
How To Use catnet Package

Nikolay Balov, Peter Salzman

October 4, 2011

Introduction

The catnet package for R implements a categorical Bayesian network inference framework. Bayesian
networks are graphical statistical models representing causal dependencies between random variables.
A Bayesian network has two components: Directed Acyclic Graph (DAG) with nodes the variables of
interest and a probability structure given as a set of conditional distributions, one for each node in
the graph. Any Bayesian network satisfies the so called local Markov property, stating that each node
in the network is independent of its non-descendants given its parent nodes. This property implies
a factorization of the joint distribution of the node-variables that greatly facilitates the statistical
inference.

Two classes of Bayesian networks are among the most used in practice: linear Gaussian networks
and categorical ones (also called discrete Bayesian networks). In a linear Gaussian network, the nodes
represent continuous variables with Gaussian conditional distributions and the expected value of each
node is a linear combination of its parent nodes. Gaussian networks benefit from strong analytical
properties and inference methodology. However, their usage is not justified when the linearity and nor-
mality assumptions on the observed variables are violated. On the other hand, in a categorical Bayesian
network, each node takes value in a fixed set of categories and the conditional distributions are multi-
nomial with no additional parametric constraints. Consequently, when the data of interest is genuinely
categorical or the node marginals follow some multi-modal distributions suitable for discretization, the
categorical network framework provides greater representation power - one of the reasons to be chosen
as a statistical model in catnet .

The main goal of the package is to provide tools for inferring categorical Bayesian networks from
data based on the maximum likelihood (ML) criterion. The problem of learning Bayesian networks
has relatively long history with abundance of literature devoted to its subject. See for example
[Heckeman et al.(1995)], [Cooper & Herskovitz(1992)], [Chickering(1996b)], [Friedman et al.(1999)], [Larranaga et al.(1996)],
and some more recent articles, [Tsamardinos et al.(2003)], [Yaramakala & Margaritis(2005)], [Daly & Shen(2007)].
Although the name Bayesian often implies Bayesian inference, the package follows a frequentist approach
without making assumption on the conditional distributions in form of priors, and employs a scoring
based approach for network learning. Two main techniques are implemented - finding the best net-
work fitting some data for a predefined node order and stochastic search of optimal networks without
constraints on the node order. For a given node order, an efficient exhaustive search via Dynamic Pro-
gramming (DP) is implemented and the exact MLE solution is given. The approach is similar to that
in [Friedman & Koller(2003)] without, however, being Bayesian. The stochastic search in the space of
node orders is implemented by employing a Simulated Annealing (SA) algorithm.

A distinct feature of catnet is its support of both incomplete data, with some of the records having
missing values, and the so called perturbed data. In the latter case, some of the nodes are controlled by
breaking the causal influence of their parents. Perturbed data originate naturally from gene expression
studies where selected genes are knocked up/down.

The package equips the user not only with structure learning but also with selection, estimation
and prediction functions. For example, in catnet , one can perform asymptotically consistent model

1

selection from incomplete or perturbed data, [Balov(2011)]. The motivating goal is to provide more
versatile statistical tools for studying networks such as model selection in classes of optimal networks
with varying complexity. Despite the diversity and efficiency of the existing algorithms, being strictly
structure learning techniques, their selection flexibility is usually limited.

Some attention is paid to the computational issues also. Since the size of the space of networks is
super-exponential to the number of nodes, the network learning is inherently a very difficult problem.
Nevertheless, manageable inference for moderate size networks of up to several hundred nodes is possible
if the node parent sets and overall network complexity are constrained. In addition, catnet has parallel
processing capabilities allowing for times faster stochastic search.

Although catnet is designed as a self-contained package and provides the basic functionality one
needs for working with categorical Bayesian networks, some graph related operations such as network
visualization are not included. The user may benefit from having installed other packages such as graph,
for general graph manipulations, and Graphviz or igraph for graph rendering and visualization.

The authors of catnet target reconstruction of gene/protein regulatory networks as a primary applica-
tion of the package (for overview on this topic see [Sebastiani et al.(2004)] and [Friedman et al.(2000)]),
but its functionality is by no means limited for use to bioinformatics only and hopefully will find much
larger application scope.

1 Creating and Manipulating Networks

The basic class object in catnet package is catNetwork, which stands for categorical network. All
through the package the object-oriented approach is followed and all classes are defined as S4 R-objects.
Any catNetwork can handle different number of categories for its nodes. Its graph structure, a DAG,
describes the relationship between its nodes, while multinomial distributions represent the conditional
dependency of the nodes on their parents. For brevity, hereafter we will refer to a catNetwork object
simply as a network.

Next we present a formal definition of categorical network. Let V = {xi}ni=1 be a set of n discrete
random variables with number of categories C = {ci}ni=1. A categorical network G with nodes V is
described by its parenthood structure and conditional probabilities. We denote by Πi the parent set of
the i-th node, thus, Πi ⊂ V and every xj ∈ Πi is a parent of xi. The conditional probability of xi given
Πi is denoted P (xi|Πi) and follows unconstrained categorical distribution. Any permutation Ω of size
n defines an order of the nodes V. We say that Ω is consistent with G if

ΠΩ(i) ⊂ {Ω(1), ...,Ω(i− 1)}, i = 1, ..., n, (1)

thus, the parents of each node appear earlier in the order Ω. Since any categorical network is a DAG
and as a such has a consistent node order, the joint probability distribution of G allows the following
factorization

P (x1, ..., xn) =
n∏
i=1

P (xΩ(i)|xΩ(1), ..., xΩ(i−1)) =
n∏
i=1

P (xΩ(i)|ΠΩ(i)).

Let Dm = {Xj}mj=1 be a sample of m observations on variables V. Without loss of generality we
assume that for all i an j, Xj

i ∈ {1, 2, ..., ci}. Then the sample-average log-likelihood of G with respect
to Dm is

l(G|Dm) =
1
m

n∑
i=1

m∑
j=1

logP (Xj
Ω(i)|ΠΩ(i)(Xj)), (2)

where Πi(Xj) is the realization of the parent set of xi for the j-th sample Xj . Catnet performs network
estimation by maximizing l as a function of G.

