
Getting Genetic Data Into R

Rodney J. Dyer
Department of Biology

Virginia Commonwealth University

http://dyerlab.bio.vcu.edu

Synopsis

Here you will learn to get genetic data files into the R environment using the gstudio package. This package
was designed to handle marker-based genetic data (e.g., not sequences per se though it can use SNP’s and
haplotypes) as well as additional data that is typically collected along with individuals.

To get started, first import the gstudio package as:

> require(gstudio)

The Locus Class

The locus class is the fundamental class that handles marker-based genetic data. At present it can handle
dominant and co-dominant marker types at any ploidy level. Internally, alleles are stored as a character

vector and by default they are not sorted so that the alleles will be presented in the order that you import
them (e.g., a 3:1 locus instead of a 1:3 locus). I do not sort these because it may be necessary to know the
phase of the alleles in a locus and sorting them would remove that information. If you abhor the sight of a
genotype 3:1 then sort it earlier and then try to figure out why you have this affliction.

> loc1 <- Locus(c(120, 122))

> loc1

120:122

> loc2 <- Locus(c("A", "T"))

> loc2

A:T

Note, that internally the alleles are translated into character objects. In all the functions dealing with
alleles both integer and character arguments are accepted. There are several methods associated with the
Locus, the main ones that you will be working with are shown below by example. See help("Locus-class")
for a complete discussion.

> loc3 <- Locus(c(122, 122))

> loc3

122:122

> is.heterozygote(loc3)

[1] FALSE

> loc3[2]

1

[1] "122"

> loc3[2] <- "124"

> is.heterozygote(loc3)

[1] TRUE

> length(loc3)

[1] 2

> summary(loc3)

Class : Locus

Ploidy : 2

Aleleles : 122,124

Another useful method of the Locus class is the as.multivariate function. This translates the locus into
a multivariate coding vector so you can do some real statistics with it. Here is an example:

> loc4 <- Locus(c("A", "C"))

> loc4

A:C

> all.alleles <- c("A", "G", "C", "T")

> all.alleles

[1] "A" "G" "C" "T"

> as.vector(loc4, all.alleles)

[1] 1 0 1 0

The Population Class

You can think of a Population is a collection of one or more individuals. While no man is an island, an
individual is just a population of N = 1. Each individual, can have any number of Locus objects along with
other non-genetic information associated with them (e.g., latitude, longitude, dbh, hair color, etc.). You
create a population by passing it data columns in much the same way as how you create a data.frame (in
fact, the Population class is just a data.frame that knows how to deal with Locus objects and how to give
you population genetic summaries).

> strata <- c("A", "A", "B", "B", "B")

> TPI <- c(Locus(c(1, 2)), Locus(c(2, 3)), Locus(c(2, 2)), Locus(c(2,

+ 2)), Locus(c(1, 3)))

> PGM <- c(Locus(c(4, 4)), Locus(c(4, 3)), Locus(c(4, 4)), Locus(c(3,

+ 4)), Locus(c(3, 3)))

> Env <- c(12, 20, 14, 18, 10)

> thePop <- Population(Pop = strata, Env = Env, TPI = TPI, PGM = PGM)

> thePop

Pop Env TPI PGM

1 A 12 1:2 4:4

2 A 20 2:3 4:3

3 B 14 2:2 4:4

4 B 18 2:2 3:4

5 B 10 1:3 3:3

> summary(thePop)

2

Pop Env TPI PGM

Length:5 Min. :10.0 1:2:1 3:3:1

Class :character 1st Qu.:12.0 1:3:1 3:4:1

Mode :character Median :14.0 2:2:2 4:3:1

Mean :14.8 2:3:1 4:4:2

3rd Qu.:18.0

Max. :20.0

> names(thePop)

[1] "Pop" "Env" "TPI" "PGM"

Accessing Population Elements

You can also add data to a Population or remove it

> WXY <- c(Locus(c(122, 124)), Locus(c(124, 126)), Locus(c(124,

+ 124)), Locus(c(122, 124)), Locus(c(126, 126)))

> thePop$WXY <- WXY

> thePop

Pop Env TPI PGM WXY

1 A 12 1:2 4:4 122:124

2 A 20 2:3 4:3 124:126

3 B 14 2:2 4:4 124:124

4 B 18 2:2 3:4 122:124

5 B 10 1:3 3:3 126:126

> thePop$WXY <- NULL

> thePop

Pop Env TPI PGM

1 A 12 1:2 4:4

2 A 20 2:3 4:3

3 B 14 2:2 4:4

4 B 18 2:2 3:4

5 B 10 1:3 3:3

Similar to the previous constructs, you can access elements within a Population using either numerical
indexes, slices, or names.

> ind3 <- thePop[3,]

> ind3

Pop Env TPI PGM

1 B 14 2:2 4:4

> thePop[thePop$Pop == "B",]

Pop Env TPI PGM

1 B 14 2:2 4:4

2 B 18 2:2 3:4

3 B 10 1:3 3:3

> thePop[thePop$Env < 15,]

Pop Env TPI PGM

1 A 12 1:2 4:4

2 B 14 2:2 4:4

3 B 10 1:3 3:3

3

> TPI <- thePop[, 3]

> print(TPI)

[[1]]

1:2

[[2]]

2:3

[[3]]

2:2

[[4]]

2:2

[[5]]

1:3

Getting Data Types within Population Objects

Since a Population can hold several types of data and the main way to get data from one is to know its name,
the method column.names can provide you quick access to all the data names of a specific R class.

