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Abstract

We describe an R package cts for continuous time autoregressive model fitting, which
can be particularly useful with unequally sampled time series. The estimation is based
on the application of the Kalman filter. The paper provides the methods and algorithms
implemented in the package, including parameter estimation, spectral analysis, forecast-
ing, model checking and Kalman smoothing. The package contains R functions which
interface underlying Fortran routines. The package is applied to geophysical and medical
data for illustration.
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1. Introduction

A discrete time autoregressive model is a common tool for the analysis of time series data.
An important alternative is the continuous time series (CTS) autoregressive model, which has
unique advantages over a discrete time series model. For instance, a CTS model can provide
interpolates between observations, generate signal derivatives and fit unequally sampled data.
There is a rich literature on continuous autoregressive (CAR) model. Jones (1981) developed
an estimation method through the application of the Kalman filter. Belcher, Hampton, and
Tunnicliffe Wilson (1994) further extended to higher order model with rapid and reliable con-
vergence of parameter estimates. Also see Tunnicliffe Wilson and Morton (2004) for additional
description. Wang, Woodward, and Gray (2009) utilized the methods in Belcher et al. (1994)
for fitting time varying nonstationary models. The CAR models have seen practical usages
in many fields including astronomics, medicine and economics (Whitelock, Feast, Marang,
and Breedt 2004; Belcher et al. 1994; Bergstrom 1990). Since the technical details for the
Kalman filter on CAR models are scattered in the literature, we give a thorough presentation
in this paper, which provides a foundation for the implementations in the R (R Development
Core Team 2011) package cts (Tunnicliffe Wilson and Wang 2011) for fitting CAR models
with discrete data. The cts package contains typical time series applications including spec-
tral estimation, forecasting, diagnostics, smoothing and signal extraction. The application is
focused on unequally spaced data although the techniques can be applied to equally spaced
data as well. The paper is organized as follows. Section 2 summarizes the methods from
which the cts package was developed. Section 3 outlines the implementations in the package.
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Section 4 illustrates the capabilities of cts with two data sets. Finally, Section 5 concludes
the paper.

2. Methods

2.1. CAR model

Suppose we have data x, observed on time ¢, for 7 = 1,2,...,n. We assume noise-affected
observations =, = y(t;) + 7, and y(t,) follows a p-th order continuous time autoregressive
process Y (t) satisfying

Y1)+ a YP D)+ 4 ap 1 YY) + 0,V (1) = €(2), (1)

where Y)(t) is the ith derivative of Y (t) and €(t) is the formal derivative of a Brownian
process B(t) with variance parameter o? = var{B(t + 1) — B(t)}. In addition, it will be
assumed that 7, is a normally distributed random variable representing observational error,
uncorrelated with €(t), and E(n;) = 0; E(n;n) = 0, for j # k; E(n2) = vo®.

The operator notation of model (1) is a(D)Y (t) = €(t) where

(D) = DP + oy DP 1 4 ..+ ap 1D + a, (2)

where D is the derivative operator. The corresponding characteristic equation is then given
by

afs) =P+ asP 4L+ ap_15+ as =0. (3)
To assure the stability of the model, a parameterization was constructed on the zeros 71, ..., 7
of a(s) (Jones 1981), i.e.,
P
a(s) = [T(s = ). (4)
i=1

The model in the cts package follows the reparameterization (Belcher et al. 1994):
D) (t) = (1 + D/K)"e(t), (5)

with scaling parameter x > 0. This introduces a prescribed moving average operator of order
p — 1 into the model, which makes the model selection convenient along with other theoretic
benefits described in Belcher et al. (1994). In practice model (5) has been found to fit data
quite well without the need for an observation error term.

