
Handling Boolean multivariate polynomials with

the boolfun package

Frédéric Lafitte

January 21, 2010

Contents

1 Introduction 2

2 The algebraic normal form 2

3 The Polynomial object 4

4 Operations on polynomials 5

5 Conclusion 6

List of Algorithms

1 Adding two polynomials. 5
2 Multiplying two monomials. 5
3 Multiplying two polynomials. 6

1

1 Introduction

The boolfun package has been developed to manipulate Boolean functions and
evaluate their cryptographic properties. Among the many representations of
Boolean functions (e.g. binary decision tree or diagram, truth table, ...) some
of them are well suited to derive cryptographic properties (e.g. Walsh spec-
trum). One of those representations is the algebraic normal form of the Boolean
function, a multivariate polynomial with n indeterminates x1, . . . , xn ∈ {0, 1}
of the form

∑
I⊂{1,...,n} cI

∏
i∈I xi where the 2n coefficients cI are in {0, 1}. A

formal definition can be found in section 2.
The recent package multipol allows to handle multivariate polynomials but is
not well suited to handle operations over polynomial Boolean rings. In bool-
fun, an S3 object Polynomial is defined that implements basic functionality to
handle the algebraic normal form of Boolean functions.

> library(boolfun)

> p <- Polynomial("01010110")

> print(p)

[1] "x1 + x1*x2 + x1*x3 + x2*x3"

> class(p)

[1] "Polynomial" "Object"

> q <- Polynomial(c(1, 0, 1, 1))

> print(q)

[1] "1 + x2 + x1*x2"

> p * q

[1] "x1 + x1*x2 + x1*x3 + x1*x2*x3"

> deg(p * q + p)

[1] 3

2 The algebraic normal form

Let F2 denote the finite field (Galois field) with two elements where addition
(exclusive or) is written ⊕. Before giving the definition of the algebraic normal
form, we need to define a total order over elements of Fn

2 . The position of the
element (x1, . . . , xn) is simply the integer encoded in base 2 by xn . . . x1.

2

Example. For n = 3, the total order ≤ gives the following ordering

(0, 0, 0) ≤ (1, 0, 0) ≤ (0, 1, 0) ≤ (1, 1, 0) ≤ (0, 0, 1) ≤ (1, 0, 1) ≤ (0, 1, 1) ≤ (1, 1, 1)

Definition 1. The algebraic normal form of f : {0, 1}n → {0, 1} is the unique
element P of the quotient ring

F2[x1, . . . , xn]/ < x2
1 = x1, . . . , x

2
n = xn >

defined as follows
P (x̄) =

⊕
ā∈Fn

2

h(ā) · x̄ā

where x̄ā =
∏n

i=1 xai
i and h(ā), the coefficient of the monomial x̄ā, is defined

according to the Möbius inversion principle

h(x̄) =
⊕
ā≤x̄

f(ā) (1)

Example. For n = 3 the definition of P (x̄) is written

P (x1, x2, x3) = h(0, 0, 0) ⊕ h(1, 0, 0)x1 ⊕ h(0, 1, 0)x2 ⊕ h(1, 1, 0)x2x3
⊕ h(0, 0, 1)x3⊕ h(1, 0, 1)x1x3 ⊕ h(0, 1, 1)x2x3 ⊕ h(1, 1, 1)x1x2x3

and the coefficients h(·) are obtained from equation (1) as follows

h(0, 0, 0) = f(0, 0, 0)
h(1, 0, 0) = f(0, 0, 0)⊕ f(1, 0, 0)
h(0, 1, 0) = f(0, 0, 0)⊕ f(0, 1, 0)
h(1, 1, 0) = f(0, 0, 0)⊕ f(1, 0, 0)⊕ f(0, 1, 0)⊕ f(1, 1, 0)

...
h(1, 1, 1) =

⊕
x̄

f(x̄)

Note that the equations above can be written as follows

f(0, 0, 0) = h(0, 0, 0)
f(1, 0, 0) = h(0, 0, 0)⊕ h(1, 0, 0)
f(0, 1, 0) = h(0, 0, 0)⊕ f(0, 1, 0)
f(1, 1, 0) = h(0, 0, 0)⊕ h(1, 0, 0)⊕ h(0, 1, 0)⊕ h(1, 1, 0)

...
f(1, 1, 1) =

⊕
x̄∈Fn

2

h(x̄)

which shows that the transform (1) is its own inverse (i.e. involution).

