The allelematch package for R:
A detailed introduction and tutorial

SUPPLEMENTARY DOCUMENTATION

P. Galpern!, M. Manseau'?, P. Hettinga®, K. Smith*, and P. Wilson*

! Natural Resources Institute, University of Manitoba

2Parks Canada
3Wildlife Resources Consulting Service Manitoba

4 Natural Resources DNA Profiling and Forensic Centre, Trent University

Contents

1

2

Introduction

Approach
2.1 Algorithm
2.2 Notes . .

Tutorial

3.1 Identifying unique individuals
High quality dataset
Good quality dataset
Marginal quality dataset
Low quality data set
Wildlife data set oL

1 Introduction

This document is a supplement to the publication describing the allelematch package, and is
also included as an R vignette. Here, we describe the operation of the package in more detail
and illustrate its use in a tutorial format.

The allelematch package was developed to identify unique genotype profiles in situations
where there are likely to be multiple samples of each individual present. Such conditions
arise in wildlife conservation genetics where non-invasive sampling of hair and fecal material
can produce large datasets containing an unknown number of animals. This package and the
examples that follow are directed primarily towards this audience.

Finding unique individuals appears on the surface to be a trivial exercise; a matter of sorting
genotypes into identical groups. When there is unlikely to be error in profiling and missing
data is absent, identity analysis is straightforward and software for this purpose has long been
available (Kalinowski et al., 2007; Peakall et al., 2006; Wilberg & Dreher, 2004). The task
becomes much more complicated if data sets contain missing information at some loci, or
are subject to even a modest amount of genotyping error. In these cases samples from the
same individual may differ because of allele dropouts or false alleles, or they may be identical
except for some missing information. These issues make it ambiguous which samples belong
to which individual, or how many individuals are present.

This is the niche for allelematch: applications of genotype profiling where identity must be
established in suboptimal circumstances. In conservation genetics these conditions are com-
mon. Collecting high quality samples can often be challenging, and budgets may emphasize
extensive sampling to address conservation questions rather than expanding the number of
genetic markers, or reprofiling for accuracy and the elimination of missing data.

Allelematch may also be useful in other applications of identity analysis; for example, in
wildlife forensics, where no amount of missing data or genotyping error can be tolerated. It
can be used to assist in laboratory quality control, i.e. to visually highlight genotyping errors
in data sets where the same individual is profiled multiple times for confirmation.

2 Approach

Allelematch operates by comparing rows of a multilocus genotype matrix, where rows are
samples, and columns for each locus give the names of the alleles that are present. For diploid
codominant data, there are typically two columns for each locus. It finds the similarities
between the samples using a metric which is a form of the Hamming distance (Hamming,
1950) modified to account for missing data. It then uses hierarchical clustering and a dynamic
method for identifying clusters on a dendrogram. This step is done using the Dynamic Tree
Cut package for R (Langfelder et al., 2008) which defines groups of similar samples at a
specified threshold of dissimilarity.

2.1 Algorithm
Specifically, amUnique() the workhorse function of the package performs the following oper-
ations:

1. Determine a similarity score for each pair of samples.

Let A be a matrix [a;j]mxn With elements that are allele names or missing data, where m
is the number of samples, and n is the number of columns containing the allele names.

Find the similarity score,

Nonateh N
Spq = ma;: PL 4+ mz;s?;ngp’q,Vp,q €e{l,2,...,m} (1)

where Npatch, , is the number of elements (alleles or missing data) that match in rows
apx and ag«, and Npissing, , 1 the number of elements that are missing in either row
Ap« OF TOW Qg «.

A score of s,, = 1 means that the elements of both rows a, . and a, . are identical.
Scores less than one have been penalized % for each mismatching element, and penalized
a smaller amount, %, where an element is missing in one row but not missing in the
other row.

