
Mixed stock analysis in R: getting started with the

mixstock package

Ben Bolker

August 3, 2009

> Rver <- paste(R.version$major, R.version$minor, sep = ".")

1 Introduction1

The mixstock package is a set of routines written in the R language [7]2

for doing mixed stock analysis using data on markers gathered from source3

populations and from one or more mixed populations. The package was de-4

veloped for analyzing mitochondrial DNA (mtDNA) markers from sea tur-5

tle populations, but should be applicable to any case with discrete sources,6

discrete mixed populations, and discrete markers. (However, I do refer to7

sources as “rookeries” and markers as “haplotypes” throughout this docu-8

ment, and you will see other echoes of its origins, e.g. the number of markers9

is internally stored as variable H and the number of sources is stored as R.)10

The package is intended to be self-contained, but some familiarity with R or11

S-PLUS will definitely be helpful. (Some familiarity with your computer’s12

operating system, which is probably Microsoft Windows, is also assumed.)13

The statistical methods implemented in the package are described in [1] and14

[6].15

This package is in the public domain (GNU General Public16

License), is ©2008 Ben Bolker and Toshinori Okuyama, and comes17

with NO WARRANTY. Please suggest improvements to me (Ben18

Bolker) at bolker@zoo.ufl.edu.19

If you are feeling impatient and confident, turn to “Quick Start” (sec-20

tion 6).21

1

2 Installation22

You can skip this section if you are reading this file via the vignette() com-23

mand in R— that means you’ve already successfully installed the package.24

To get started, you will have to download and install the R package,25

a general-purpose statistics and graphics package, from CRAN (the “Com-26

prehensive R Archive Network”); go to http://www.r-project.org and27

navigate from there1
28

The following installation instructions assume you are using a “modern”29

Microsoft Windows system (tested on 2000 and XP); it is possible to use R,30

and the mixstock package, on other operating systems — please contact the31

authors for more information. (The package has been developed under Linux32

and runs under Windows; most of it should run under MacOS as well, but it33

is not as well supported and you will have to build the package from sources.34

To run hierarchical models using WinBUGS, you need to have WINE set35

up on Linux; I’m not sure about MacOS.) The setup file is about 17M,36

and R takes up about 40M of disk space. If you are running an antivirus37

package that is configured to check the signatures of executable files before38

they run, make sure you turn it off or register the new files installed by R39

before proceeding. You may also have some difficulty downloading packages40

if you have a firewall running on your computer — if you have trouble, you41

may want to (temporarily, at your own risk!) disable it.42

Once you have downloaded and installed R, start the R program. The43

setup program should have asked whether you want to add a shortcut to44

the desktop or the Start menu: if you didn’t, you will have to search for45

a file called Rgui.exe, which probably lives somewhere (on Windows) like46

Program Files\R\R-2.9.1\bin depending on what version of R you are47

using and where you decided to install it. R will open up a window for you48

with a command prompt (>), at which you can type R commands. (Don’t49

panic.)50

You can exit R by selecting File/Exit from the menus, or by typing51

q() at the command prompt. In general, if you want help on a particular52

command (e.g. uml) you can type a question mark followed by the command53

1if you are in the US and using Windows, you can go directly to http://cran.us.

r-project.org/bin/windows/base/: you will need to download a file called R-x.y.z-

win32.exe which will install R for you, when executed; x.y.z stands for the current
version of R (2.9.1 as of August 3, 2009). Otherwise, see http://www.r-project.org/

mirrors.html for a list of alternative “mirror sites” closer to you and navigate through
the web pages to find a version to install (if you are not using Unix and/or an expert, you
will want to look for a binary version of R).

2

name (e.g. ?uml)54

You will next need to install the mixstock package and two other aux-55

iliary packages, over the WWW, from within R (you will need to maintain56

a connection to the internet for this piece, although it is also possible to do57

this step off-line). Within R, at the command prompt, type the following58

commands:59

> install.packages("mixstock")

> install.packages("plotrix")

> install.packages("coda")

> install.packages("abind")

> install.packages("R2WinBUGS")

