observed values in A and B are i.i.d. Unfortunately, when dealing with samples
selected from a finite population by means of complex sampling designs (with stratifica-
tion, clustering, etc.) it is difficult to maintain the i.i.d. assumption (it would mean that
the sampling design can be ignored) and the sampling design and the weights assigned
to the units (usually design weights corrected for unit nonresponse, frame errors, etc.)
have to be considered when making inferences (see Särndal et al., 1992, Section 13.6).

When matching data from complex samples surveys, two different alternatives ways
can be followed: naive approaches which essentially consist in using SM methods de-
veloped for i.i.d. samples or ad hoc approaches that explicitly take into account the
sampling design and the corresponding sampling weights. In this latter case, three dif-
ferent SM methods are available: Renssen’s approach based on weights’ calibrations
(Renssen, 1998); Rubin’s file concatenation (Rubin, 1986) and the approach based on
the empirical likelihood proposed by Wu (2004). A comparison among these approaches
can be found in D’Orazio (2010).
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5.1 Naive approaches

Most of these approaches consists in applying SM nonparametric micro methods (nearest
neighbour distance, random or rank hotdeck) without considering the design nor the
units weights. Once obtained the synthetic dataset (recipient filled in with the missing
variables) the successive statistical analyses are carried out by considering the sampling
design underlying the recipient data set and the corresponding survey weights. In the
following a simple SM example based on nearest neighbor hotdeck is reported.

> # summary info on the weights

> sum(rec.A$wwA) # estimated pop size from A

[1] 67803

> sum(don.B$wwB) # estimated pop size from B

[1] 67803

> summary(rec.A$wwA)

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.538 14.470 16.510 16.950 19.370 29.920

> summary(don.B$wwB)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.149 10.580 11.890 12.280 13.950 21.550

> # NND unconstrained hotdeck

> group.v <- c("rb090","db040")

> X.mtc <- c("hsize","age")

> out.nnd <- NND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=X.mtc, don.class=group.v,

+ dist.fun="Manhattan")

Warning: The Manhattan distance is being used

All the categorical matching variables in rec and don

data.frames, if present are recoded into dummies

> fA.nnd.m <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=out.nnd$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

> # estimating average net income

> weighted.mean(fA.nnd.m$netIncome, fA.nnd.m$wwA) # imputed in A

[1] 15190.13
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> weighted.mean(don.B$netIncome, don.B$wwB) # ref. estimate in B

[1] 15073.95

> # comparing marginal distribution of C.netI using weights

> tt.0w <- prop.table(xtabs(wwB~c.netI, data=don.B))

> tt.fw <- prop.table(xtabs(wwA~c.netI, data=fA.nnd.m))

> tt <- cbind(origin=c(tt.0w), nnd.naive=c(tt.fw))

> round(tt*100, 2)

origin nnd.naive

(-6,0] 11.95 12.91

(0,5] 9.04 8.53

(5,10] 14.10 13.94

(10,15] 17.52 17.63

(15,20] 18.97 18.68

(20,25] 13.54 12.41

(25,30] 6.75 7.10

(30,40] 5.17 5.39

(40,50] 1.33 1.49

(50,200] 1.63 1.92

> # distance wrt to the origin distr.

> 1/2*colSums(abs(tt-tt[,1]))

origin nnd.naive

0.00000000 0.02085371

As far as imputation of missing values is concerned, a way of taking into account
the sampling design can consist in forming the donation classes by using the design
variables (stratification and/or clustering variables) jointly with the most relevant com-
mon variables (Andridge and Little, 2010). Unfortunately this operation can increase
the complexity of SM or may be unfeasible because the design variables may not be
available (or partly available). In particular, when the two sample surveys have quite
different designs it is common that the design variables characterizing one survey are
not available in the other one and vice versa.

When imputing missing values in a survey, another possibility consists in using sam-
pling weights (design weights) to form the donation classes (Andridge and Little, 2010).
But again, in SM applications the problem can be slightly more complex even because
the sets of weights can be quite different from one survey to the other (usually the
available weights are the design weights corrected to compensate for unit nonresponse,
to satisfy some given constraints etc.). The same Authors (Andridge and Little, 2010)
indicate that in the imputation framework, the selection of the donors can be carried
out with probability proportional to weights associated to the donors (weighted random
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hot deck). Andridge and Little (2009) found that such a usage of the the sample weights
can give poor results.