2. Produce a symmetric dissimilarity matrix from the similarity scores, s, 4.

1 8172 .« DY Sl7m
82’1 1 PR PEEEEY S27m
Dm,m =1- : :
Sm—1,m
[Sm,1 Sm2 “°° Smm-1 1]

3. Perform agglomerative hierarchical clustering on the dissimilarity matrix, D, using the
complete linkage method.

4. Use a hybrid dynamic tree cutting method (Langfelder et al., 2008) to identify clus-
ters, where a cut height parameter d gives the maximum dissimilarity between any two
samples in a cluster. This parameter is related to the similarity score as

d=1-3

5. Find the consensus sample for each cluster, if cluster contains more than one sample at
this d. Allelematch provides two supported options' for declaring consensus samples:

(a) The consensus is the sample that is most similar to other samples in the cluster
(calculated using Equation 1)

(b) The consensus is the sample with the least amount of missing data

1Options to interpolate missing data when identifying the consensus are currently experimental

10.

11.
12.

13.

2.2

Declare as singletons samples which are the only member of their cluster.

Produce a new matrix A’ = [a] j]mlxn consisting of the consensus samples if they exist,
and the singleton samples.

IF A’ contains only singletons continue to step 9. ELSE let A = A’ and return to step
1.

Declare as unique all rows of the matrix A’.

Compare unique matrix A’ to all original samples. For each row a;,* of the unique matrix

A’, find all rows ay, 4 of the original matrix A that have a similarity score s > §, where
s is calculated in an analagous manner to Equation 1. For example,

Nmatchpyq Nmzssmgnq

5p7q: n + m ,VpE{1,2,...,m},q€{1,2,...,m,} (2)

Declare as matches rows a’, ., that have a score s, , > § for exactly one row a, .
q,* Y2 P,

Declare as multiple matches rows afz . that have a score s, , > 5 for two or more rows

Ap,x-

Declare as unclassified rows afl . that do not have a score s, , > 5.
b

Notes

One iteration of clustering and tree cutting can often be insufficient to group all samples
that are similar at the given criterion d. The algorithm therefore proceeds recursively
until no more clusters are formed (i.e. step 8).

An optimal criterion d for the data set can often be found by examining the behaviour of
multiple matches at different values of the d parameter. The tutorial in this document
explores the selection of this value in detail.

The R package described in the remainder of this document refers to the alleleMismatch
parameter m, the maximum number of alleles that can mismatch, rather than using the
d parameter. These values are related by

m = nd

Example Using m = 3 implies that samples can differ by up to 3 mismatching alleles,
or the equivalent in missing alleles (6), to be declared the same unique individual.

In practice the differences among samples will be a result of both mismatching and
missing data. Therefore in general m implies

N.o:es
missingp,q - 4
— sm

Nmismatchpyq + 9

for samples in rows a, . and a4« to be declared the same unique individual.

We work with the alleleMismatch criterion, m rather than its equivalent d for heuristic
reasons; it is more familiar to think in terms of the equivalent number of alleles that
mismatch rather than in terms of a dissimilarity metric.

e To help confirm unique identity, the match probability Py;; (Wilberg & Dreher, 2004)
is calculated given the allele frequencies in the unique set of samples. It is calculated
by default for all samples that are either unique, or match a unique sample without
allele mismatches, and assesses the probability that two samples could match at their
non-missing loci because they are siblings rather than duplicates. Optionally, it can be
calculated for all samples by assuming that mismatching alleles are missing.

e Unclassified samples are generally those where their highest similarity score s with any
other sample is slightly less than the criterion §. They therefore occupy a grey area in
which they are not different enough to be declared unique, but not similar enough to any
unique sample to be declared matches. In practice there are few unclassified samples.
If the analysis protocol requires the inclusion of these samples, a robust solution is to
reprofile them to eliminate missing data, which may be contributing to their uncertain
status.

3 Tutorial

The tutorial is organized around example data sets. The first five examples review the use of
allelematch for identifying samples representing unique individuals in data sets where these
individuals may be sampled multiple times. Additional tutorials explore laboratory quality
control applications of the package.

The tutorials provide sample code, and the graphical output from R has been inserted as
figures. However, the most important output from allelematch is in the form of HTML
documents. These illustrate in colour how samples match and mismatch. It was not possible
to include this output within this document, however they can be viewed in a web browser. If
you are reading this document on the screen it should be possible to click on the links marked
“output” to view the HTML produced in each case. Note that within one example multiple
HTML files may be generated and these are numbered sequentially (e.g. examplel_1.html,
examplel_2.html, etc.) The HTML files are included in a ZIP file with this PDF, and should
have been extracted to the same file location as the PDF you are viewing.