3

method returned value

n() number of input variables n
anf() truth table (vector of integers)
deg() algebraic degree
anf() vector of coefficients for 2n monomials
add(p) Polynomial obtained by adding self with p

mul(p) Polynomial obtained by multiplying self with p

len() returns 2n

string() algebraic normal form as character string

Figure 1: Public methods of Polynomial.

> tt <- c(1, 1, 0, 1, 0, 0, 1, 1)

> tth <- mobiusTransform(tt)

> print(tth)

[1] 1 0 1 1 1 0 0 1

> p <- Polynomial(tth)

> print(p)

[1] "1 + x2 + x3 + x1*x2 + x1*x2*x3"

In the code above, tt holds the return values of a Boolean function with 3 input
variables. The corresponding polynomial p is defined by giving the coefficient
for each of the eight possible monomials, that is, the truth table of the Boolean
function h in equation (1).

3 The Polynomial object

The multiplication and addition are discussed in the following section. The
Polynomial object inherits from R.oo’s Object and figure 1 gives an overview
of the implemented methods.

Representation. A polynomial is represented by a vector holding the co-
efficients of all monomials (additive terms). For a polynomial with variables
x1, ..., xn ∈ {0, 1} there are 2n such monomials (as x2

i = xi∀i), and the coef-
ficients being in {0, 1}, the polynomial is represented by a vector of length 2n

holding binary values. Note that this vector is the truth table of the Boolean
function h that is used in the definition of the algebraic normal form (equa-
tion 1). Future versions will use more efficient data structures (binary decision
diagrams). Monomials in n variables can be seen as vectors of Fn

2 . Thus the
order ≤ defined in the previous section can be applied to monomials. For n = 3,
monomials are ordered as follows

1 ≤ x1 ≤ x2 ≤ x1x2 ≤ x3 ≤ x1x3 ≤ x2x3 ≤ x1x2x3

4

Hence the vector
(1, 0, 0, 1, 1, 0, 1, 1)

represents the polynomial

1⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3

.

> p <- Polynomial("10011011")

> p

[1] "1 + x3 + x1*x2 + x2*x3 + x1*x2*x3"

4 Operations on polynomials

This section gives details on how the addition and multiplication of polynomials
are implemented, given that Boolean polynomials with n indeterminates are
represented by a vector of 2n integers as explained in the previous section. More
suitable data structures yield much better complexities than the ones exposed
in this section and will be used in future versions. The following algorithms
are fast enough for small values of n (up to about 14 to give an idea). All the
following algorithms are implemented in C.

Addition. The addition is straightforward and is carried in O(2n) according
to algorithm 1.

Data: p1, p2 (vectors of coefficients)
Result: p1 (will hold the coefficients of the resulting algebraic normal

form)
for i = 0, ..., 2n − 1 do

p1[i]← p1[i] + p2[i] mod 2
end

Algorithm 1: Adding two polynomials.

Multiplication of monomials. Monomials are trivially represented by a vec-
tor of length n, i.e., (0, 1, 1) and (0, 0, 0) represent x2x3 and 1 respectively. Mul-
tiplying two monomials is equivalent to applying a bitwise or to both input
vectors as shown in algorithm 2. Hence this multiplication is carried in O(n).

Data: m1, m2 (vectors of length n)
Result: m1 (will hold the coefficients of the resulting monomial)
for i = 0, ..., n− 1 do

m1[i]← m1[i] or m2[i]
end

Algorithm 2: Multiplying two monomials.

5

Multiplication of Polynomials. The multiplication is carried by consider-
ing each of the monomials in one operand, and summing the product of that
monomial with all monomials in the other operand as in algorithm 3. Hence
this multiplication is carried in O(n · 22n).

Data: p1, p2 (vectors of length 2n)
Result: res (will hold the coefficients of the resulting polynomial)
res← zerovector(2n)
for i = 0, ..., 2n − 1 do

if p1[i] = 1 then
for j = 0, ..., 2n − 1 do

if p2[i] = 1 then
m← monomial(i)×monomial(j)
idx← indexofmonomial(m)
res[idx]← res[idx] + 1 mod 2

end
end

end
end

Algorithm 3: Multiplying two polynomials.

5 Conclusion

A free open source package to manipulate Boolean functions is available at R
CRAN cran.r-project.org. The package implements some functionality to
handle multivariate polynomials over F2 such as addition and multiplication. An
effort has been made to optimize execution speed rather than memory usage.
Future versions will implement other representations (data structures) that lead
to better complexities for operations on polynomials when n is too large.

6

cran.r-project.org

	Introduction
	The algebraic normal form
	The Polynomial object
	Operations on polynomials
	Conclusion