The properties of the weighted random hot deck in the SM applications have not been
investigated, nevertheless the function RANDwNDD.hotdeck permits to select the donors
with probability proportional to weights specified via the weight.don argument.

> rnd.2 <- RANDwNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ match.vars=NULL, don.class=group.v,

+ weight.don="wwB")

> fA.wrnd <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnd.2$mtc.ids,

+ z.vars=c("netIncome","c.netI"))

> head(fA.wrnd)

hsize hsize6 db040 age c.age rb090 pb220a rb050

401 5 5 Burgenland 45 (24,49] male AT 4.545916

71 2 2 Burgenland 65 (64,100] male AT 6.151409

92 2 2 Burgenland 81 (64,100] male AT 6.151409

225 3 3 Burgenland 51 (49,64] male AT 5.860364

364 4 4 Burgenland 18 [16,24] male AT 6.316554

370 5 5 Burgenland 50 (49,64] male AT 4.545916

pl030 work wwA netIncome c.netI

401 1 working 10.85782 24069.74 (20,25]

71 5 not working 14.69250 12850.50 (10,15]

92 5 not working 14.69250 15430.68 (15,20]

225 1 working 13.99734 11346.32 (10,15]

364 1 working 15.08694 0.00 (-6,0]

370 1 working 10.85782 24069.74 (20,25]

> weighted.mean(fA.wrnd$netIncome, fA.wrnd$wwA) # imputed in A

[1] 15060

> weighted.mean(don.B$netIncome, don.B$wwB) # ref. estimate in B

[1] 15073.95

> # comparing marginal distribution of C.netI using weights

> tt.0w <- prop.table(xtabs(wwB~c.netI, data=don.B))

> tt.fw <- prop.table(xtabs(wwA~c.netI, data=fA.wrnd))

> tt <- cbind(origin=c(tt.0w), nnd.naive=c(tt.fw))

> round(tt*100, 2)

origin nnd.naive

(-6,0] 11.95 12.73
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(0,5] 9.04 8.18

(5,10] 14.10 14.20

(10,15] 17.52 18.32

(15,20] 18.97 19.20

(20,25] 13.54 12.33

(25,30] 6.75 6.95

(30,40] 5.17 4.60

(40,50] 1.33 1.76

(50,200] 1.63 1.74

> # distance wrt to the origin distr.

> 1/2*colSums(abs(tt-tt[,1]))

origin nnd.naive

0.0000000 0.0264548

Perhaps, a better usage of the units weights is achieved in the rank hot deck SM where
the the weights, wi, of the units in A and in B can be used in estimating the percentage
points of the the empirical cumulative distribution function by means of the expression:

F̂ (xk) =

∑n
i=1wiI (xi ≤ xk)∑n

i=1wi

Such a procedure can provide quite good results in terms of preservation of the
marginal distribution of the imputed variables in the synthetic data set. In the fol-
lowing it is reported an very simple example.

> rnk.w <- rankNND.hotdeck(data.rec=rec.A, data.don=don.B,

+ don.class="db040", var.rec="age",

+ var.don="age", weight.rec="wwA",

+ weight.don="wwB")

> #

> #create the synthetic data set

> fA.wrnk <- create.fused(data.rec=rec.A, data.don=don.B,

+ mtc.ids=rnk.w$mtc.ids,

+ z.vars=c("netIncome", "c.netI"),

+ dup.x=TRUE, match.vars="age")

> #

> weighted.mean(fA.wrnk$netIncome, fA.wrnk$wwA) # imputed in A

[1] 15047.15

> weighted.mean(don.B$netIncome, don.B$wwB) # ref. estimate in B

[1] 15073.95
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> # comparing marginal distribution of C.netI using weights

> tt.0w <- prop.table(xtabs(wwB~c.netI, data=don.B))

> tt.fw <- prop.table(xtabs(wwA~c.netI, data=fA.wrnk))

> tt <- cbind(origin=c(tt.0w), nnd.naive=c(tt.fw))

> round(tt*100, 2)

origin nnd.naive

(-6,0] 11.95 12.40

(0,5] 9.04 9.23

(5,10] 14.10 13.21

(10,15] 17.52 16.93

(15,20] 18.97 20.33

(20,25] 13.54 13.49

(25,30] 6.75 6.40

(30,40] 5.17 4.87

(40,50] 1.33 1.29

(50,200] 1.63 1.85

> # distance wrt to the origin distr.