It is also possible to reproduce these examples directly in R. All example data sets are provided
with the package and the tutorials demonstrate how to access this data.

3.1 Identifying unique individuals

Example 1 High quality data set

This data in this example are simulated? to represent a high quality data set that might
result from a laboratory protocol where samples were run multiple times to confirm their

2Please see the publication associated with this package for details on how data were simulated.

identity. It has no genotyping error, a near-zero missing data load, and approximately
60% of the individuals have been artificially resampled more than once.

In typical usage data would be imported into R in the most convenient manner. This
may be the read.csv() function for example. In this and the following examples we load
the data supplied with the package using the data() function.

> data(amExamplel)

First, we create an amDataset object. This prepares the data set for use with other
allelematch functions. The sample number will serve as the index. Missing data has
been coded as ”-99”. For now, we’ll exclude the column knownlIndividual from our data
set.

> examplel <- amDataset(amExamplel, indexColumn = "sampleId",
+ ignoreColumn = "knownIndividual", missingCode = "-99")

The next step is to find the optimal criterion of dissimilarity to find the unique individ-
uals. A convenient way to understand this criterion is in terms of the number of alleles
that mismatch (alleleMismatch parameter; or 7 in section 2.2). This finds the number
of unique individuals at a range of values for the parameter and attempts to declare an
optimal value.

> amUniqueProfile(examplel, doPlot = TRUE)

Figure 1 shows that an optimum for this data is allowing 2 alleles to mismatch (al-
leleMismatch=2). Note how multipleMatch, the number of samples that match more
than one unique individual, is zero at the optimum. This tells us that every sample
has been declared as a unique individual or as a match to a unique individual. This is
described as a ZeroSecondMinimum profile, indicating that multipleMatch reaches zero
at a parameter setting other than alleleMismatch=0. Simulations indicate that with
this profile morphology the software can independently determine the alleleMismatch
parameter required to identify the correct number of unique genotypes (£3%).>

The final step is to use the alleleMismatch criterion to identify which samples are unique
and which samples are matches.

> uniqueExamplel <- amUnique(examplel, alleleMismatch = 2)

allelematch: assuming genotype columns are in pairs, representing 10 loci

This should be reviewed carefully before proceeding. The results can be viewed in an
HTML format as follows. Click the link to view this output in a browser.

> summary (uniqueExamplel, html = "examplel_1.html")

In this example, 12 unique genotypes were identified among 20 samples. The alleleMis-
match parameter we set at an earlier step allows up to two alleles to be different for
samples to be declared identical. Examining the HTML output, there are no cases where
mismatches occurred. The mismatching alleles would be highlighted in red. There is
one case with missing data at one locus (unique genotype 12), and pink highlighting is
used to indicate missing data. Recall how a missing allele in one genotype but not the

3Please see the publication associated with this package for more information on how this was verified.

example1_1.html

Count

12

10

alleleMismatch

Figure 1: High quality data set

allelematch

amUniqueProfile()

missingDatal.oad=0.005
allelicDiversity=6.1

—e— unique
—8— multipleMatch
& unclassified

Best guess for optimum:
alleleMismatch=2

Profile morphology:
ZeroSecondMinimum

other penalizes the score by % (by Equation 1). For this reason sample 19 (also unique
genotype 12) matches itself with a score of 1, but matches sample 20 with a score of
0.95

The same results can also be saved in a CSV spreadsheet format. This format lacks
some of the supplementary information as well as the colour formatting that can be
helpful for reviewing the results.

> summary(uniqueExamplel, csv = "examplel_1.csv")

An analysis-ready dataset can also be prepared from the CSV output. We encourage
caution with this step. Typically the output of the analysis must be reviewed in de-
tail before an analysis-ready data set can be used uncritically. For example, checking
that P, probabilities are all below a threshold value is a minimum requirement as
allelematch does not use this as a criterion.

