
package: amba 0.3.1

Additive Models for Business
Applications

Charlotte Maia

October 27, 2011

This vignetted partially introduces the amba package, an R package for using additive models
in business with an emphasis on functional estimates and missing values. The current package
is not only incomplete, it’s in a transitional state. There were some serious flaws in the original
design and the current implementation is halfway through the process of correcting those flaws.
The sections in this vignette are essentially from the previous version, updated slightly. A
completely new vignette is planned for the next revision.

Implementation Notes

Note that the changes to the package have introduced some series problems. These should
be fixed in the next future.

When fitting linear models, or more generally additive models, one tries to estimate“effects”,
that is, how some change in some explanatory variable influences the expected value of
some response. In the earlier versions of this package, those effects were captured by “term”
objects, environment-based objects following a class hierarchy. In the current version, term
object have been replaced by “contribution” objects, which are function-based objects.

Consistent with the previous versions, contributions can be linear or smooth, and linear
terms can be pure linear, categorical or polynomial.

One feature that’s different here, from other’s implementations, is that linear contributions
may contain multiple parameters each. Another feature that’s different, is that there’s no
overall intercept, and as a general rule, each contribution contains it’s own intercept.

The top level algorithm, is designed to be indifferent to the class of contribution, and
computes partial residuals in such a way that the models can produce good estimates even
when there’s a large amount of missing data.

The current version supports two kinds of backfitting. Firstly, a standard form (except for
the missing value allowance). Secondly, a preferential form, which tries to capture as much
variation as possible in the first term, then as much as possible in the second term and so
on.

This has implications on how we interpret the model, we can interpret the first term as the
effect of say x on our response. We interpret the second term as the effect (after accounting
for x) on the response. The third after accounting for the first two and so on.

Standard may fail to converge, hence preferential is the default.

Maia, C. amba 0.3.1 2

Backfitting with Missing Explanatory Values

The author finds the idea of throwing away entire observations when one or two values are
missing, somewhat barbaric. Here we present a simple solution (which is a natural extension
term objects).

One way to think of residuals, is as some vector of values. If we start with the response
values and subtract the overall mean, we get values with relatively high variance. If we
then subtract the fitted values for the first term, the variance decreases. If we repeat for
each term, the variance gradually decreases, until we are left with values with relatively low
variance. In the ideal case, the residuals would have zero variance.

If we apply certain special conditions, then it is possible to only subtract a fitted value,
where the corresponding explanatory value is valid (i.e. not missing). Where it is not valid,
we just skip that subtraction operation (i.e. for that particular observation, the variance
is not reduced as much). For this to work, each explanatory variable’s partial residuals for
each fit (not just the final fit) must be zero-centered. For smoothers this isn’t a big issue,
however conventional linear terms often do not satisfy this zero-centered condition. Noting
the centering condition applies to partial residuals in relation to an explanatory variable (not
in relation to a parameter) and each explanatory may have multiple parameters associated
with it. For our linear terms to satisfy it, we require extra parameters. Categorical terms
require one parameter for each level, and polynomial terms, their own intercepts.

This produces overall residuals. We can produce partial residuals by adding a term’s fitted
values. If that particular term has missing values then the corresponding partial residuals
will be invalid. However we still get valid partial residuals where other terms have missing
values.

Note that we still require valid responses. Plus there are some issues with interactions which
are still being explored. For implementation purposes we regard a numeric value as invalid
if it is one of {NA, NaN, Inf, -Inf} and a factor as invalid if it is NA.

We could write standard residuals for an additive model as:

ri = yi − η̂i

= yi −

(
θ̂ +

∑
∀t

f̂[t][i]

)
Where

yi is the ith response value.

θ̂ is the overall intercept.

η̂i is the ith overall fitted value.

ri is the ith overall residual.

∀t means that we will sum over all terms.

f̂[t][i] is the ith fitted value for term t.

Standard partial residuals are achieved by merely by either excluding a particular term, or
by adding a term’s fitted values to the residuals above:

r∗[t∗][i] = ri + f̂[t∗][i]

Where

t∗ is a term, for which we are computing partial residuals.