> 1/2*colSums(abs(tt-tt[,1]))

origin nnd.naive

0.00000000 0.02225742

5.2 Renssen’s statistical matching through weights calibrations

This approach consists in a series of calibration steps of the survey weights of A and B
in order to achieve consistency between estimates (mainly totals) computed separately
from them. Calibration is a technique very common in sample surveys for deriving new
survey weights, as close as possible to the starting ones, which fulfill a series of constraints
concerning totals for a set of auxiliary variables (for further details on calibration see
Särndal, 2005). The Renssen’s approach works well when dealing with categorical vari-
ables or in a mixed case in which the number of continuous variables is very limited. In
the following it will be assumed that all the variables (XM , Y, Z) are categorical. The
procedure and the functions developed in StatMatch permit to handle one or more
continuous variables (better just one) in the subset of the matching variables XM , while
Y and Z are assumed to be categorical (when this is not the case it is necessary to
categorize the continuous variables).

The first step in the Renssen’s procedure consists in calibrating weights in A and in
B such that the new weights when applied to the set of the matching variables XM

allow to reproduce some known (or estimated) population totals. In StatMatch the
harmonization step can be performed by using harmonize.x. This function performs
weights calibration (or post-stratification) by means of functions available in the R pack-
age survey (Lumley, 2011). When the population totals are already known then they
have to be passed to harmonize.x via the argument x.tot; on the contrary, when they
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are unknown (x.tot=NULL) they are estimated by a weighted average of the totals esti-
mated on the two surveys before the harmonization step:

t̃XM
= λt̂

(A)
XM

+ (1− λ) t̂
(B)
XM

being λ = nA/(nA + nB) (nA and nB are the sample sizes of A and B respectively)
(Korn and Graubard, 1999, pp. 281–284).

The following example shows how to harmonize the joint distribution of the gender
and classes of age with the data from the previous example, assuming that the joint
distribution of age and gender is not known.

> tt.A <- xtabs(wwA~rb090+c.age, data=rec.A)

> tt.B <- xtabs(wwB~rb090+c.age, data=don.B)

> (prop.table(tt.A)-prop.table(tt.B))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.3661141 1.0995148 -0.9456418 -0.6383618

female 0.0891681 -0.4970682 1.0772175 -0.5509426

> library(survey) # loads survey

> # creates svydesign objects

> svy.rec.A <- svydesign(~1, weights=~wwA, data=rec.A)

> svy.don.B <- svydesign(~1, weights=~wwB, data=don.B)

> #

> # harmonizes wrt to joint distr. of gender vs. c.age

> out.hz <- harmonize.x(svy.A=svy.rec.A, svy.B=svy.don.B,

+ form.x=~c.age:rb090-1)

> #

> summary(out.hz$weights.A) # new calibrated weights for A

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.647 14.390 16.570 16.950 19.030 31.470

> summary(out.hz$weights.B) # new calibrated weights for B

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.279 10.540 11.840 12.280 13.910 22.400

> tt.A <- xtabs(out.hz$weights.A~rb090+c.age, data=rec.A)

> tt.B <- xtabs(out.hz$weights.B~rb090+c.age, data=don.B)

> (prop.table(tt.A)-prop.table(tt.B))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.000000e+00 -2.775558e-15 -1.387779e-15 -1.387779e-15

female 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
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After the harmonization, the second step in the Renssen’s procedure consists in esti-
mating the two way contingency table Y × Z. In absence of auxiliary information it is
estimated under the CI assumption by means of:

P̂ (CIA) (Y,Z) = P̂ (A) (Y |XM ) P̂ (B) (Z|XM ) P̂ (XM )

In practice, P̂ (A) (Y |XM ) is computed from A; P̂ (B) (Z|XM ) is computed from data in
B while P (XM ) can be estimated indifferently from A or B (the data set are harmonized
with respect to the XM distribution). In StatMatch an estimate of the table Y × Z
under the CIA is provided by the function comb.samples.