2

1.1 Creating New Networks

We start by describing several ways to create a catNetwork object. In the usual scenaria the catnet is
designed for, networks are inferred from data and are created implicitly. There are occasions, however,
when the user may want to create a network manually and the package provides such means.

A categorical network can be created explicitly by calling the cnNew function. The function takes
following arguments: a vector of node names (nodes), a list of node categories (cats), a list of parents
((parents)) and an optional list of conditional probabilities (probs). Because of the nested list hierarchy
of the probability structure, specifying the probability argument directly can be very elaborated task
for large networks. In the following example we create a small network with only three nodes. Note that
all inner most vectors in the probs argument, such as (0.4,0.6), represent conditional distributions
and thus sum to 1. If probs parameter is omitted, a random probability structure will be assigned.

> library(catnet)

> cnet <- cnNew(nodes = c("a", "b", "c"), cats = list(c("1", "2"),

+ c("1", "2"), c("1", "2")), parents = list(NULL, c(1), c(1,

+ 2)), probs = list(c(0.2, 0.8), list(c(0.6, 0.4), c(0.4, 0.6)),

+ list(list(c(0.3, 0.7), c(0.7, 0.3)), list(c(0.9, 0.1), c(0.1,

+ 0.9)))))

1.2 Generating Random Networks

Randomly generated networks can be useful for simulation and evaluation purposes. By calling the
cnRandomCatnet function, the user may generate a catNetwork with random DAG and probability
model. The number of nodes, maximum parent size and the number of categories have to be given. All
nodes are assigned equal number of categories.

> set.seed(123)

> cnet1 <- cnRandomCatnet(numnodes = 4, maxParents = 2, numCategories = 2)

> cnet1

A catNetwork object with 4 nodes, 2 parents, 2 categories,
Likelihood = 0 , Complexity = 8 .

1.3 Inheriting a Graph Object

A catNetwork object can be also created by inheriting an existing graph object as supported in graph
package, [Gentleman et al.(2009)]. The latter provides greater number of function for creating and
manipulating graphs. A graph object can be created directly by specifying its nodes (myNodes) and
edges (myEdges). It contains only a graphical structure description, not a probability one. Then, a
catNetwork is created by calling the cnCatnetFromEdges function.

> myNodes <- c("a", "s", "p", "q", "r", "t", "u")

> myEdges <- list(a = list(edges = NULL), s = list(edges = c("p",

+ "q")), p = list(edges = c("q")), q = list(edges = c("r")),

+ r = list(edges = c("u")), t = list(edges = c("q")), u = list(edges = NULL))

> cnet2 <- cnCatnetFromEdges(nodes = myNodes, edges = myEdges,

+ numCategories = 2)

In catnet package one is able to import graphs from Simple Interaction Format (SIF) and Bayesian
Networks Interchange Format (BIF) files. If a SIF file describes a DAG, which may not be the case since
SIF files can describe any graph structure, the graph can be imported by calling the cnCatnetFromSif
function. In this case a random probability structure is assigned. On the other hand, a BIF file describes
both the DAG and probability structures.

3

2 Accessing Network Attributes and Characteristics

There are several functions that give access to the main components of a catNetwork object, or more
precisely, its slots. Such are the functions cnNumNodes, cnNodes, cnEdges, cnMatEdges, cnParents,
cnMatParents and cnProb, which are shortly described next.

Of course, all attributes can be accessed using the @attribute mechanism, but that opens the
possibility of accidental attribute change. Note that, in general, direct manipulation with the network
components is not recommended for it may destroy the object integrity.

Functions cnNumNodes and cnNodes return the number and the list of names, respectively, of network
nodes. For each node of a network, for example cnet1, one can obtain its parents by calling the
cnParents function or find its children through cnEdges function.

> cnNumNodes(cnet1)

[1] 4

> cnNodes(cnet1)

[1] "N1" "N2" "N3" "N4"

> cnEdges(cnet1)

$N2
[1] "N3" "N4"

$N3
[1] "N4"

> cnParents(cnet1)

$N3
[1] "N2"

$N4
[1] "N2" "N3"

In addition, the corresponding cnMatParents and cnMatEdges functions return matrices instead of
lists. Specifically, cnMatParents returns a binary matrix representing the pairwise node connections,
and it is especially useful for comparing networks with the same number of nodes. Alternatively,
cnMatEdges returns a two-column matrix of ordered pairs encoding the edges with direction from the
first to the second.

> cnMatParents(cnet1)

N1 N2 N3 N4
N1 0 0 0 0
N2 0 0 0 0
N3 0 1 0 0
N4 0 1 1 0

> cnMatEdges(cnet1)

[,1] [,2]
[1,] "N2" "N3"
[2,] "N2" "N4"
[3,] "N3" "N4"

4

cnProb and cnPlotProb function provides an access to the complete probability table of a network,
which is a recursive list and can be quite large for networks with big parent sets and many categories.
Conditional probabilities are reported in the following format. First, node name and its parents are
given, then a list of probability values corresponding to all combinations of parent categories (put in
brackets) and node categories. In the following example the first node (N1) has two categories (C1 and
C2) and no parents, thus two numbers are given, probability 0.68 for the first category and 0.32 for the
second. The third node (N3) has two categories and one parent (N2) and consequently two pairs of
probabilities are reported , one for N2 = C1 and another for N2 = C2.