> summary (uniqueExamplel, csv = "examplel_2.csv", uniqueOnly = TRUE)

When the multiple sampling was simulated in this data set we kept track of which
individual each sample came from in the knownIndividual column. For typical non-
invasive sampling applications, however, such information would not be known. We will
repeat the analysis using this column as the meta-data to demonstrate that allelematch
performed correctly.

> examplelchk <- amDataset(amExamplel, indexColumn = "sampleId",
+ metaDataColumn = "knownIndividual", missingCode = "-99")
> uniqueExamplelchk <- amUnique(examplelchk, alleleMismatch = 2)

allelematch: assuming genotype columns are in pairs, representing 10 loci

> summary(uniqueExamplelchk, html = "examplel_2.html")

Click to view the output in HTML. Notice how the individual identifier (a three letter
code) is consistent between the genotype declared unique and the genotypes that match
it. Also note how each unique identifier appears only once in the list of unique genotypes,
indicating that the analysis has not overestimated the number of individuals.

Example 2 Good quality data set

> data(amExample2)

The data in this example have also been simulated?, this time to reflect the qualities
of good quality data set, where genotyping error and missing data exist, but these can
be confidently handled by allelematch without manual intervention. At each locus a
random 4% of heterozygotes lost their second allele to simulate an allele dropout, and
a random 4% of samples at each locus had alleles set to missing.

Create an amDataset object. The knownlndividual column is again kept as meta-data
for instructional purposes.

> example2 <- amDataset (amExample2, indexColumn = "sampleId",
+ metaDataColumn = "knownIndividual", missingCode = "-99")

Find the optimal alleleMismatch parameter for this data set.

4Please see the publication associated with this package for details on how data were simulated.

example1_2.html

> amUniqueProfile(example2, doPlot = TRUE)

Figure 2 demonstrates a ZeroSecondMinimum profile suggesting that the identified al-
leleMismatch parameter can be applied with confidence.

Conduct the unique analysis with the recommended alleleMismatch setting, and review
the HTML output Click to view this output.

> uniqueExample2 <- amUnique(example2, alleleMismatch = 3)
allelematch: assuming genotype columns are in pairs, representing 10 loci

> summary(uniqueExample2, html = "example2_1.html")

Allelematch identified 100 unique genotypes from these 148 samples, and did so with no
errors (as illustrated by the knownIndividual identifier). There are a number of examples
of allelematch correctly matching samples despite allele mismatches (the mismatching
alleles are highlighted in red).

Py, is not given in these mismatching cases by default because partial matching samples
are not “identical”. However, if we treat mismatching alleles as if they were missing,
P, can be calculated for the non-missing loci as follows. Click to view this output.

> uniqueExample2 <- amUnique(example2, alleleMismatch = 3,
+ doPsib = "all")

allelematch: assuming genotype columns are in pairs, representing 10 loci

> summary (uniqueExample2, html = "example2_2.html")

It is important to stress again that allelematch does not identify unique genotypes using
the P;, criterion, but rather presents this value to allow the user to assess the probability
that: (1) matching samples represent siblings of unique genotypes rather than duplicate
samples of the same individual; and (2) unique genotypes represent siblings of other
unique genotypes.

Example 3 Marginal quality data set
> data(amExample3)

The data in this example have been simulated® to represent a data set of marginal
quality where the use of allelematch combined with careful manual review of the results
is required to achieve a confident assessment of the unique genotypes. At each locus a
random 4% of heterozygotes lost their second allele to simulate an allele dropout, and
a random 10% of samples at each locus had alleles set to missing.

Create an amDataset object. Once again we retain the knownIndividual for instructional

purposes.
> example3 <- amDataset (amExample3, indexColumn = "sampleId",
+ metaDataColumn = "knownIndividual", missingCode = "-99")

Find the optimal alleleMismatch parameter for this data set.