> # estimating c.pl030 vs. c.netI under the CI assumption

> out <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=NULL, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1)

> #

> addmargins(t(out$yz.CIA)) # table estimated under the CIA

working not working Sum

(-6,0] 4203.9273 3929.4698 8133.3971

(0,5] 3212.7539 2941.5722 6154.3261

(5,10] 4436.4472 5108.0075 9544.4547

(10,15] 5648.5383 6199.2373 11847.7756

(15,20] 7129.6193 5716.1572 12845.7765

(20,25] 5391.3879 3802.7509 9194.1388

(25,30] 2877.6585 1696.1470 4573.8055

(30,40] 2249.5066 1256.9719 3506.4786

(40,50] 555.7829 345.2169 900.9998

(50,200] 688.8992 412.9481 1101.8473

Sum 36394.5210 31408.4790 67803.0000

When some auxiliary information represented by third data source C, containing all
the variables (XM , Y, Z) or just (Y, Z), is available Renssen’s approach permits to exploit
it in estimating Y × Z. Two alternative methods are available: (a) incomplete two way
stratification; and (b) synthetic two way stratification. In practice, both the methods es-
timate Y ×Z from C after some further calibration steps (for further details see Renssen,
1998). The function comb.samples implements both the methods. In practice, the syn-
thetic two way stratification (argument estimation="synthetic") can be applied only
when C contains all the variables of interest (XM , Y, Z); on the contrary, when the data
source C observes just Y and Z, only the incomplete two way stratification method can
be applied (argument estimation="incomplete"). In the following a simple example
is reported based on the artificial EU-SILC data introduced in Section 2.1; here a small
sample C (nC = 200) with all the variables of interest (XM , Y, Z) is artificially created.

> # generating artificial sample C

> set.seed(43210)

32



> obs.C <- sample(nrow(silc.16), 200, replace=F)

> #

> X.vars <- c("hsize","hsize6","db040","age","c.age",

+ "rb090","pb220a", "rb050")

> y.var <- c("pl030","work")

> z.var <- c("netIncome","c.netI")

> #

> aux.C <- silc.16[obs.C, c(X.vars, y.var, z.var)]

> aux.C$wwC <- aux.C$rb050/sum(aux.C$rb050)*round(sum(silc.16$rb050)) # rough w

> svy.aux.C <- svydesign(~1, weights=~wwC, data=aux.C)

> #

> # incomplete two-way estimation

> out.inc <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=svy.aux.C, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1, estimation="incomplete")

> #

> addmargins(t(out.inc$yz.est))

working not working Sum

(-6,0] 318.3646 7815.0325 8133.3971

(0,5] 3155.6684 2998.6577 6154.3261

(5,10] 3960.8064 5583.6483 9544.4547

(10,15] 4736.0014 7111.7742 11847.7756

(15,20] 9302.3226 3543.4539 12845.7765

(20,25] 6318.9931 2875.1457 9194.1388

(25,30] 4011.6435 562.1620 4573.8055

(30,40] 2587.8739 918.6047 3506.4786

(40,50] 900.9998 0.0000 900.9998

(50,200] 1101.8473 0.0000 1101.8473

Sum 36394.5210 31408.4790 67803.0000

> new.wwC <- weights(out.inc$cal.C) #new cal. weights for C

> #

> # marginal distributions of work

> m.work.cA <- xtabs(out.hz$weights.A~work, data=rec.A)

> m.work.cC <- xtabs(new.wwC~work, data=aux.C)

> m.work.cA-m.work.cC

work

working not working

0 0

> #

> # marginal distributions of c.netI

> m.cnetI.cB <- xtabs(out.hz$weights.B~c.netI, data=don.B)
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> m.cnetI.cC <- xtabs(new.wwC~c.netI, data=aux.C)

> m.cnetI.cB-m.cnetI.cC

c.netI

(-6,0] (0,5] (5,10] (10,15]

7.275958e-12 -9.094947e-13 0.000000e+00 0.000000e+00

(15,20] (20,25] (25,30] (30,40]

0.000000e+00 0.000000e+00 9.094947e-13 -4.547474e-13

(40,50] (50,200]

1.136868e-13 2.273737e-13

> # joint distribution of the matching variables

> tt.A <- xtabs(out.hz$weights.A~rb090+c.age, data=rec.A)

> tt.B <- xtabs(out.hz$weights.B~rb090+c.age, data=don.B)

> tt.C <- xtabs(new.wwC~rb090+c.age, data=aux.C)