> cnPlotProb(cnet1)

Node[N1], Parents:
[]C1 0.679
[]C2 0.321
Node[N2], Parents:
[]C1 0.542
[]C2 0.458
Node[N3], Parents: N2
[C1]C1 0.103
[C1]C2 0.897
[C2]C1 0.855
[C2]C2 0.145
Node[N4], Parents: N2 N3
[C1 C1]C1 0.256
[C1 C1]C2 0.744
[C1 C2]C1 0.563
[C1 C2]C2 0.437
[C2 C1]C1 0.392
[C2 C1]C2 0.608
[C2 C2]C1 0.481
[C2 C2]C2 0.519

An important characteristic of any categorical Bayesian network is its complexity. The complexity
is an integer number specifying the number of parameters needed to define the probability structure of
the network. For example, the complexity of a network with nodes without parents and two categories
per node equals the number of nodes. The complexity of a catNetwork object can be obtained by
calling the cnComplexity function.

> cnComplexity(cnet1)

[1] 8

The complexity plays a key role in the network estimation and model selection problems.

2.1 Drawing a Network

catnet provides several alternatives for visualizing a network. They are implemented in the function
cnPlot. If the igraph package is installed, a catNetwork object will be coerced to a igraph object and
plotted. Alternatively, cnPlot may generate a dot-file, compatible with the external Graphviz software
package ([graphvis]). Dot-files can be rendered to a postscript or a pdf files using the dot executable
from Graphviz or directly visualized by dotty or tcldot. There is an auxiliary to cnPlot function
called cnDot that generates and saves dot-files specifically.

cnPlot(cnet1)
cnDot(cnet1, "cnet1.dot")

5

2.2 Topological Node Order

Since any Bayesian network is a DAG, there is a natural order of its nodes such that any node has
parents only among the nodes appearing earlier in the order. In fact, a catNetwork object may have
many compatible orders and the function cnOrder returns just one of them. cnOrder takes as an input
either a catNetwork object or a list of parent sets. The next example illustrates its usage.

> cnOrder(cnet1)

[1] 1 2 3 4

> cnOrder(cnet1@parents)

[1] 1 2 3 4

The topological order is important in the context of network learning and it is another key element
in the catnet ’s search methodology.

2.3 Equivalent Graph Representation

An important result from the theory of Bayesian networks states that all networks with common sets
of nodes can be organized in equivalent classes. According to definition, for any two equivalent net-
works there are probability structures such that their joint probabilities are equal. More on the topic
one can find in [Verma & Pearl(1990)] and [Chickering(1996b)]. Function dag2cpdag generates the
Complete Partially Directed Graph (CPDAG) for a network according to the algorithms given in
[Chickering(1996b)]. Note that in a CPDAG some edges are not directed to reflect the freedom of
choosing directions without leaving the corresponding equivalent class.

> set.seed(456)

> cnet2 <- cnRandomCatnet(numnodes = 10, maxParents = 3, numCategories = 2)

> cnEdges(cnet2)

$N2
[1] "N8" "N10"

$N4
[1] "N3"

$N6
[1] "N8"

$N8
[1] "N5"

> pcnet2 <- dag2cpdag(cnet2)

add N3 -> N4
add N5 -> N8
add N10 -> N2

> cnEdges(pcnet2)

6

$N2
[1] "N8" "N10"

$N3
[1] "N4"

$N4
[1] "N3"

$N5
[1] "N8"

$N6
[1] "N8"

$N8
[1] "N5"

$N10
[1] "N2"

2.4 Comparing Networks

Often, one has two networks with the same nodes and wants to evaluate the difference between them.
There are two basic criteria for comparing networks. First, a topological one that compares the graphi-
cal structure of the networks and second, a probabilistic one, involving the distributions specified by the
networks. catnet employs several measures for topological comparison such as the number of true posi-
tive/false positive/false negative directed edges, the parent Hamming distance - the number of different
elements between the corresponding parent matrices, the number of true positive/false positive/false
negative undirected edges (skeleton), and the number of false positive/negative Markov pairs (pairs that
have common descendants). Also included is a measure comparing the node order in the networks. The
user can compare two networks by calling the cnCompare function. It returns a a catNetworkDistance
object containing the values of the provided measures. More details can be found on cnCompare’s help
pages.

> set.seed(456)

> cnet3 <- cnRandomCatnet(cnNumNodes(cnet2), maxParents = 2, numCategories = 2)

> cnet3@nodes <- cnet2@nodes

> cnCompare(object1 = cnet2, object2 = cnet3)

Edges:
TP = 1,
FP = 3,
FN = 4,

F-score = 0.331532,

Hamming:
(FP+FN) = 7,

exp = 9,

Skeleton:
TP = 1,

7

FP = 3,
FN = 4,

Order:
FP = 0,
FN = 0,

Markov blanket:
FP = 0,
FN = 1

3 Generating Samples and Making Predictions

In addition to the row-sample data representation as often used in statistical practice, catnet also allows
a column-sample format, the latter being a standard for storing micro-array data. In the latter case,
the samples are organized in columns and each row represents a node. The package provides two
function for data generation, cnSample and cnSamplePert. The second one allows the user to generate
a perturbed sample, a sample with some of its nodes having fixed, non-random, values. In micro-
biology, the perturbation techniques is an important tool for inferring causal relationships in regulatory
networks.

In the following example we generate a random sample of size 100 from cnet1 object that have been
created earlier. By setting the output argument to be ”matrix”, we obtain a result in matrix form.
Alternatively, a sample as data.frame can be generated.

> samples1 <- cnSamples(object = cnet1, numsamples = 100, output = "matrix")

> dim(samples1)

[1] 4 100

> samples1 <- cnSamples(object = cnet1, numsamples = 100, output = "frame")

> dim(samples1)

[1] 100 4

Another possibility is to generate perturbed samples with fixed, user specified, values for particular
nodes. We endow the term perturbations with the same meaning as the used in gene experimental
analysis - observing steady-state expression levels of selected genes. In presence of genetic perturbations
one or more genes are fixed by deletion or over-expression. Perturbed gene experiments are useful tool in
studying gene interactions. In non-biological context, if a network node represents some random factor,
we can think of the node perturbations as a means to control this factor. To generate perturbed samples,
the user may call cnSamples function and specify an additional vector argument, perturbations, of
length the number of nodes. The vector value for each node is either a fixed categorical index from
the categorical set of the node, which is carried out unchanged to the output, or zero, marking the
node as random one that has to be sampled. In the next example a sample of size 10 is generated with
random first two nodes but perturbed third and fourth nodes that take their first and second category,
respectively.