> amUniqueProfile(example3, doPlot = TRUE)

5Please see the publication associated with this package for details on how data were simulated.

example2_1.html
example2_2.html

Count

140

120

100

80

60

40

20

allelematch

amUniqueProfile()

missingDatal.oad=0.046
allelicDiversity=7.9

—e— unique
—8— multipleMatch
& unclassified

Best guess for optimum:
alleleMismatch=3

Profile morphology:
ZeroSecondMinimum

alleleMismatch

Figure 2: Good quality data set

10

Count

300

250

200

150

100

50

allelematch

amUniqueProfile()

missingDatalL.oad=0.097
allelicDiversity=8.2

—e— unique
—8— multipleMatch
& unclassified

Best guess for optimum:
alleleMismatch=6

Profile morphology:
NonZeroSecondMinimum
Caution with optimum

alleleMismatch

Figure 3: Marginal quality data set

11

Figure 3 demonstrates a NonZeroSecondMinimum profile, which is the first sign that we
are dealing with a marginal data set. When this sort of profile is produced amUnique-
Profile() can be somewhat error-prone in finding the optimal value for the alleleMis-
match parameter, and our first concern is making sure that it chose the best value. We
are looking for the second minimum in the multipleMatch variable, (the first minimum
being at alleleMismatch=0), and the function appears to have identified this correctly
at alleleMismatch=6.

Conduct the unique analysis with the recommended alleleMismatch setting, and review
the HTML output. Click to view the output.

> uniqueExample3 <- amUnique(example3, alleleMismatch = 6)
allelematch: assuming genotype columns are in pairs, representing 10 loci
> summary (uniqueExample3, html = "example3_1.html")

Two new issues appear in this example that did not exist for the previous two data sets.
The header of the HTML output informs us that there are 2 unclassified samples and 4
multipleMatch samples. We will consider these in turn.

Unclassified samples are those which just exceed the criterion of similarity to be
declared a match, but as an artifact of the dynamic tree cutting algorithm are not
sufficiently different to be declared unique (i.e. to form their own clusters). Often this
is because of missing data rather than mismatching data. If the analysis protocol does
not permit their exclusion, the most robust approach is to reprofile these samples at
their missing loci. However, this may not always be possible. Here we demonstrate an
approach to simplify the manual classification of these samples.

The task is to determine whether these unclassified samples should be declared a unique
genotype or as a match to an existing unique genotype. We use a function which
conducts a pairwise analysis, comparing all the rows in data set of the first argument
with all rows in the data set of the second argument and returning those that exceed a
similarity score (i.e. by Equation 2). In this case the first data set consists of the two
unclassified samples in the previous step, and the second all the samples declared as
unique in the previous step. These data sets can be accessed from the uniqueExample3
object produced by amUnique().

> unclassifiedExample3 <- amPairwise(uniqueExample3$unclassified,
+ uniqueExample3$unique, alleleMismatch = 7)

Note how we used the next highest criterion, alleleMismatch=7, because we want to see
if these samples are only slightly more different than existing unique genotypes. We can
then examine this in HTML format.

> summary(unclassifiedExample3, html = "example3_2.html")

Using this output we must now make a judgement call about what types of evidence
are sufficient for declaring differences among individuals. Here the rows with yellow
highlighting are the unclassified samples and the rows without highlighting are unique
genotypes. For the first unclassified sample it is mostly missing data and one mismatch
that is driving the borderline status. If the five missing loci were reprofiled, it is likely
that these two rows would match at a much lower criterion, and therefore sample 208

12

example3_1.html
example3_2.html

should be declared a match of sample 204. Thanks to the knownIndividual information
retained from when that data were simulated we can confirm this supposition. Indeed,
the two samples did come from the same individual, ACN. The second unclassified
sample achieves its borderline status with four missing loci, but it also differs from its
closest unique genotype because of three mismatching alleles. In this case it is more
likely that sample 251 is a unique genotype. Again, this conclusion is supported by the
knownlIndividual column with samples representing individuals ADA and ABN.