> (prop.table(tt.A)-prop.table(tt.B))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.000000e+00 -2.775558e-15 -1.387779e-15 -1.387779e-15

female 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

> (prop.table(tt.A)-prop.table(tt.C))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male -3.5559464 -0.6181224 1.4472383 -0.8255670

female 0.4223229 2.1410662 -0.3271726 1.3161809

> #distance tt.A-tt.C

> 1/2*sum(abs(prop.table(tt.A)-prop.table(tt.C)))

[1] 0.05326808

The incomplete two way stratification method estimates the table Y × Z from C by
preserving the marginal distribution of Y and of Z estimated respectively from A and
from B after the initial harmonization step; on the contrary, the joint distribution of the
matching variables XM (which is the basis of the harmonization step) is not preserved.

> # synthetic two-way estimation

> out.synt <- comb.samples(svy.A=out.hz$cal.A, svy.B=out.hz$cal.B,

+ svy.C=svy.aux.C, y.lab="work", z.lab="c.netI",

+ form.x=~c.age:rb090-1, estimation="synthetic")

> #

> addmargins(t(out.synt$yz.est))
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working not working Sum

(-6,0] 351.6488 7781.7483 8133.3971

(0,5] 3610.2537 2544.0724 6154.3261

(5,10] 4052.7261 5491.7286 9544.4547

(10,15] 5384.8795 6462.8961 11847.7756

(15,20] 8542.0337 4303.7428 12845.7765

(20,25] 5971.5562 3222.5826 9194.1388

(25,30] 3781.3214 792.4840 4573.8055

(30,40] 2697.2545 809.2241 3506.4786

(40,50] 900.9998 0.0000 900.9998

(50,200] 1101.8473 0.0000 1101.8473

Sum 36394.5210 31408.4790 67803.0000

> new.wwC <- weights(out.synt$cal.C) #new cal. weights for C

> #

> # marginal distributions of work

> m.work.cA <- xtabs(out.hz$weights.A~work, data=rec.A)

> m.work.cC <- xtabs(new.wwC~work, data=aux.C)

> m.work.cA-m.work.cC

work

working not working

5.093170e-11 1.818989e-11

> # marginal distributions of c.netI

> m.cnetI.cB <- xtabs(out.hz$weights.B~c.netI, data=don.B)

> m.cnetI.cC <- xtabs(new.wwC~c.netI, data=aux.C)

> m.cnetI.cB-m.cnetI.cC

c.netI

(-6,0] (0,5] (5,10] (10,15] (15,20]

1.000444e-11 6.366463e-12 9.094947e-12 1.091394e-11 1.455192e-11

(20,25] (25,30] (30,40] (40,50] (50,200]

1.091394e-11 4.547474e-12 3.183231e-12 1.477929e-12 1.136868e-12

> # joint distribution of the matching variables

> tt.A <- xtabs(out.hz$weights.A~rb090+c.age, data=rec.A)

> tt.B <- xtabs(out.hz$weights.B~rb090+c.age, data=don.B)

> tt.C <- xtabs(new.wwC~rb090+c.age, data=aux.C)

> (prop.table(tt.A)-prop.table(tt.B))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male 0.000000e+00 -2.775558e-15 -1.387779e-15 -1.387779e-15

female 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
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> (prop.table(tt.A)-prop.table(tt.C))*100

c.age

rb090 [16,24] (24,49] (49,64] (64,100]

male -3.5960278 0.4416849 1.8174918 -0.4384661

female 0.4739651 0.0017933 -0.4987798 1.7983386

> #distance tt.A-tt.C

> 1/2*sum(abs(prop.table(tt.A)-prop.table(tt.C)))

[1] 0.04533274

6 Exploring uncertainty due to the statistical matching
framework

When the objective of SM consists in estimating a parameter (macro approach) it is
possible to tackle the problem in an alternative way consisting in the “exploration” of
the uncertainty on the model chosen for (XM , Y, Z), due to the lack of knowledge typical
of the basic SM framework (no auxiliary information is available). This approach does
not end with a unique estimate of the unknown parameter characterizing the joint p.d.f.
for (XM , Y, Z); on the contrary it identifies an interval of plausible values for it. When
dealing with categorical variables, the estimation of the intervals of plausible values for
the probabilities in the table Y × Z are provided by the Fréchet bounds:

max{0;P (Y = j) + P (Z = k)− 1} ≤ P (Y = j, Z = k) ≤ min{P (Y = j);P (Z = k)}

for j = 1, . . . , J and k = 1, . . . ,K, being J and K the categories of Y and Z respectively.
If the XM variables are introduced, by conditioning on them, it is possible to derive

the following result (D’Orazio et al., 2006a):