> samples2 <- cnSamples(object = cnet1, numsamples = 10, perturbations = c(0,

+ 0, 1, 2))

For prediction purposes one can use cnPredict function with parameters a network object and
data. In the data, only the node positions marked as not-available (NA) are predicted. The nodes

8

are assigned categorical values based on the maximum probability criterion. If for example, given a
particular instance of its parenthood, a node has three categories with probabilities (0.2, 0.5, 0.3), then
the second category will be assigned as its value.

> numnodes <- cnNumNodes(cnet2)

> samples3 <- cnSamples(object = cnet2, numsamples = 12, output = "matrix")

> samples3[numnodes - 2,] <- rep(NA, 12)

> samples3[numnodes - 1,] <- rep(NA, 12)

> samples3[numnodes,] <- rep(NA, 12)

> newsamples <- cnPredict(object = cnet2, data = samples3)

4 Learning Network form Data

All existing network learning algorithms such as Grow-Shrink, Incremental Association [Yaramakala & Margaritis(2005)],
[Tsamardinos et al.(2003)] and Hill-Climbing [Daly & Shen(2007)], to mention a few, implement either
score or constraint-based algorithms to find good solutions. catnet implements a global score algorithm
and searches for networks fitting the data exhaustively, according to the MLE criterion - in cases when
the topological order of the nodes is known, the package provides a function, cnSearchOrder, that finds
the exact (if is unique) MLE solution for the estimation problem. Alternatively, if the order is not
known the user may search the space of orders using the stochastic search function cnSearchSA.

4.1 Network Estimation for Given Node Order

As put forward in [Cooper & Herskovitz(1992)], the model search in the space of all networks can be
restricted to a smaller space of networks that are consistent with a particular node order. The spaces of
networks with fixed node order are not only smaller but more ’regular’. In [Friedman & Koller(2003)],
authors evaluate the regularity in terms of posterior distribution of features and also conclude that a
search restricted to a particular node ordering does not necessarily preclude good network recovering.
Empirical studies also confirm that on order restricted network spaces, the likelihood functions have
less local variability, thus discontinuity, which facilitates likelihood based estimations.

Function cnSearchOrder is the main computational tool provided by catnet . The function imple-
ments a Dynamic Programming (DP) algorithm for searching in the space of networks having a node
order specified by the user. The result is a set of networks with increasing complexity up to a given max-
imum value. In other words, each resulting network is exact the maximum likelihood estimator (MLE)
for the corresponding complexity. More formally, for given node order Ω and complexity number α, the
function finds

ĜMLE(Ω, α) = argmax{l(G|Dm), such that Complexity(G) = α},

where the log-likelihood l(G|Dm) is defined by Eq. 2.
Then the user may proceed by selecting a particular network from the found set of networks by

specifying a target complexity or applying some model selection criterion - see the functions cnFindAIC
and cnFindBIC discussed below.

> set.seed(789)

> cnet2 <- cnRandomCatnet(numnodes = 10, maxParents = 2, numCategories = 2)

> nodeOrder <- order(runif(cnNumNodes(cnet2)))

> cnet2

A catNetwork object with 10 nodes, 2 parents, 2 categories,
Likelihood = 0 , Complexity = 11 .

9

> samples <- cnSamples(object = cnet2, numsamples = 100, output = "frame")

> netlist <- cnSearchOrder(data = samples, perturbations = NULL,

+ maxParentSet = 2, maxComplexity = 20, nodeOrder, parentsPool = NULL,

+ fixedParents = NULL)

> bnet <- cnFind(netlist, 20)

> bnet

A catNetwork object with 10 nodes, 2 parents, 2 categories,
Likelihood = -6.051457 , Complexity = 20 .

cnSearchOrder has two mandatory parameters: data and maxParentSet. The data is given as a
matrix or data frame of characters and the function extract the categorical set for each node from the
data. If maxComplexity is not specified, the search is applied to the maximum possible complexity.

In many practical problems some prior information about the network structure is available which
the user may want to include in the search process. Such prior information can be obtained from experts
in the field of interest or to be based on preceding research. In all of its search functions, catnet includes
the parameters parentsPool and fixedParents, that can be used for specifying edge constraints.

The first parameter, parentsPool, specifies a set of possible parents for each node and in this way,
some nodes can be excluded as potential parents. Additionally, the fixedParents parameter specifies
edge inclusion rules - the user may assign mandatory parents to some nodes. These two parameters
allow a variety of edge constraints to be implemented.

In the next example, we generate a random network with 12 nodes and then search for the best
fitting networks that comply with the following requirements: (1) the last node is not a parent to
anyone else, and (2) the first two nodes are necessarily parents to all of the rest nodes. The search is
restricted to the ’true’ node order, the one of the network from which the data is generated, as obtained
by cnOrder(cnet) function.

> set.seed(123)

> nnodes <- 12

> cnet <- cnRandomCatnet(numnodes = nnodes, maxParents = 5, numCategories = 2)

> norder <- cnOrder(cnet)

> parPool <- vector("list", nnodes)

> for (i in 1:nnodes) parPool[[i]] <- 1:(nnodes - 1)

> fixparPool <- vector("list", nnodes)

> for (i in 3:nnodes) fixparPool[[i]] <- c(1, 2)

> samples <- cnSamples(cnet, numsamples = 200)

> eval <- cnSearchOrder(data = samples, perturbations = NULL, maxParentSet = 2,

+ maxComplexity = 200, nodeOrder = norder, parentsPool = parPool,

+ fixedParents = fixparPool)

> eval

Number of nodes = 12,
Sample size = 200,
Number of networks = 31
Processing time = 0.251

4.2 Model Selection with AIC and BIC criteria

The model selection problem in the context of network learning is one of the focuses in catnet . As we
have mentioned earlier, the package aims to provide flexibility and allows the user to select a network
from a list of optimal ones according to the user needs. Methodological details behind the model
selection procedures implemented in catnet can be found in [Salzman & Almudevar(2006)].