In each case, answer y to whether you want to delete the source files;60

you shouldn’t need them again.61

(If you don’t have a convenient internet connection, you can also down-62

load the .zip files corresponding to the different packages and install them by63

going to the Packages menu within R and choosing Install from local64

zip file.)65

3 Loading the mixstock package and reading in66

data67

Start every session with the mixstock package by typing68

> library(mixstock)

at the command prompt; this loads the mixstock and auxiliary packages.69

The package can read plain text data files that are separated by white70

space (spaces and/or tabs) or commas. If your data are in Microsoft Excel,71

you should export them as a comma-separated (CSV) file. If they are in72

Word, save them as plain text. The expected data format is that each row of73

data represents a haplotype, each column except the last represents samples74

from a particular rookery, and the last column is the samples from the mixed75

population. Each row and column should be named; your life will be simpler76

if the names do not have spaces or punctuation other than periods in them77

(a common R convention is to replace spaces with periods, e.g. North.FL78

for ”North FL”). Do not label the haplotype column; R detects the presence79

of column names by checking whether the first row has one fewer item than80

the rest of the rows in the file.81

3

For example, a plain text file (with haplotype labels H1 and H2 and82

rookery labels R1–R3) could look like this:83

R1 R2 R3 mix84

H1 1 2 3 485

H2 3 4 5 686

Or a comma-separated file could look like this (note that the first line has87

only 4 elements while subsequent lines have 5).88

R1,R2,R3,mix89

H1,1,2,3,490

H2,3,4,5,691

If you have data from multiple mixed stocks, either put those data in a92

separate file or run them all together as columns of the same table (you will93

get a chance to specify how many sources and how many mixed populations94

there are):95

R1,R2,R3,mix1,mix296

H1,1,2,3,4,797

H2,3,4,5,6,098

To read in your data, you first need to make sure that R knows how99

to find them. The easiest thing to do is to use the menu options2 to move100

to a directory (i.e., folder) you will use for analysis, which should contain101

the data files you want to use and will contain R’s working files. You can102

use the getwd() (get working directory) command to see where you are,103

and list.files() to list the files in the current directory. Once you have104

changed to the appropriate directory, you can read in your data files and105

assign the data to a variable. For example, if you had a file with space-106

separated data called mydata.dat, you could it read it in by typing107

> mydata = read.table("mydata.dat")

and if you have a comma-separated file called mydata.csv you can use108

> mydata = read.csv("mydata.csv")

(You must specify the extension of the file — the letters after the dot.109

Sometimes your operating system will hide that information from you.)110

If you have your own data you can read it in now and follow along, or111

you can use the lahanas98raw data set that comes with the package [5]:112

2File/Change working directory on Windows, Misc/Change working directory or
Apple-D on MacOS

4

> data(lahanas98raw)

> mydata = lahanas98raw

To make sure that everything came out OK, type the name of the variable113

alone at the command prompt: e.g.114

> mydata

to print out the data, or115

> head(mydata)

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR feed
I 11 7 0 0 0 0 0 0 0 2
II 1 0 0 0 0 0 0 0 0 0
III 12 5 40 3 0 0 0 0 0 62
IV 0 0 1 0 0 0 0 0 0 0
V 0 1 0 27 13 0 0 0 0 10
VI 0 0 0 0 1 0 0 0 0 0

to print out just the first few lines, as shown above.116

Next, use the as.mixstock.data command to convert your data to a117

form that the package can use:118

> mydata = as.mixstock.data(mydata)

Once your data are converted in this way, you can use plot(mydata) to119

produce a summary plot of the data (Figure 1).120

The default plot is a barplot, with the proportions of each haplotype121

sampled in each rookery represented by a separate bar; the mixed population122

data are shown as the rightmost bar.3123

Before proceeding, you will need to “condense” your data set by (1) ex-124

cluding any haplotype samples that are found only in the mixed population125

(such “singleton” haplotypes will break some estimation methods, and pro-126

vide no useful information on turtle origins) and (2) lumping together all127

haplotypes that are found only in a single rookery and the mixed population128

(distinguishing among such haplotypes provides no extra information in our129

analyses, and may slow down estimation). You can do this by typing130

> mydata = markfreq.condense(mydata)

3you can change from the default colors by specifying a colors= argument: e.g. if you
have 10 haplotypes, colors=topo.colors(10) or colors=gray((0:9)/9). See ?gray or
?rainbow for more information.