MultipleMatch samples are those that match more than one unique genotype. These
occur when samples do not all sort into clearly defined groups representing unique
genotypes. As the profiling (e.g. Figure 3) shows, the numbers of these uncertain
samples varies with the alleleMismatch criterion. If we set the criterion too low, unique
genotypes will not be sufficiently different and samples will appear to match multiple
unique individuals. If we set a high criterion it might not matter as long as unique
genotypes are well differentiated (e.g. Figure 1; alleleMismatch=3 to alleleMismatch="7).
However in cases where there is low allelic diversity and heterozygosity in the data
set there could be insufficient information to distinguish unique genotypes when the
criterion is set too high, and once again unique genotypes may be improperly determined
resulting in samples that will match multiple unique genotypes.

We could examine the earlier output from the unique analysis to resolve these samples
(the questionable genotypes are flagged CHECK_UNIQUE and the samples that cause
this are flagged MULTIPLE_MATCH). However it is simpler to again use a pairwise
approach to bring together just the relevant samples. Here we compare the four multi-
pleMatch samples against the unique genotypes. The criterion is not changed this time
from the original unique analysis.

> multipleMatchExample3 <- amPairwise(uniqueExample3$multipleMatch,
+ uniqueExample3$unique, alleleMismatch = 6)
> summary(multipleMatchExample3, html = "example3_3.html")

Examining the HTML output, sample 112 (yellow highlighting) matches two unique
genotypes (unhighlighted). Sample 110 is very likely the same unique genotype as 112
because it differs mostly because of missing data, while sample 260 differs by both four
mismatching alleles and missing data. In this case sample 112 can be declared a match
of sample 110 and a false match of sample 260. Using the same argumentation sample
162 is likely a match of 161, and sample 218 a match of 213. This has resolved three of
the four multipleMatch cases.

Sample 183 differs from two unique genotypes (samples 182 and 181) chiefly because
of missing data. In this case, we should consider two unique genotype rows to be the
same as the multipleMatch sample; we could think of sample 183 as an intermediate or
“missing link” between two incorrectly desginated unique genotypes. As a result we must
remove one of the unique genotypes. Because it has the least amount of missing data,
let’s declare sample 181 the unique genotype, and sample 183 and 182 matches of this
unique genotype. Once again, we turn to the knownIndividual column for confirmation
that we made the correct decisions for this simulated data. Indeed the correct decision
was to reduce the total number of unique genotypes by one (individual ACF appears in
two unique genotypes).

13

example3_3.html

Reviewing the unclassified samples added sample 251 to the unique genotype list, and
reviewing the multipleMatch samples removed sample 183 from the unique genotype
list. Finally, we produce a CSV file of the original unique analysis and use spreadsheet
software to make the necessary changes in classification.

> summary (uniqueExample3, csv = "example3_1.csv")
Example 4 Low quality data set
> data(amExample4)

For this example we have simulated® a low quality data set where uncertainty created
by genotyping error and missing data, combined with a lack of information in the form
of allelic diversity across loci will result in a low confidence assessment of the unique
genotypes. At each locus a random 6% of heterozygotes lost their second allele to
simulate an allele dropout, and a random 20% of samples at each locus had alleles set
to missing.

Create an amDataset object. Again we retain the knownlIndividual for instructional

reasons.
> example4 <- amDataset(amExample4, indexColumn = "sampleId",
+ metaDataColumn = "knownIndividual", missingCode = "-99")

Find the optimal alleleMismatch parameter for this data set.

> amUniqueProfile(example4, doPlot = TRUE)

Figure 4 demonstrates a NoSecondMinimum profile, which is a sign that allelematch
cannot make a confident assessment of the unique genotypes within the range of the
alleleMismatch criterion examined (by default this is 0% to 40% of allele columns mis-
matching). We can also, therefore, disregard the optimal alleleMismatch criterion.

For illustration let’s see what would happen if we used this criterion uncritically and
proceeded with analysis.

> uniqueExample4 <- amUnique(example4, alleleMismatch = 1)
allelematch: assuming genotype columns are in pairs, representing 10 loci

> summary (uniqueExample4, html = "example4_1.html")

Thanks to the knownIndividual column we find in the output that at this low criterion
virtually all samples are declared unique incorrectly.