10

Recall that by calling one of the functions cnSearchOrder and cnSearchSA one obtains a list of
networks, more precisely catNetwork objects, such that each one has a unique complexity. From this
list one may select a network based on particular criteria such as AIC and BIC - the likelihood alone
is not enough to make a selection. In the next example both AIC and BIC criteria are applied and the
complexities of the selected networks are marked on the model selection curve.

> set.seed(345)

> cnet6 <- cnRandomCatnet(numnodes = 12, maxParents = 5, numCategories = 2)

> samples <- cnSamples(object = cnet6, numsamples = 100, output = "matrix")

> eval <- cnSearchOrder(data = samples, perturbations = NULL, maxParentSet = 2,

+ parentSizes = NULL, maxComplexity = 0, nodeOrder = order(runif(1:dim(samples)[1])),

+ parentsPool = NULL, fixedParents = NULL, echo = FALSE)

> anet <- cnFindAIC(object = eval)

> anet

A catNetwork object with 12 nodes, 2 parents, 2 categories,
Likelihood = -6.29264 , Complexity = 35 .

> bnet <- cnFindBIC(object = eval, numsamples = dim(samples)[2])

> bnet

A catNetwork object with 12 nodes, 2 parents, 2 categories,
Likelihood = -6.427055 , Complexity = 26 .

> plot(eval@complexity, eval@loglik, xlab = "Complexity", ylab = "Log-likelihood",

+ main = "Model selection: AIC and BIC complexities in red and blue.")

> abline(v = anet@complexity, lty = 2, col = "red")

> abline(v = bnet@complexity, lty = 3, col = "blue")

11

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

● ●
● ● ● ●

15 20 25 30 35 40

−
6.

8
−

6.
7

−
6.

6
−

6.
5

−
6.

4
−

6.
3

Model selection: AIC and BIC complexities in red and blue.

Complexity

Lo
g−

lik
el

ih
oo

d

4.3 Stochastic Search in the Space of Orders

In cases when prior knowledge about the order of the nodes is not available, the user can employ a
stochastic search method in the space of all possible node orders. In a way, this will break the general
search problem into two smaller ones - ’order search’ and ’search in order’. The space of orders includes
all possible node permutations and, although still huge, is somehow smaller than that of all possible
networks. This approach of order factorization is also implemented in [Friedman & Koller(2003)] but in
a different, Bayesian, context. The idea of considering order learning as a sub-problem is also followed
in [Larranaga et al.(1996)] and [Acid et al.(2001)] with constraint-based algorithms for conditional in-
dependence. In addition, catnet implements both frequentist, maximum likelihood based, and Bayesian
learning frameworks.

The catnet package provides the stochastic search function cnSearchSA, which implements a Sim-
ulated Annealing (SA) algorithm, [Kirkpatrick et al.(1983)], [Cerny(1985)]. Simulated Annealing is a
global optimization algorithm built on the Metropolis algorithm, [Metropolis et al.(1953)].

For a sample Dm of observations on variables V and an order Ω, we have defined Ĝ(Ω, α) to be the
network with complexity α consistent with Ω that maximizes the log-likelihood 2. In fact, Ĝ may be
only one representative network from a set of equivalent networks maximizing the likelihood. Moreover,
we assume that Ω is a random element of the space of all permutations of nodes V and its probability
is proportional to the likelihood of Ĝ(Ω, α)

P (Ω|Dm) ∝ exp(l(Ĝ(Ω, α)|Dm)). (3)

12

The functions cnSearchSA implements a Metropolis algorithm with acceptance probability

P (Ω2|Ω1, β) ∝ 1Ω2∈N (Ω1) exp(−min{0, l(Ĝ(Ω2, α)|Dm)− l(Ĝ(Ω1, α)|Dm)}/β), (4)

where N (Ω1) is a neighborhood of Ω1 and β > 0 is a parameter which specifies the temperature for the
Simulating Annealing. The parameter β gradually decreases according to a cooling schedule specified
by the function’s parameters. The neighborhood N (Ω) of an order Ω includes all orders obtained from
Ω by repeating orderShuffles number of times the following exchange operation: a node index is
randomly selected and exchanged with the next node index in Ω. By varying orderShuffles, the user
can control the extent of N (Ω).

The complexity α used in Eq. 4, also called target complexity, may vary from one iteration of SA to
another. It is determined by a user specified selection criterion, the parameter selectMode. Note that
the SA search is only optimal for the series of networks, one for each SA iteration, having complexities
α.

In addition to the parameters of cnSearchOrder, cnSearchSA function also accepts

1. selectMode - determines how the target network complexity α is defined at each iteration of SA.
It can be one of the ’AIC’ and ’BIC’ criteria. Any other value results in using maxComplexity for
α.

2. tempStart - the starting temperature of the annealing process.

3. tempCoolFact - the cooling factor from one temperature step to another. It is a number be-
tween 0 and 1, inclusively. For example, if tempStart is the temperature in the first step,
tempStart*temthepCoolFact will be the temperature in the second.

4. tempCheckOrders - the number of proposals to be checked for given temperature. This is the
number of orders, elements of the current order neighborhood, to be proposed at each step be-
fore decreasing the temperature. Thus, if Ω is the current order at some temperature, totally
tempCheckOrders orders from N (Ω) will be proposed, and consequently accepted or rejected,
before factoring down the temperature.

5. maxIter - the maximum number of orders to be checked. If for example maxIter is 40 and
tempCheckOrders is 4, then 10 temperature decreasing steps will be eventually performed.

6. orderShuffles - a number that controls the extent of N (Ω), the neighborhood of order Ω. The
elements of N (Ω) are obtained from Ω by orderShuffles number of switches of pairs of node
indices.