5

FL

MEXI

CR

AVES

SURI

BRAZ

ASCE

AFRI

CYPR

Mixed

0.0 0.2 0.4 0.6 0.8 1.0

I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
XVII
XVIII
XIX
XX
XXI

Figure 1: Basic plot of turtle mtDNA haplotype data, using
plot(mydata,mix.off=2) (mix.off=2 leaves a slightly larger space between
the rookery and mixed stock data)

6

(To examine the condensed form of the data, you can print them by typing131

mydata at the command prompt, head(mydata) to see just the first few132

lines, or plot(mydata) to see the graphical summary [Figure 2].)133

Some data are already entered in the package in the condensed format;134

you can access them using the data() command.135

> data(lahanas98)

makes the haplotype frequency data from Lahanas et al. 1998 [5] available136

as variable lahanas98, while137

> data(bolten98)

makes the loggerhead data from Bolten et al. 1998 [3] available as bolten98,138

already converted and condensed: bolten98raw gives you the raw table.139

4 Stock analysis140

You can use the mixstock package to run various mixed-stock analyses on141

your data.142

4.1 Conditional and unconditional maximum likelihood143

You can do standard conditional maximum likelihood (CML) analysis using144

cml(mydata). to do: citations If you want to save the results, you can145

save them as a variable that you can then print, plot, etc. (Figure 3)146

> mydata.cml = cml(mydata)

> mydata.cml

Estimated input contributions:
FL MEXI CR AVES SURI BRAZ

5.463021e-02 9.453698e-05 7.833919e-01 1.485493e-01 1.333410e-06 1.333277e-06
ASCE AFRI CYPR

1.333144e-06 1.332877e-02 1.333010e-06

Estimated marker frequencies in sources:
(cml: no estimate)

method: cml

7

FL

MEXI

CR

AVES

SURI

BRAZ

ASCE

AFRI

CYPR

Mixed

0.0 0.2 0.4 0.6 0.8 1.0

I
II
III
IV
V
VI/VII
VIII
IX
X
XI/XII
XIII/XIV
XV/XVI/XVII/XVIII

Figure 2: Condensed haplotype data from Lahanas 1998 (plot(lahanas98,
mix.off=2, leg.space=0.4); leg.space=0.4 leaves more room for the leg-
end)

8

●

●

●

●

● ● ●
●

●

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

0.
0

0.
2

0.
4

0.
6

0.
8

FL MEXI CR AVES BRAZ AFRI

Figure 3: CML estimates for Lahanas 1998 data; plot(mydata.cml)

Assigning the results of cml to a variable doesn’t produce any output;147

you need to type the name of the variable to get the answers to print out.148

Plotting the data produces a simple plot of the estimated contributions149

from each source (with no error bars): see Figure 3.150

> plot(mydata.cml)

When you print CML results, R will tell you there is no estimate for the151

rookery frequencies, because CML assumes that the true rookery frequencies152

are equal to the sample rookery frequencies, rather than estimating the153

rookery frequencies independently.154

The default plot for estimation results plots points specifying the esti-155

mated proportions of the mixed population contributed by each rookery (to156

plot this with a logarithmic scale for the vertical axis, use plot(mydata.cml,log="y")).157

Standard unconditional maximum likelihood analysis (UML) takes a lit-158

tle longer, but is equally straightforward [8]:159

9

> mydata.uml = uml(mydata)

UML estimates also include estimates of the true haplotype frequencies160

in each rookery, which are printed with the contribution estimates (as be-161

fore, print these results by typing mydata.uml on a line by itself). As with162

CML, you can plot the results with plot(mydata.uml); by default this plot163

includes just the rookery contribution information. You can include the es-164

timated haplotype frequencies in the rookeries in the graphical summary as165

follows:166

> par(ask = TRUE)

> plot(mydata.uml, plot.freqs = TRUE)

> par(ask = FALSE)

(par(ask=TRUE) tells R to wait for user input between successive plots).167

4.2 Confidence intervals: CML and UML bootstrapping168

> mydata.umlboot = genboot(mydata, "uml")

will generate standard (nonparametric) bootstrap confidence intervals for a169

UML fit to mydata, by resampling the data with replacement 1000 times170

(by default). This is slow with a realistic size data set: it took 2.2 minutes171

to run 1000 bootstrap samples on my laptop. (You can ignore warnings about172

singular matrix, returning equal contribs, Error in qr.solve, etc..)173

You can find out the results by typing174

> confint(mydata.umlboot)