The power spectrum of the pth order continuous process (5) is defined by

L | (1 +i2mf/r)p1

a(i2rf)

The system frequencies are determined by the roots of (4). In fact, the representation of (4)
breaks a pth order autoregressive operator into its irreducible first and quadratic factors that

have complex roots. A quadratic factor (s — rox_1)(s — rox) with complex poles is associated

RG]
2

Gy(f) = (6)

with “cyclic” behavior in data, given at f = , where |3(rgx)| is the absolute value of
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the imaginary part of ror. Actually, the true cyclic behavior with these cycles is present in
the autocorrelations and only approximately present in the realization itself. For a first order
factor with the pole rg, the system frequency is f = 0 if rp < 0, and f = 0.5 if r; > 0, which
corresponds to a white noise process.

2.2. Kalman filtering

This section deals with the details related to applying the Kalman filter to estimate the
parameters of model (5), following Jones (1981) and Belcher et al. (1994). To apply the
Kalman filter, it is required to rewrite model (5) to a state space form, which may be found
in Wiberg (1971). Let the unobservable state vector 0(t) = (2(t),2'(t), ...,2?~D())T. The
state equation is then given by

0 = A + Re, (7)
where ) )
0 1 0
0 0 0
A= (8)
0 0 1
_—ap —0p_1 ... —041_
and
R=1[0 0 ... 1]. 9)
The observation equation is given by
Tr = HH(tT) + Ny (10)

where the elements of the 1 X p vector H are given by

-1 )
m:(? 1>/ﬁz—1 i= 1. (11)
P

Suppose that A can be diagonalized by A = UDU ™!, where

M1 1 1 7
T1 T9 Tp
2 2 2
U= | "1 T3 p |, (12)
p—1  p-—1 p—1
LT1 T2 p |

1,72, ...,Tp are the roots of a(s), and D is a diagonal matrix with these roots as its diagonal
elements. In this case, we let § = U1, and the state equation becomes

Y =Dy + Je, (13)
where J = U~'R. Consequently, the observation equation becomes

&y = Gip(t;) + 1, (14)
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where G = HU. The necessary and sufficient condition for the diagonalization of A is that
A has distinct eigenvalues. The diagonal form not only provides computational efficiency,
but also provides an interpretation of unobserved components. The evaluation of Ty , = eAdr
(standard form) is required where 6, = t; — t;_1. For a review of computations related to
the exponential of a matrix, see Moler and Loan (2003). For the diagonal form, Ty, , = ePor
is diagonal with elements €”:%~. When a diagonal form is not available, a numerical matrix
exponential evaluation is needed.

To start the Kalman filter recursions, initial conditions are in demand. For a stationary model,
the unconditional covariance matrix of state vector 6(t) is known (Doob 1953) and used in
Jones (1981) and Harvey (1990, §9.1). The initial state for both standard and diagonalized
version can be set as 6y = 0 and 1y = 0, respectively. The stationary covariance matrix @)
satisfies

Q= 02/ e RR'e™'*ds. (15)
0
When A can be diagonalized, it is straightforward to show that
Qu, ; = *U2Jijj/(7’i +75), (16)

where jj and 7; are complex conjugates of .J; and r;, respectively.

The scale parameter x can be chosen approximately as the reciprocal of the mean time
between observations. The algorithm of Kalman filter for the diagonal form is presented
below. Starting with an initial stationary state vector of ¢y = 1(0|0) = 0 and the initial
stationary state covariance matrix @ (16), the recursion proceeds as follows:

1. Predict the state. Let

a diagonal matrix, then
Y(trlte—1) = Ty (tr—1lte—1). (18)
2. Calculate the covariance matrix of this prediction:
Py (trlte—1) =Ty (Py(tr-1lte—1) — Qu)Typr + Qu- (19)

3. Predict the observation at time #:

2y (trltr—1) = G (te[te-1) (20)
4. Calculate the innovation:
vulte) = 2 (te) — p(tilter) (21)
and variance .
Fy(tr) = GPy(te|te—1)G +V (22)

5. Update the estimate of the state vector:

G(trlte) = O(telth-1) + Py(tiltr—1)G'F, (tr)vy (th) (23)
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6. Update the covariance matrix:
Py(teltr) = Py(trlte—1) = Py(trlte—1)G'Fy (1) GPy (t|te-1) (24)