We know from our simulation that there should be exactly 100 unique genotypes in this
data set. In practice, of course, this would seldom be known. But it may be possible
to have a ballpark estimate for the number of unique genotypes. Let’s set our ballpark
estimate at 100, and look at Figure 4 to find what setting of alleleMismatch we would
need to return approximately 100 samples. This appears to be alleleMismatch=6.

> uniqueExampledballpark <- amUnique(exampled4, alleleMismatch = 6)

allelematch: assuming genotype columns are in pairs, representing 10 loci

5Please see the publication associated with this package for details on how data were simulated.

14

example4_1.html

Count

300

250

200

150

100

50

alleleMismatch

Figure 4: Low quality data set

15

allelematch

amUniqueProfile()

missingDatalL.oad=0.199
allelicDiversity=4.8

—e— unique
—8— multipleMatch

--&- unclassified

Best guess for optimum:
alleleMismatch=1

Profile morphology:
NoSecondMinimum
Caution with optimum

> summary (uniqueExample4ballpark, html = "example4_2.html")

There are 99 individuals in this output, but from the knownlIndividual column we can
see that there are a number of individuals that have been declared unique genotypes
more than once, and others that should have been declared unique have been overlooked.
Given uncertainty and the absence of information in the data set, allelematch is unable
to identify the unique genotypes with confidence. Arguably, a human tasked with the
same job would face the same challenge.

In some analysis protocols, however, a high confidence assessment of all the unique
genotypes may not be required. For example, a subsample of the unique genotypes in a
population may be needed for a multi-population analysis. One approach is simply to
remove samples with more than a threshold amount of missing data in the hope that
this reduces ambiguity in the data set. Another approach is to set a high alleleMismatch
criterion. For example:

> uniqueExampled4high <- amUnique(example4, alleleMismatch = 8)
allelematch: assuming genotype columns are in pairs, representing 10 loci

> summary (uniqueExample4high, html = "example4_3.html")

Looking at the knownlIndividual column for the unique genotypes in the output we can
see we have produced a set of truly unique genotypes using this very high alleleMismatch
criterion, although these will be biased towards individuals who are unrelated.

Example 5 Wildlife data set

> data(amExampleb)

In this final example we use real data from the non-invasive sampling of a wildlife
population. The data have been anonymized by changing sampling details. A single
column giving the gender is also available and we show how this can be used as an extra
locus. Missing data is also more common at some loci than at others, with a total load
of about 10%.

First we create the amDataset object, using the samplingData column as meta-data.
Note that we have previously concatenated several sampling data columns into one
because allelematch is limited to only one meta-data column and we require this in-
formation for downstream analyses. (Concatenation of the raw data set could be done
using the paste() function, for example.) Also note how the index column, sampleld
can contain any valid ASCII character, and is not limited to numerals. Allele columns
are also not limited to numerals, as is the case with the gender column.

> head(levels (amExample5$samplingData))

[1] "SiouxLookout-Feb-2004" "SiouxLookout-Feb-2005"
[3] "SiouxLookout-Jan-2004" "SiouxLookout-Jan-2005"
[5] "SiouxLookout-Jan-2006" "SiouxLookout-Jan-2007"

> head(levels(amExample5$samplelId))

[1] "1001.0N.CA" "1002.0N.CA" "1003.0N.CA" "1004.0N.CA"
[5] "1005.0N.CA" "1006.0N.CA"

16

example4_2.html
example4_3.html

> head(levels (amExample5$gender))

[1] ll_99|l IIFII IIMII
> exampleb <- amDataset(amExample5, indexColumn = "sampleId",
+ metaDataColumn = "samplingData", missingCode = "-99")

Allelematch operates largely without reference to loci, instead working by matching
elements of corresponding row vectors. Locus information is only required for the sibling
P(ID) calculation. In previous examples we have not specified which allele columns were
associated with each locus because there were an even number of columns. Allelematch
correctly assumed that it was reading codominant diploid data, and therefore that
columns were paired for each locus.

In this data set we have one unpaired column gender and ten additional loci in paired
columns.