Maia, C. amba 0.3.1 3

r∗[t∗][i] is the ith partial residual for term t.

Achieving our overall residuals is trivial, we just modify the summation condition so that
we only include valid values. Here we are making an assumption that invalid explanatory
value results in an invalid fitted value.

ri = yi −

θ̂ +
∑

∀t;̂f[t][i]∈V

f̂[t][i]

Where V indicates a valid number as described above. We achieve partial residuals using
the same formula for standard partial residuals.

Example

Here we are going to use a made up dataset to demonstrate some of the things discussed
so far. This dataset is pretty bad, and may be replaced in future versions of this package.
The examples here a purely to demonstrate how to use the package, they are not intended
to be “good” models. First we need load the packages and the data.

R> #may be changed...
R> d = read_package_data ("amba", "sample.csv")
R> d = as.data.frame (d)
R> attach (d)

Here d represents a data.frame. A preview of the data.frame shows that it’s a bit messy.

R> d [1:10,]

g1 g2 x1 x2 x3 x4 y
1 A A NA NA NA NA 109.4480
2 B C NA -8.2178 3.6634 NA 1.3881
3 A <NA> -9.0099 0.0990 9.0099 NA 18.6786
4 A B NA NA -4.6535 NA -6.5811
5 B D NA 3.2673 -3.2673 4.8515 117.2306
6 A B NA -5.6436 -3.6634 6.2376 -50.2027
7 <NA> B NA -5.4455 NA NA -45.0123
8 B E NA -7.2277 1.6832 NA 96.0798
9 B F 3.4653 3.8614 NA 7.0297 78.0201
10 B B NA NA -8.6139 -7.8218 37.8071

The last part of the preview output is information on the number of valid realisations.
Note that there are only two complete realisations. We are only going to use four of the
explanatories, so now we have five complete realisations.

R> d [1:10,c (1:3, 6)]

g1 g2 x1 x4
1 A A NA NA
2 B C NA NA
3 A <NA> -9.0099 NA
4 A B NA NA
5 B D NA 4.8515
6 A B NA 6.2376
7 <NA> B NA NA
8 B E NA NA

Maia, C. amba 0.3.1 4

9 B F 3.4653 7.0297
10 B B NA -7.8218

We create terms using constructors, re-iterating the earlier point, in general there is one
term to one variable.

R> t1 = categorical (g1)
R> t2 = categorical (g2)
R> t3 = linear (x1)
R> t4 = linear (x4)

We can fit a term separately either by specifying the response as the second argument in the
constructor, or by using the fit command. It is not necessary to do an explicit assignment.
Terms are environments and the fit command will adjust the estimate object within the
term. Functions summary and plot act as expected, except that the summary output is
currently a mess and that a response (or partial residuals) are often required as an argument.

R> fit (t1, y)
R> summary (t1, y)

categorical (g1)
parameter estimate

1 A 0
2 B 0
pcd: NA

R> plot (t1)

Maia, C. amba 0.3.1 5

A B

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

categorical (g1)

g1

● ●

R> plot (t1, y)

Maia, C. amba 0.3.1 6

A B

−
50

0
50

10
0

15
0

20
0

25
0

categorical (g1)

g1

y ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

R> plot (t1, y, index=TRUE)

Maia, C. amba 0.3.1 7

A B

−
50

0
50

10
0

15
0

20
0

25
0

categorical (g1)

g1

y 1

2

3

4

5

6

8

9

10

12

14
15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31
32

35
36 38

39

40

41

43

44
45

46

47

48
49

50

51

52

53

56

57

59

60

61

62

63

65

66

68

69
70

71

73
7475

76

7778

80
8183

86
87

88

89
9091

92

93

95
97

9899

100

101

102

● ●

We can create a MMBA model, using the mmba function. Here the response is fit onto each
term, ignoring the other terms. However, first we need to create a termlist object. Noting
we can do both in one step if we want. It is also possible to plot the termlist object using
the pairs function. We get something based on R’s standard pairs plot, the main difference
is that categorical variables are jittered.