7. The unknown scale factor o2

log-likelihood is calculated by

can be concentrated out by letting o = 1 temporally. -2

log Ly . = Z log Fy(t) + nlog Z 3 (tr)/ Fy (te) (25)
t=1 t=1

The log-likelihood function (25) thus can be evaluated by a recursive application of the
Kalman filter, and a nonlinear numerical optimization routine is then used to determine
the parameter estimation. The unknown scale factor can then be estimated by

5= -3 w0/ Fult). (26)
t=1

When a diagonal form is not stable, a standard form Kalman filter recursion may be found in
Belcher et al. (1994) or Wang (2004). However the computational load is reduced dramatically
with the diagonal form since matrix D is diagonal.

When the nonlinear optimization is successfully completed, in addition to the maximum
likelihood estimation of the parameters and error variances, the Kalman filter returns the
optimal estimate of the state and the state covariance matrix at the last time point. The
forecasting of the state, state covariance matrix and observation can be continued into future
desired time points using equations from (17) to (20).

2.3. Model selection

To identify a model order, Belcher et al. (1994) proposed a strategy corresponding to the
reparameterization. Start with a large order model, and obtain the parameter vector ¢ and
its covariance matrix Vj, we then make a Cholesky decomposition such that qul = L¢L;
where Ly is a lower triangular matrix, and define the vector ¢, = Liﬁqb and construct the

sequence AIC; = — Z,’f:l tii + 2k. The index of the minimum value of AIC) suggests a
preferred model order. In addition, if the true model order p is less than the large value used
for model estimation, then for i > p the t-statistics may be treated as normal-distributed
variables, so that the deviation from their true values of 0 will be small.

2.4. Diagnostics

The assumptions underlying the model (7) and (10) are that the disturbances €(t) and 7,
are normally distributed and serially independent with constant variances. Based on these
assumptions, the standardized one-step forecast errors

e(tk) = U(tk)/\/ F(tk) k= 1, ey (27)

are also normally distributed and serially independent with unit variance. Hence, in addition
to inspection of time plot, the QQ-normal plot can be used to visualize the ordered residuals
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against their theoretical quantiles. For a white noise sequence, the sample autocorrelations
are approximately independently and normally distributed with zero means and variances
1/n. Note that for a purely random series, the cumulative periodogram should follow along a
line y = 22 where x is frequency. A standard portmanteau test statistic for serial correlation,
such as the Ljung-Box statistic, can be used as well.

2.5. Kalman smoothing

For a structural time series model, it is often of interest to estimate the unobserved components
at all points in the sample. Estimation of smoothed trend and cyclical components provides
an example. The purpose of smoothing at time ¢ is to find the expected value of the state
vector, conditional on the information made available after time ¢. In this section, a fixed-
interval smoothing algorithm (Harvey 1990, §3.6.2) is implemented with modifications for the
model considered, though a more efficient approach is possible, see the discussion in Durbin
and Koopman (2001, §4.3). Estimating unobserved components relies on the diagonal form
which provides the associated structure with the corresponding roots r1, ...r,. The smoothing
state and covariance matrix are given by

Us(teltn) = P (telte) + P (tk) (s (trtrltn) — ¥ (tes1lte)) (28)
Py(trltn) = P(txlte) + P*(te) (Ps(teta|tn) — P(tiralte)) P*(t) (29)

where
P*(ty) = P(tr|te) Tyri1 P~ (b [r) (30)

and Ty 41 = ePltrr2—te1) - and Twﬂ—_l,_l and P(ty|t;) are complex conjugates. To start the
recursion, the initial values are given by 1s(t,|tn) = ¥(tn|tn) and Ps(t,|tn) = P(tn|tn). The
observed value x,, in the absence of measurement error, is the sum of contributions from the
diagonalized state variables 1, i.e., z, = Zj Gjvj(tr). Therefore, the original data may be
partitioned, as in Jenkins and Watts (1968, §7.3.5). Any pair of two complex conjugate zeros
of (4) is associated with two corresponding state variables whose combined contribution to =,
represents a source of diurnal variation. One possible real zero contributes a low frequency
component and the other possible real zero contributes a white noise component. Hence, the
contributions G1); at every time point can be estimated from all the data using the Kalman
smoother as described above.