P
(low)
j,k ≤ P (Y = j, Z = k) ≤ P (up)

j,k

with

P
(low)
j,k =

∑
i

P (XM = i) max {0;P (Y = j|XM = i) + P (Z = k|XM = i)− 1}

P
(up)
j,k =

∑
i

P (XM = i) min {P (Y = j|XM = i);P (Z = k|XM = i)}

for j = 1, . . . , J and k = 1, . . . ,K.
In the SM basic framework, the probabilities P (Y = j|XM = i) are estimated from A,

the P (Z = k|XM = i) are estimated from B while the marginal distribution P (XM = i)
can be estimated indifferently on A or on B, assuming that both the samples, being
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representative samples of the same population, provide not significantly different esti-
mates of P (XM = i). If this is not the case, before computing the bounds it would be
preferable to harmonize the distribution of the XM variables in A and in B by using the
function harmonize.x.

In StatMatch the Fréchet bounds for P (Y = j, Z = k) (j = 1, . . . , J and k =
1, . . . ,K), conditioning or not on theXM variables, are provided by Frechet.bounds.cat.

> #comparing joint distribution of the X_M variables in A and in B

> t.xA <- xtabs(wwA~c.age+rb090, data=rec.A)

> t.xB <- xtabs(wwB~c.age+rb090, data=don.B)

> prop.table(t.xA)-prop.table(t.xB)

rb090

c.age male female

[16,24] 0.003661141 0.000891681

(24,49] 0.010995148 -0.004970682

(49,64] -0.009456418 0.010772175

(64,100] -0.006383618 -0.005509426

> #

> #computing tables needed by Frechet.bounds.cat

> t.xy <- xtabs(wwA~c.age+rb090+work, data=rec.A)

> t.xz <- xtabs(wwB~c.age+rb090+c.netI, data=don.B)

> out.fb <- Frechet.bounds.cat(tab.x=t.xA, tab.xy=t.xy, tab.xz=t.xz,

+ print.f="data.frame")

> out.fb

work c.netI low.u low.cx CIA

1 working (-6,0] 0 0.0000000000 0.062451939

2 not working (-6,0] 0 0.0130833912 0.058088772

3 working (0,5] 0 0.0000000000 0.047854165

4 not working (0,5] 0 0.0100349443 0.043450884

5 working (5,10] 0 0.0000000000 0.065841680

6 not working (5,10] 0 0.0325145796 0.074582323

7 working (10,15] 0 0.0044505872 0.083877816

8 not working (10,15] 0 0.0409858756 0.090285053

9 working (15,20] 0 0.0315476801 0.106111106

10 not working (15,20] 0 0.0330428837 0.083072522

11 working (20,25] 0 0.0271769197 0.080524320

12 not working (20,25] 0 0.0221981534 0.055298451

13 working (25,30] 0 0.0035480015 0.042818593

14 not working (25,30] 0 0.0058632580 0.024631748

15 working (30,40] 0 0.0000000000 0.033456492

16 not working (30,40] 0 0.0032094037 0.018254479

17 working (40,50] 0 0.0000000000 0.008213067
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18 not working (40,50] 0 0.0001182705 0.005004024

19 working (50,200] 0 0.0000000000 0.010221237

20 not working (50,200] 0 0.0002598896 0.005961328

up.cx up.u

1 0.10745732 0.11953297

2 0.12054071 0.11953297

3 0.08127010 0.09037855

4 0.09130505 0.09037855

5 0.10790942 0.14101622

6 0.14042400 0.14101622

7 0.13317699 0.17515499

8 0.16971228 0.17515499

9 0.15614074 0.18965562

10 0.15763595 0.18965562

11 0.11362462 0.13543995

12 0.10864585 0.13543995

13 0.06158708 0.06746229

14 0.06390234 0.06746229

15 0.04850157 0.05171910

16 0.05171097 0.05171910

17 0.01309882 0.01334022

18 0.01321709 0.01334022

19 0.01592268 0.01630008

20 0.01618257 0.01630008
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