7. stopDiff - a stopping criterion. If at a current temperature, after tempCheckOrders orders being
checked, no likelihood improvement of level at least stopDiff is detected, then the SA stops and
the function exists. Setting this parameter to zero guarantees exhausting all of the maximum
allowed maxIter order searches.

8. priorSearch - a result from previous search in form of catNetworkEvaluate object. By setting
this parameter, a new search can be initiated from the best order found in a previous search.
Thus, a chain of searches can be constructed with varying SA control parameters providing greater
adaptability and user control.

9. numThreads - the number of simultaneous threads run in parallel, each processing different order
from the neighborhood of the current selected one.

The input set of parameters of cnSearchSA allows implementing a variety of search strategies, but
selecting an optimal setup, naturally, depends on the data. We can only make the following suggestion
to the user: try several parameter combinations, perform repeated search with limited number of

13

iterations (not too large maxIter) with each of them, choose a setting with the most consistent results
(in terms of likelihood for a fixed complexity) and perform a longer search with the already chosen set
of parameters. Another hint is to look at the acceptance rate of the SA algorithm and choose a setting
that gives about 10 to 30 percent acceptance. In any case, a number of independent runs of cnSearchSA
are recommended before making conclusions, a general recommendation for any MCMC procedure.

The following example theillustrates a typical call of cnSearchSA

> set.seed(345)

> samples <- cnSamples(object = cnet6, numsamples = 100, output = "matrix")

> netlist <- cnSearchSA(data = samples, perturbations = NULL, maxParentSet = 2,

+ parentSizes = NULL, maxComplexity = 20, parentsPool = NULL,

+ fixedParents = NULL, tempStart = 1, tempCoolFact = 0.9, tempCheckOrders = 4,

+ maxIter = 40, orderShuffles = 1, stopDiff = 1e-04, priorSearch = NULL)

> bnet <- cnFind(netlist@nets, cnComplexity(cnet6))

> bnet

A catNetwork object with 12 nodes, 2 parents, 2 categories,
Likelihood = -6.585036 , Complexity = 20 .

As noted above, the function cnSearchSA has a parameter called priorSearch, which can take the
result of previous call to cnSearchSA. In that case the new search starts where the previous search
has ended thus trying to improve upon the best set of networks that have been already found. This
mechanism allows implementation of sophisticated multi-stage search scenaria with more flexible user
control.

By its nature, the search for best network according to a likelihood based score is NP-Complete, thus
in general intractable, problem (see [Chickering(1996a)]). Inherently, the search functions implemented
by catnet are highly intensive computationally and some means for processing in cluster environment
are necessary.

The cnSearchSA function has a multi-threaded design. If k threads are started in parallel (numThreads=k),
then the MC can run up to k times faster and cover correspondingly larger search space. It works as
follows. From the neighborhood of the currently selected node order, k different candidate orders are
chosen and exhaustive searches (equivalent to cnSearchOrder) for all of them are performed in parallel
in one batch. After the batch is processed, based on the search results the acceptance/rejection deci-
sion for the candidate orders is taken in sequential manner. If one of these k searches succeeds to be
accepted, according to the probability in Eq. 4, the corresponding node order is chosen as a current
selection and the rest of the search results are discarded. Let j ∈ [1, k] be the index of the first accepted
order in the batch, then this batch processing step is equivalent to j steps of the baseline MC. On the
other hand, if none of the k searches succeeds to be accepted, then, effectively, k steps of the MC are
performed simultaneously, resulting in k fold speed up. When the acceptance rate of new node orders
is low, as is usually the case, the performance boost is close to k fold.

4.4 Including Prior Probabilities

The estimation functionality of catnet can be further facilitated by including some prior node connec-
tivity information. Both cnSearchOrder and cnSearchSA functions accepts the parameter edgeProb,
which is a square matrix with numeric values in the range [0,1]. The [i, j]-th element in edgeProb
specifies the probability of directed edge from j-th to i-th node. From a given edge probability matrix,
a prior distribution on the space of networks is constructed based on the assumption that all edges are
independent Bernoulli random variables. Formally, let G be a categorical Bayesian network and let the
binary variables δij ∈ {0, 1} indicate the presence of edge from the j-th to the i-th node. Denote the

14

elements of the edge probability matrix with qij . Then we define the prior probability of G as

π(G) ∝
n∏
i=1

∏
j 6=i

q
δij

ij (1− qij)1−δij . (5)

In the space of all possible networks, not necessarily DAGs, the above is a properly normalized distri-
bution. Accordingly, we replace the objective log-likelihood function by the posterior score

1
m

n∑
i=1

m∑
j=1

logP (Xj
Ω(i)|ΠΩ(i)(Xj)) +

n∑
i=1

∑
j 6=i

[δij log(qij) + (1− δij)log(1− qij)], (6)

where Ω is an order compatible with G.
The following example utilize the edgeProb parameter

> set.seed(678)

> numnodes <- 16

> numcats <- 3

> maxpars <- 2

> cnet8 <- cnRandomCatnet(numnodes, maxpars, numcats)

> ps <- cnSamples(cnet8, 500)

> mpars <- cnMatParents(cnet8)

> for (j in 1:numnodes) if (sum(mpars[, j]) > 0) break

> if (j < numnodes) cnet8@categories[[j]] <- cnet8@categories[[j]][1:(numcats -

+ 1)]

> cnet8 <- cnSetProb(cnet8, ps)

> ps <- cnSamples(cnet8, 500)

> res8 <- cnSearchOrder(data = ps, perturbations = NULL, maxParentSet = maxpars,

+ parentSizes = NULL, maxComplexity = 0, nodeOrder = cnOrder(cnet8),

+ parentsPool = NULL, fixedParents = NULL, edgeProb = NULL,

+ echo = FALSE)

> anet8 <- cnFind(res8, cnComplexity(cnet8))

> cnCompare(cnet8, anet8)