3. Implementation

The cts package utilizes the Fortran program developed by the authors of Belcher et al. (1994),
with substantial additional Fortran and R routines. In this process, two Fortran subroutines
in Belcher et al. (1994) have to be substituted since they belong to commercial NAG Fortran
Library, developed by the Numerical Algorithms Group. One subroutine was to compute the
approximate solution of a set of complex linear equations with multiple right-hand sides, using
an Lower-Upper LU factorization with partial pivoting. Another subroutine was to find all
roots of a real polynomial equation, using a variant of Laguerre’s Method. In the cts package,
these subroutines have been replaced by their public available counterparts in the LAPACK
& BLAS Fortran Library. All the Fortran programs were written in double precision.
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Several supporting R functions are available in the cts package that extract or calculate useful
statistics based on the fitted CAR model, such as model summary, predicted values and model
spectrum. In particular, the function car returns objects of class car, for which the follow-
ing methods are available: print, summary, plot, predict, AIC, tsdiag, spectrum,
kalsmo. A detailed description of these functions is available in the online help files. Here a
brief introduction will be given and the usage will be illustrated in the next section. The model
fitting results can be graphical displayed with plot function. With argument type equal to
"spec", "pred" and "diag", respectively, a figure can be plotted for spectrum, predicted val-
ues and model diagnostic checking, respectively. Three types of prediction exist: forecast past
the end, forecast last L-step, forecast last L-step update. This can be achieved by invoking
argument fty=1, 2, 3, respectively. For instance, car(data, ctrl=car_control(fty=1,
n.ahead=10)) can predict 10 steps past the end. Function AIC can generate both t-statistic
and AIC values following section 2.3. Function tsdiag follows section 2.4 to provide model
diagnostic checking. Indeed, this function provides the backbone for function plot with
argument type="diag". Function kalsmo implements the Kalman smoothing described in
section 2.5. In an earlier version of package, specifying trace=TRUE in car_control could
trigger annotated printout of information during the fitting process and major results for the
fitted model. However, since this call invoked print with Fortran, the printout is essentially
suppressed in the current version.

The source version of the cts package is freely available from the Comprehensive R Archive
Network (http://CRAN.R-project.org). The reader can install the package directly from
the R prompt via

R> install.packages("cts")

All analyses presented below are contained in a package vignette. The rendered output of the
analyses is available by the R-command

R> library("cts")
R> vignette("kf", package = "cts")

To reproduce the analyses, one can invoke the R code

R> edit(vignette("kf", package = "cts"))

4. Data examples

Two data examples in Belcher et al. (1994) are used to illustrate the capabilities of cts. A
detailed description of the data can be found in the original paper. Since some analysis
here reproduces the results in Belcher et al. (1994), we also ignore a lengthy discussion for
brevity. These analyses were done using R version 2.10.1 (2009-12-14) and the operating
system i686-pc-cygwin.

4.1. Geophysical application

Belcher et al. (1994) analyzed 164 measurements of relative abundance of an oxygen isotope
in an ocean core. These are unequally spaced time points with an average of separation of
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2000 years. Unequally spaced tick marks indicate the corresponding irregularly sampled times
in Figure 1.

R> library("cts")
R> data("V22174")

R> plot(V22174, type = "1", xlab = "Time in kiloyears",
+ ylab = un)
R> rug(v22174[, 1], col = "red")

10

05

00

HHHHHHHHHHH\I\ LU L] \I\ I HHlH AT ;
o

200 400 600 800

Time in kiloyears

Figure 1: Oxygen isotope series.