2.5% 97.5%
contrib.FL 1.000000e-04 1.853967e-01
contrib.MEXI 8.255739e-05 9.999000e-05
contrib.CR 6.349666e-01 8.915403e-01
contrib.AVES 6.152913e-02 2.417467e-01
contrib.SURI 1.079622e-09 2.764224e-02
contrib.BRAZ 5.715238e-10 1.844699e-05
contrib.ASCE 1.628700e-13 3.672277e-05
contrib.AFRI 1.232938e-13 3.999982e-02
contrib.CYPR 1.719070e-13 2.407764e-05

10

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●

●

●

●

● ● ●
●

●0.
0

0.
2

0.
4

0.
6

0.
8

FL MEXI CR AVES BRAZ AFRI

Figure 4: UML estimates with bootstrap confidence limits for Lahanas 1998
data: plot(mydata.umlboot)

11

4.3 Markov Chain Monte Carlo estimation175

> mydata.mcmc = tmcmc(mydata)

> mydata.mcmc

Estimated input contributions:
contrib.FL contrib.MEXI contrib.CR contrib.AVES contrib.SURI contrib.BRAZ
0.055518267 0.009706668 0.777704826 0.105769897 0.036445990 0.003427765
contrib.ASCE contrib.AFRI contrib.CYPR
0.004219192 0.005680010 0.001527386

Estimated marker frequencies in sources:
NULL

method: mcmc
prior strength: 0.1147742

> confint(mydata.mcmc)

2.5% 97.5%
contrib.FL 2.009853e-11 0.23823757
contrib.MEXI 1.726347e-17 0.07512486
contrib.CR 5.956080e-01 0.89165907
contrib.AVES 3.616006e-10 0.22608667
contrib.SURI 7.363441e-16 0.17303709
contrib.BRAZ 1.664703e-16 0.02785796
contrib.ASCE 8.067783e-17 0.03001117
contrib.AFRI 3.820586e-15 0.03642586
contrib.CYPR 9.118769e-18 0.01506706

> plot(mydata.mcmc)

do the standard things: print the results, show confidence intervals, plot176

the results. (By default the information on haplotype frequencies in rookeries177

is not saved — it tends to be voluminous — and so this does not show up178

in the MCMC results.)179

4.4 Convergence diagnostics for MCMC180

When you are running MCMC analyses, you have to check that the Markov181

chains have converged (i.e. that you’ve run everything long enough for a182

reliable estimate).183

12

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●

●

●

●

●

● ● ● ●0.
0

0.
2

0.
4

0.
6

0.
8

contrib.FL contrib.CR contrib.SURI contrib.AFRI

Figure 5: MCMC estimates with confidence limits for Lahanas 1998 data

13

4.4.1 Raftery and Lewis184

The command185

> diag1 = calc.RL.0(mydata)

(The final character is the numeral 0, not the letter O).186

runs Raftery and Lewis diagnostics on your data set: these criteria at-187

tempt to determine how long a single chain has to be in order for it to188

give “sufficiently good” estimates. This function actually runs an iterative189

procedure, repeating the chain until the R&L criterion is satisfied.190

The results consist of two parts:191

• diag1$current gives the diagnostics for the last chain evaluated. These192

diagnostics consist of the predicted required length of the “burn-in”193

period (a transient that is discarded); the total number of iterations194

required; a lower bound on the total number required; and a “depen-195

dence factor” that tells how much correlation there is between subse-196

quent values in the chain (see ?raftery.diag for more information).197

Here are the first few lines of diag1$current:198

> head(diag1$current)

Burn-in Total Lower bound Dependence factor
contrib.FL 18 1521 235 6.47
contrib.MEXI 14 926 235 3.94
contrib.CR 28 1804 235 7.68
contrib.AVES 4 312 235 1.33
contrib.SURI 15 1230 235 5.23
contrib.BRAZ 5 367 235 1.56