R> ts = t1 + t2 + t3 + t4
R> m = mmba (y, ts)

R> plot (m)

Maia, C. amba 0.3.1 8

A B

−
50

0
50

15
0

25
0

categorical (g1)

g1

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●
●●

●
●

●

●
● ●

●

●

●
●

●●

●

●

●

● ●

A B C D E F

−
50

0
50

15
0

25
0

categorical (g2)

g2
m

$y ●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●
● ●

●
●

●
●

●

●
● ●

●●

●

●

●● ● ● ● ● ●

−5 0 5 10

−
50

0
50

15
0

25
0

linear (x1)

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

−5 0 5 10

−
50

0
50

15
0

25
0

linear (x4)
m

$y ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●● ●

●●

●

●●

●

R> pairs (ts)

Maia, C. amba 0.3.1 9

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

2.
5

g1

1 2 3 4 5 6

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−5 0 5 10

0.
5

1.
0

1.
5

2.
0

2.
5

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

g2

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

● 1
2

3
4

5
6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

x1

−
5

0
5

10

●

●

●

●

●

●

●

●

−5 0 5 10

−
5

0
5

10

x4

We create an AMBA model basically the same, except using the amba function.

R> m = amba (y, t1 + t4)

R> plot (m)

Maia, C. amba 0.3.1 10

A B

−
10

0
−

50
0

50
10

0
15

0
20

0
25

0
categorical (g1)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

−5 0 5 10

−
10

0
−

50
0

50
10

0
15

0
20

0

linear (x4)

re
si

du
al

s(
m

, i
)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

We can can try a polynomial instead of a regular linear term.

R> t4 = polynomial (x4, degree=2)
R> m = amba (y, t1 + t4)

R> plot (m)

Maia, C. amba 0.3.1 11

A B

−
10

0
−

50
0

50
10

0
15

0
20

0
25

0
categorical (g1)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

−5 0 5 10

−
10

0
−

50
0

50
10

0
15

0
20

0

polynomial (x4)

re
si

du
al

s(
m

, i
)

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

Or create a semiparametric model using a smooth term.

R> t4 = smooth (x4, smoothness=0.9)
R> m = amba (y, t1 + t4)

R> plot (m)

Maia, C. amba 0.3.1 12

A B

−
50

0
50

10
0

15
0

20
0

25
0

categorical (g1)

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

−5 0 5 10

−
10

0
−

50
0

50
10

0
15

0
20

0

smooth (x4)

re
si

du
al

s(
m

, i
)

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

Sometimes we just want to plot one of the terms from the AMBA model.

R> plot (m, 2)

Maia, C. amba 0.3.1 13

−5 0 5 10

−
10

0
−

50
0

50
10

0
15

0
20

0

smooth (x4)

x4

re
si

du
al

s(
m

, w
hi

ch
)

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

We can also get summary output for a single term, noting this uses the partial residuals,
not the response itself. We can do the same thing (with some more work) by extracting the
partial residuals and using the summary method for the term.

R> summary (m, 2)

smooth (x4)
sx sy

1 -8.6139000 -22.6205516
2 -6.5676889 -4.0757321
3 -4.5214778 -1.6307299
4 -2.4752667 -0.5507926
5 -0.4290556 7.4854087
6 1.6171556 8.4215214
7 3.6633667 7.2914509
8 5.7095778 21.2322547
9 7.7557889 58.7480393
10 9.8020000 197.0707833
pcd: NA

Maia, C. amba 0.3.1 14

R> summary (t4, residuals (m, 2))

smooth (x4)
sx sy

1 -8.6139000 0
2 -6.5676889 0
3 -4.5214778 0
4 -2.4752667 0
5 -0.4290556 0
6 1.6171556 0
7 3.6633667 0
8 5.7095778 0
9 7.7557889 0
10 9.8020000 0
pcd: NA