Edges:
TP = 6,
FP = 0,
FN = 0,

F-score = 1.000000

> edgeHisto <- 0.5 + mpars/4

> res9 <- cnSearchSA(data = ps, perturbations = NULL, maxParentSet = 1,

+ parentSizes = NULL, maxComplexity = 0, parentsPool = NULL,

+ fixedParents = NULL, edgeProb = edgeHisto, selectMode = "BIC",

+ tempStart = 1, tempCoolFact = 0.9, tempCheckOrders = 20,

+ maxIter = 100, orderShuffles = -1, stopDiff = 1, numThreads = 2,

+ priorSearch = NULL, echo = FALSE)

> anet9 <- cnFind(res9, cnComplexity(cnet8))

> cnCompare(cnet8, anet9)

Edges:
TP = 4,
FP = 4,

15

FN = 2,
F-score = 0.794830,

Hamming:
(FP+FN) = 6,

exp = 9,

Skeleton:
TP = 5,
FP = 3,
FN = 1,

Order:
FP = 1,
FN = 1,

Markov blanket:
FP = 0,
FN = 1

The dirProb parameter, only available in the cnSearchSA function, specifies directional, also causal,
prior information, thus allowing prior probabilities on the space of node orders to be defined. Similarly
to edgeProb, dirProb is a square matrix R with numeric values rij in the range [0,1]. Its [i,j]-th element
rij gives the probability of the j-th node to be before the i-th node. Since there are only two alternatives
for each pair of nodes, the conditions rij + rji = 1 and rii = 1 are mandated. The prior probability of
order Ω is then defined as

π(Ω|R) ∝ Πi<jr
1(xj≺Ωxi)
ij r

1(xi≺Ωxj)
ji . (7)

Accordingly, the posterior probability of Ω becomes

P (Ω|Dm) ∝ exp(l(Ĝ(Ω, α)|Dm))π(Ω|R), (8)

and the acceptance probability of the Metropolis algorithm changes to

P (Ω2|Ω1, β) ∝ 1Ω2∈N (Ω1) exp(−min{0, h(Ĝ(Ω2, α)|Dm)− h(Ĝ(Ω1, α)|Dm)}/β), (9)

where h(Ĝ(Ω, α)|Dm) = l(Ĝ(Ω, α)|Dm) + log(π(Ω|R)).
The following example illustrates the usage of perturbations to estimate pairwise node directions

and feed the dirProb parameter.

> cnSetSeed(3456)

> ncats <- 2

> cn <- cnRandomCatnet(20, 3, ncats, p.delta1 = 0.1, p.delta2 = 0.2)

> norder <- cnOrder(cn)

> numnodes <- cnNumNodes(cn)

> mpars <- cnMatParents(cn)

> numsamples <- 100

> pert <- as.data.frame(matrix(rbinom(numnodes * numsamples, 1,

+ p = 0.25), ncol = numnodes))

> for (j in 1:numsamples) for (i in 1:numnodes) {

+ if (pert[j, i])

+ pert[j, i] <- 1 + floor(runif(1) * ncats)

+ for (ip in cn@parents[[i]]) {

16

+ if (pert[j, ip]) {

+ pert[j, i] <- 0

+ }

+ }

+ }

> ps <- cnSamples(cn, numsamples, pert, as.index = TRUE)

> klmat <- cnEdgeDistanceKL(ps, pert)

> fscore1 <- NULL

> fscore2 <- NULL

> for (ntrials in 1:5) {

+ numiter <- 60

+ sares1 <- cnSearchSA(data = ps, perturbations = pert, maxParentSet = 2,

+ parentSizes = NULL, maxComplexity = 0, parentsPool = NULL,

+ fixedParents = NULL, edgeProb = NULL, dirProb = NULL,

+ selectMode = "AIC", tempStart = 0.1, tempCoolFact = 0.9,

+ tempCheckOrders = numiter, maxIter = numiter, orderShuffles = 0,

+ stopDiff = 0, numThreads = 2, priorSearch = NULL, echo = FALSE)

+ cmp <- cnCompare(cn, cnFind(sares1, cnComplexity(cn)))

+ fscore1 <- c(fscore1, cmp@fscore)

+ sares2 <- cnSearchSA(data = ps, perturbations = pert, maxParentSet = 2,

+ parentSizes = NULL, maxComplexity = 0, parentsPool = NULL,

+ fixedParents = NULL, edgeProb = NULL, dirProb = t(klmat),

+ selectMode = "AIC", tempStart = 0.1, tempCoolFact = 0.9,

+ tempCheckOrders = numiter, maxIter = numiter, orderShuffles = 0,

+ stopDiff = 0, numThreads = 2, priorSearch = NULL, echo = FALSE)

+ cmp <- cnCompare(cn, cnFind(sares2, cnComplexity(cn)))

+ fscore2 <- c(fscore2, cmp@fscore)

+ }

> pl <- list(`No Prior` = fscore1, `KL-dist Prior` = fscore2)

> boxplot(pl, ylab = "F-score")

17

●

●

No Prior KL−dist Prior

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

F
−

sc
or

e

5 Conclusion

Catnet package for R provides a framework for categorical Bayesian network inference. It implements a
maximum likelihood based estimation with subsequent model selection of choice. Throughout support
of data with missing values and perturbations is provided that makes the package suitable for micro-
array analysis. A Bayesian structure analysis is possible via hard-edge-constraints or prior distributions
on node order and connectivity. A number of additional functions for sampling, prediction and network
comparison complete the package to a self-contained tool-set for discrete network analysis.

References

[Acid et al.(2001)] Acid, S., Campos, L., Huete, J., The Search of Causal Orderings: A Short Cut for
Learning Belief Networks. 2001, In Proc. 8-th conference on Uncertainty in Artificial Intelligence.

[Balov(2011)] Balov, N., Consistent Model Selection of Discrete Bayesian Networks from Incomplete
Data 2011, submitted, arxiv: 1105.4507

[Beinlich et al.(1989)] Beinlich, I., Suermondth, G., Chavez, R., Cooper, G., The ALARM monitoring
system. 1989, In Proc. 2-nd Euro. Conf. on AI and Medicine.