We first fit a model of order 14 to the data, following Belcher et al. (1994). The scale
parameter is chosen to be 0.2 as well. The estimation algorithm converges rather quickly
as demonstrated in the following printout, which shows the sum of squares and the value of
¢14 at each iteration. The results are similar to Table 1 of Belcher et al. (1994), which took
30 minutes on a PC386/387 machine to carry out the computing. These authors expected
that simple improvements to the program’s code could substantially speed up the procedure.
Despite that the current cts package has no intent to accomplish such a task, running the
above car function took only 0.9 second, on an ordinary desktop PC (Intel Core 2 CPU, 1.86
GHz). Such a dramatic efficiency improvement is unlikely driven by software change, but by
hardware advancement in the last 20 years.

R> V22174 .car14 <- car(V22174, scale = 0.2, order = 14)

R> tabl <- cbind(V22174.car14$tnit, V22174.carl4$ss, V22174.car14$bit[,
+ 147)

R> colnames(tabl) <- c("Iteration", "Sum of Squares", "phi_14")

R> print(as.data.frame(round(tabl, 5)), row.names = FALSE,
+ print.gap = 8)
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Iteration Sum of Squares phi_14
0 12.92737 0.00000
1 8.32272 -0.16453
2 8.24798 -0.23762
3 8.24156 -0.21668
4 8.24013 -0.23189
5 8.23935 -0.22256
6 8.23899 -0.23043
7 8.23877 -0.22493
8 8.23866 -0.22931
9 8.23859 -0.22613

Following section 2.3, a model selection was conducted with AIC which generates exactly the
same results as Table 2 of Belcher et al. (1994). Accordingly, the first-order value for the
AIC shows the most rapid drop from the base-line of 0. Consequently a large t-value of 3.20
suggests order 7 while the minimum AIC implies order 9. For illustration, a model order 7
was selected as in Belcher et al. (1994).

R> AIC(V22174.car14)

Call:
car(x = V22174, scale = 0.2, order = 14)

Model selection statistics

order t.statistic AIC
1 -8.66 -72.93
2 1.72 -73.89
3 -1.35 -73.72
4 3.56 -84.41
5 3.61 -95.47
6 0.89 -94.27
7 3.20 -102.50
8 2.15 -105.14
9 -2.00 -107.16
10 -0.82 -105.83
11 0.71 -104.34
12 0.04 -102.34
13 -1.91 -103.99
14 -1.92 -105.66

R> V22174 .car7 <- car(V22174, scale = 0.2, order = 7)
R> summary(V22174.car7)

Call:
car(x = V22174, scale = 0.2, order = 7)
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Order of model = 7, sigma™2 = 1.37e-09

Coefficients and mean (standard errors):
1 2 3 4 5 6 7 Mean
-0.501 0.355 0.085 -0.022 0.605 -0.371 0.483 0.173
S.E. 0.108 0.111 0.060 0.071 0.084 0.124 0.112 0.022

The estimated spectra for both models of order 14 and 7 are displayed on logarithmic (base
10) scale in Figure 2. Both two models indicate three peaks, while for the model of order 14
the resolution is much improved.

R> par(mfrow = c(2, 1))
R> spectrum(V22174.car14)
R> spectrum(V22174.car7)

CAR (14) spectrum

Q _
—~ ™
m 1
R) |
5 <]
g v
o —]
” Lo
I T T T T T
0.00 0.05 0.10 0.15 0.20
frequency
CAR (7) spectrum
S 32
1S |
2
I3 |
()
& g
I T T T T T
0.00 0.05 0.10 0.15 0.20
frequency

Figure 2: Spectra from fitted models for the oxygen isotope series.