> names (amExampleb)

[1] "sampleId" "samplingData" "gender" "LOC1la"
[5] "LOC1ib" "LOC2a" "LOC2b" "LOC3a"
[9] "LOC3b" "LOC4a" "LOC4b" "LOCba"
[13] "LOC5b" "LOC6a" "LOCéb" "LOC7a"
[17] "LOC7b" "LOC8a" "LOC8b" "LOC9a"
[21] "LOC9b" "LOC10a" "LOC10b"

We can create a mapping vector to specify how the allele columns map onto loci. This
vector should be the same length as the number of allele columns, and each element
should give an arbitrary name or number for the locus it represents.

> examplebmap <- c("gender", "LOC1", "LOC1", "LOC2",

+ "LOC2", "LOC3", "LOC3", "LOC4", "LOC4", "LOCS",
+ IILOCSII s IILOCGII s IILOCGII s lILOC?Il s IILOC7II s IILDCSII s
+ "LOC8", "LOCY", "LOCS", "LOC10", "LOC10")

An equivalent and much more compact way of doing this is as follows.
> examplebmap <- c(1, rep(2:11, each = 2))

Next we find the optimal alleleMismatch parameter for this data set. We specify the
locus mapping using the multilocusMap parameter.

> amUniqueProfile(example5, multilocusMap = examplebmap,
+ doPlot = TRUE)

Figure 5 demonstrates a NonZeroSecondMinimum profile. We note that the optimal
criterion has been correctly determined from the profile at alleleMismatch=3 because
this value is the second minimum. The profile morphology, low allelic diversity and high
missing data load suggest immediately that we are dealing with a data set of marginal
quality and should be prepared to take extra steps to classify some unclassified samples,
and review the classifications of unique genotypes that have multipleMatch samples.

Now we run the unique analysis using the recommended alleleMismatch setting and
produce HTML output.

17

Count

250

200

150

100

50

allelematch

amUniqueProfile()

missingDatal.oad=0.095
allelicDiversity=6.1

—e— unique
—8— multipleMatch
& unclassified

alleleMismatch

Figure 5: Wildlife data set

18

Best guess for optimum:
alleleMismatch=3

Profile morphology:
NonZeroSecondMinimum
Caution with optimum

> uniqueExample5 <- amUnique(example5, multilocusMap = examplebmap,
+ alleleMismatch = 3)
> summary (uniqueExample5, html = "example5_1.html")

Looking at the output we find three unclassified samples and 11 multipleMatch samples.

We can review the unclassified samples by using the next highest alleleMismatch setting.
Using this output we can decide whether to classify these as unique genotypes or matches
to existing unique genotypes.

> unclassifiedExample5 <- amPairwise(uniqueExample5$unclassified,

+ uniqueExampleb$unique, alleleMismatch = 4)
> summary(unclassifiedExample5, html = "example5_2.html")

Next, we can review the multipleMatch samples at the original alleleMismatch setting.
This output can help us determine if the CHECK_UNIQUE samples should remain as
unique genotypes, or be reclassified as matches to a unique genotype.

> multipleMatchExample5 <- amPairwise(uniqueExample5$multipleMatch,
+ uniqueExample5$unique, alleleMismatch = 3)
> summary (multipleMatchExample5, html = "example5_3.html")

Finally, if we prefer to use our favourite spreadsheet software rather than R, we can
create a csv version of the original unique analysis, and use this to manually reclassify
samples as required as well as prepare the data set for subsequent analyses.

> summary (uniqueExample5, csv = "exampleb5_1.csv")

References

Hamming RW (1950) Error detecting and error correcting codes. Bell System Technical Jour-
nal, 29, 147-160.

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS
accommodates genotyping error increases success in paternity assignment. Molecular Ecol-
ogy, 16, 1099-1106.

Langfelder P, Zhang B, Horvath S (2008) Defining clusters from a hierarchical cluster tree:
the Dynamic Tree Cut package for R. Bioinformatics, 24, 719.

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic
software for teaching and research. Molecular Ecology Notes, 6, 288-295.

Wilberg MJ, Dreher BP (2004) GENECAP: a program for analysis of multilocus genotype
data for non-invasive sampling and capture-recapture population estimation. Molecular
Ecology Notes, 4, 783-785.

19

example5_1.html
example5_2.html
example5_3.html