18

[Bouckaert(1992)] Bouckaert, R. Optimizing causal orderings for generating dags from data. 1992, In
Proc. Conf. on Uncertainty in Artificial Intelligence, pages 9-16. Morgan-Kaufmann.

[Buntine(1996)] Buntine, W., A guide to the literature on learning probabilistic networks from data.
1996, IEEE Transaction on Knowledge and Data Engineering, 8:195-210.

[Cerny(1985)] Cerny, V., A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm, 1985, Journal of Optimization Theory and Applications, 45:41-51

[Chickering(1996a)] Chickering, D. M., Learning Bayesian Networks is NP-Complete. 1996(a), In D.
Fisher, H. Lenz (Eds.) Learning from Data: Artificial Intelligence and Statistics V, Ch. 12, 121-130.

[Chickering(1996b)] Chickering, D. M., Learning Equivalence Classes of Bayesian-Network Structures.
1996(b), Journal of Machine Learning research, 2, pp. 445-498.

[Cooper & Herskovitz(1992)] Cooper, G. F., Herskovitz, E., A Bayesian method for the induction of
probabilistic networks from data. 1992, Mach. Learn., 9, pp. 309-347

[Daly & Shen(2007)] Daly, R., Shen, Q., Methods to Accelerate the Learning of Bayesian Network
Structures. 2007, In Proc. of the UK Workshop on Computational Intelligence, Imperial College,
London.

[Heckeman et al.(1995)] Heckeman, D., Geiger, D., Chickering, D., Learning Bayesian networks: The
combination of knowledge and statistical data. 1995, Machine Learning, 20(3), pp. 197-243.

[Gentleman et al.(2009)] Gentleman, R., Whalen, E., Huber, W., Falcon, S., graph: A package to
handle graph data structures. R package. 2009, package version 1.24.1

[graphvis] Graphviz - Graph Visualization Software http://www.graphviz.org/

[Friedman et al.(1999)] Friedman, N., Goldszmidt, M., Wyner, A., Data Analysis with Bayesian Net-
works: A Bootstrap Approach. 1999, Proc. Fifteenth Conf. on Uncertainty in Artificial Intelligence
(UAI).

[Friedman et al.(2000)] Friedman, N., Goldszmidt, M., Wyner, A., Using Bayesian Networks to Analyze
Expression Data. 2000, Journal of Computational Biology, 7, pp. 601-620.

[Friedman & Koller(2003)] Friedman, N., Koller, D., Being Bayesian about network structure: A
Bayesian approach to structure discovery in Bayesian networks. 2003, Mach. Learn., 50, pp. 95-125.

[Kirkpatrick et al.(1983)] Kirkpatrick, S.; C. D. Gelatt, M. P. Vecchi., Optimization by Simulated
Annealing, 1983, Science. New Series 220.

[Larranaga et al.(1996)] Larranaga, P. , Kuijpers, C., Murga, R., Yurramendi, Y., Learning Bayesian
network structures by searching for the best ordering with genetic algorithms. 1996, IEEE Trans.
Pattern Anal. and Mach. Intell.,26:487-493.

[Metropolis et al.(1953)] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. , Teller, A.H. and Teller,
E., Equations of State Calculations by Fast Computing Machines, 1953, Journal of Chemical
Physics, 21(6):1087-1092.

[Neapolitan(2003)] Neapolitan, R., E., Learning Bayesian Networks. 2003, Prentice Hall.

[Pearl & Verma(1988)] Pearl, J., Verma,T.S., A theory of inferred causation. 1991, 2-nd Conference on
the Principles of Knowledge Representation and Reasoning, Cambridge, MA.

[Pearl(1988)] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
1988, Morgan Kaufmann.

19

[Salzman & Almudevar(2006)] Salzman, P., Almudevar, A., Using Complexity for the Estimation of
Bayesian Networks. 2006, Statistical Applications in Genetics and Molecular Biology, Vol. 5, Issue
1.

[Scutari(2010)] Scutari, M., bnlearn: Bayesian network structure learning. R package. 2010, package
version 1.8

[Sebastiani et al.(2004)] Sebastiani, P., Abad, M., Ramoni, M., Bayesian Networks for Genomic Anal-
ysis. 2004, Genomic Signal Processing and Statistics, pp. 281-320.

[Tierney et al.(2008)] Tierney, L., Rossini, A. J., Na Li, Sevcikova, H., snow: Simple Network of
Workstations. R package. 2008, package version 0.3-3

[Tsamardinos et al.(2003)] Tsamardinos, I., Aliferis, C., Statnikov, A., Algorithms for Large Scale
Markov Blanket Discovery. 2003, In Proc. of the 16-th Inter. Florida Artificial Intelligence Research
Society Conference, pp. 376-381, AAAI Press.

[Verma & Pearl(1990)] Verma, T., Pearl, J., Equivalence and synthesis of causal models. 1990, In
Henrion,M., Shachter, R., Kanal, L., and Lemmer, J., editors, Proceedings of the Sixth Conference
on Uncertainty in Artificial Intelligence, pp. 220-227.

[Yaramakala & Margaritis(2005)] Yaramakala, S., Margaritis, D., Speculative Markov Blanket Discov-
ery for Optimal Feature Selection. 2005, In ICDM’05, Proceedings of the 5-th IEEE Conference
on Data Mining, pp. 809-812.

20

	Creating and Manipulating Networks
	Creating New Networks
	Generating Random Networks
	Inheriting a Graph Object

	Accessing Network Attributes and Characteristics
	Drawing a Network
	Topological Node Order
	Equivalent Graph Representation
	Comparing Networks

	Generating Samples and Making Predictions
	Learning Network form Data
	Network Estimation for Given Node Order
	Model Selection with AIC and BIC criteria
	Stochastic Search in the Space of Orders
	Including Prior Probabilities

	Conclusion