To check model assumptions as described in section 2.4, Figure 3 displays a plot of the stan-
dardized residuals, the ACF of the residuals, cumulative periodogram of the standardized
residuals, and the p-values associated with the Ljung-Box statistic. Visual inspection of the
time plot of the standardized residuals in Figure 3 shows no obvious patterns, although one
outlier extends 3 standard deviations. The ACF of the standardized residuals shows no appar-
ent departure from the model assumptions, i.e., approximately independently and normally
distributed with zero means and variances 1/n at lag > 0. The cumulative periodogram of
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standardized residuals follows the line y = 2z reasonably well. The Ljung-Box statistic is not

significant at the lags shown.

R> tsdiag(V22174.car7)

Standardized Residuals
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Figure 3: Model diagnostics for the oxygen isotope series.

4.2. Medical application

Belcher et al. (1994) analyzed 209 measurements of the lung function of an asthma patient.
The time series is measured mostly at 2 hour time intervals but with irregular gaps, as
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Figure 4: Measurements of the lung function.

demonstrated by the unequal space of tick marks in Figure 4.

R> data("asth")

R> plot(asth, type = "1", xlab = "Time in hours", ylab = "")
R> rug(asth[, 1], col = "red")

To apply cts, a scale parameter 0.25 was chosen and a model of order 4 was fitted to the data
(Belcher et al. 1994).

R> asth.car4 <- car(asth, scale = 0.25, order = 4, ctrl = car_control(n.ahead = 10))

R> summary(asth.car4)

Call:
car(x = asth, scale = 0.25, order = 4, ctrl = car_control(n.ahead = 10))

Order of model = 4, sigma™2 = 0.779

Coefficients and mean (standard errors):
1 2 3 4 Mean
0.093 0.037 0.015 -0.701 495.544
S.E. 0.075 0.071 0.077 0.096 4.524

The log-spectrum (base 10) of the fitted model is shown in Figure 5. The spectral peak
indicates a strong diurnal cycle in the data, along with a low frequency. With function factab,
the model has one diurnal frequency 0.041, a low frequency component and the other close to
white noise component. We thus decomposed the original time series into three corresponding
components via the Kalman smoother as shown in Figure 6. Finally, we predicted the last 10
steps past the end of time series in Figure 7.
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R> spectrum(asth.car4)

CAR (4) spectrum
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Figure 5: Spectrum from fitted model for the lung function measurements.

R> factab(asth.car4)

Call:
factab(object = asth.car4)

Characteristic root of original parameterization in alpha

1 2 3 4
-0.016+0.0001 -0.020+0.255i -0.020-0.2551i -7.246+0.0001

Frequency

1 2 3 4
0.000 0.041 0.041 0.000

13
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R> asth.kalsmo <- kalsmo(asth.car4)
R> par(mfrow = c(3, 1))

R> kalsmoComp(asth.kalsmo, comp = 1, xlab = "Time in hours")
R> kalsmoComp (asth.kalsmo, comp = c(2, 3), xlab = "Time in hours")
R> kalsmoComp (asth.kalsmo, comp = 4, xlab = "Time in hours")
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Figure 6: Components of the lung function measurements. From top to bottom: trend (low
frequency) component, diurnal component, and white noise component.
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R> predict(asth.car4, xlab = "Time in hours")

Call:
car(x = asth, scale = 0.25, order = 4, ctrl = car_control(n.ahead = 10))

1 2 3 4 5 6 7
Time 671.000 672.000 673.000 674.000 675.000 676.000 677.000
Predict 527.692 522.959 516.956 510.116 502.904 495.786 489.208
8 9 10
Time 678.000 679.000 680.000
Predict 483.561 479.165 476.245

00000 00 0FF

40 440 460 480 500 520 540 560

T T T T T T T
(@] 100 200 300 400 500 600

Time in hours
Figure 7: Forecasts (circles) for lung function measurements.

5. Conclusion

In this article we have outlined the methods and algorithms for fitting continuous time au-
toregressive models through the Kalman filter. The theoretical ingredients of Kalman filter
have their counterparts in the R package cts, which can be particularly useful with unequally
sampled time series data.
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