> strata <- column.names(thePop, "character")

> strata

[1] "Pop"

> column.names(thePop, "Locus")

[1] "TPI" "PGM"

> column.names(thePop, "numeric")

[1] "Env"

Partitioning Population Objects

A Population object can contain individuals with several other categorical data variables (e.g., population,
region, habitat, etc.) and it is relatively easy to get single elements (as shown in the slicing above) as
well as complete partitions. It should be pointed out that when you partition a Population on some
stratum, it will remove that stratum from all the partitions though it will leave the other partitions in the
subpopulations.

> subpops <- partition(thePop, stratum = "Pop")

> print(subpops)

$A

Env TPI PGM

1 12 1:2 4:4

2 20 2:3 4:3

$B

Env TPI PGM

1 14 2:2 4:4

2 18 2:2 3:4

3 10 1:3 3:3

4

Generic Population Functions

The following generic functions are available for the Population class and work just like they do using other
data structures.

length The number of Individual objects (rows) in the Population.

dim The number or row and columns in the Population.

names The data column names.

summary A summary of the data columns in the Population.

show Dumps the Population to the terminal.

row.names Returns the names of the rows (they are integers so this isn’t too exciting).

Importing Data

OK, so typing all this stuff in is rather monotonous and will be a total pain if you have a real data set with
hundreds or thousands of individuals and a righteous amount of loci.

The main function for importing data from a text file into a Population object is read.population and
assumes the following about your data:

1. You have your data in a TEXT file that is comma separated (*.csv).

2. You have a header row on your file with the names of each column of data. Headers should not have
spaces in them, R will replace them with a period.

3. Genetic marker that have more than one allele are encoded using a colon ”:” separating alleles. This
means that the diploid microsatellite locus with alleles 122 & 128 would be in a single column as
122:128. This allows you to have triploid, tetraploid, etc markers with not other encoding.

4. Haploid markers are do not need a ”:”, just put in the haplotype. With haploid data, searching for ”:”
won’t work so you need to pass the number of haploid loci as the optional parameter num.haploid to
read.population. The haploid loci must be the last num.haploid right-most columns in your data
set.

5. All alleles will be treated internally as a character string (except for in a few cases such as estimating
ladder-distance). So you can use all alphanumeric characters for alleles but stay away from punctuation.

6. Missing data should be encoded as NA (for the whole genotype NA:NA is just silly).

7. If you have a mixture of genetic data types, columns with ”:” will be automatically interpreted as Locus
objects. You can mix in haploid data types by putting them in the last, right-most, columns and pass
the optional parameter num.haploid with the number columns to put as haploid.

An example data file may look like:

Population,Lat,Lon,PGM,TPI

Loreto,22.25,-102.01,120:122,A:T

Loreto,22.25,-102.01,122:124,A:C

Cabo,22.88,-109.9,120:120,A:A

Cabo,22.88,-109.9,NA,A:T

This file can be loaded as (assuming getwd() contains the file)

> pop <- read.population(file = "testData.csv")

> summary(pop)

5

Population Lat Lon PGM TPI

Cabo :2 Min. :22.25 Min. :-109.9 120:120:1 A:A:1

Loreto:2 1st Qu.:22.25 1st Qu.:-109.9 120:122:1 A:C:1

Median :22.57 Median :-106.0 122:124:1 A:T:2

Mean :22.57 Mean :-106.0 NA :1

3rd Qu.:22.88 3rd Qu.:-102.0

Max. :22.88 Max. :-102.0

In general, if you can open your file using read.table, then read.population should work.

Example Data Sets

The gstudio package comes with some example data sets already loaded. To access these data sets, use the
data function and they will be put into your workspace (already formatted as Population objects).

> data(araptus_attenuatus)

> summary(araptus_attenuatus)

Species Cluster Pop Individual Lat

CladeA: 75 CBP-C :150 32 : 19 101_10A: 1 Min. :23.08

CladeB: 36 NBP-C : 84 75 : 11 101_1A : 1 1st Qu.:24.59

CladeC:252 SBP-C : 18 Const : 11 101_2A : 1 Median :26.25

SCBP-A: 75 12 : 10 101_3A : 1 Mean :26.25

SON-B : 36 153 : 10 101_4A : 1 3rd Qu.:27.53

157 : 10 101_5A : 1 Max. :29.33

(Other):292 (Other):357

Long LTRS WNT EN EF

Min. :-114.3 01:01:147 03:03 :108 01:01 :225 01:01:219

1st Qu.:-113.0 01:02: 86 01:01 : 82 01:02 : 52 01:02: 52

Median :-111.5 02:02:130 01:03 : 77 02:02 : 38 02:02: 90

Mean :-111.7 02:02 : 62 03:03 : 22 NA : 2

3rd Qu.:-110.5 NA : 11 01:03 : 7

Max. :-109.1 03:04 : 8 03:04 : 6

(Other): 15 (Other): 13

ZMP AML ATPS MP20

01:01: 46 08:08 : 51 05:05 :155 05:07 : 64

01:02: 51 07:07 : 42 03:03 : 69 07:07 : 53

02:02:233 07:08 : 42 09:09 : 66 18:18 : 52

NA : 33 04:04 : 41 02:02 : 30 05:05 : 48

NA : 23 07:09 : 14 05:06 : 22

07:09 : 22 08:08 : 9 11:11 : 12

(Other):142 (Other): 20 (Other):112

6