• diag1$suggested gives the history of how long each suggested chain199

was as we went along: the iterations stop once suggested >current,200

but note that there is a lot of variability in the results.201

> diag1$history

iteration Current Suggested
1 500 647
2 647 3882
3 3882 1804

14

4.4.2 Gelman and Rubin202

The command203

> diag2 = calc.GR(mydata)

tests the Gelman-Rubin criterion, which starts multiple chains from widely204

spaced starting points and tests to ensure that the chains “overlap” — i.e.,205

that between-chain variance is small relative to within-chain variance. The206

general rule of thumb is that the criterion should be below 1.2 for all pa-207

rameters in order for the chain to be judged to have converged properly.208

[4].209

5 Hierarchical models210

To run hierarchical models, you will need to use either WinBUGS (on Win-211

dows, or on Linux or MacOS via a program called WINE, or some sort of212

Windows emulator) or JAGS (a newer, less well-tested program, but one that213

runs more easily on a variety of platforms).214

Brief installation instructions for these programs:215

• WinBUGS: go to http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.216

shtml and follow the instructions there to download and install WinBUGS217

version 1.4 and get a license key. Then make sure that you’ve installed218

the R2WinBUGS package (install.packages("R2WinBUGS"))219

• JAGS: go to http://www-fis.iarc.fr/~martyn/software/jags/ and220

download the appropriate version for your computer. Then install221

R2jags (install.packages("R2jags",repos="http://r-forge.r-project.org"))222

(hopefully R2jags will be rolled into R2WinBUGS shortly, eliminating a223

little bit of complexity and the need to download and install a develop-224

ment version of the package)225

You can use the pm.wbugs() command (with the same syntax as tmcmc226

above) to run basic mixed stock analysis (although tmcmc will in general be227

much more convenient and efficient: pm.wbugs is included for completeness228

and testing of WinBUGS methods). Use mm.wbugs() to run many-to-many229

analyses, with R2WinBUGS (default, pkg="WinBUGS") or JAGS (pkg="JAGS").230

5.1 Many-to-many analysis231

The simmixstock2 command does basic simulation of multiple-mixed-stock232

systems. At its simplest, it simply generates random uniform values for the233

15

haplotype frequencies in each rookery and the proportional contributions of234

each rookery to each mixed stock:235

> Z = simmixstock2(nsource = 4, nmark = 5, nmix = 3, sourcesize = c(4,

+ 2, 1, 1), sourcesampsize = rep(25, 4), mixsampsize = rep(30,

+ 3), rseed = 1001)

> Z

4 sources, 3 mixed stock(s), 5 distinct markers
Sample data:

R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 3 4 1
H3 2 2 11 5 3 6 3
H4 2 2 7 0 4 6 10
H5 5 13 2 6 8 8 7

> plot(Z)

R1

R2

R3

R4

M1

M2

M3

0.0 0.2 0.4 0.6 0.8 1.0

H1
H2
H3
H4
H5

236

16

Now try to fit this via mm.wbugs:237

Or, keeping the run in BUGS format for diagnostic purposes:238

> Zfit0 = mm.wbugs(Z, sourcesize = c(4, 2, 1, 1), returntype = "bugs")

This takes about 18.3 minutes to run with the default settings, which run239

4 chains (equal to the number of sources) for 20,000 steps each. (There are240

two different versions of the BUGS code that can be used with mm.wbugs;241

in this particular case they give relatively similar answers and take about242

the same amount of time (bugs.code="BB" took 9.2 minutes), but if you’re243

having trouble you might try switching from the default bugs.code="TO"244

to bugs.code="BB".245

Other important options when running mm.wbugs are:246

• n.iter: the default is 20,000 iterations per chain, with the first half247

used as burn-in (n.burnin=floor(n.iter/2)); this may be conserva-248

tive, and could take a long time with realistically large data sets. Use249

CODA’s diagnostics as described above (raftery.diag, gelman.diag,250

etc.) to figure out an appropriate number of iterations.251

• n.chains: equal to the number of sources by default, which may again252

be overkill. ([2] used three chains for an 11-source problem.)253

• inittype: "dispersed" starts the chains from a starting point where254

95% of the contributions are assumed to come from a single source;255

"random" starts the chains from random starting points. If which.init256

is specified, these sources will be used as the dominant starting points:257

for example, mm.wbugs(...,n.chains=3,inittype="dispersed",which.init=c(1,5,7))258

will start 3 chains with dominant contributions from sources 1, 5, and259

7. If which.init is unspecified and n.chains is less than the number260

of sources, dominant sources will be picked at random.261

• returntype: specifies what format to use for the answer. The de-262

fault is a mixstock.est object that can be plotted or summarized263

like the results from any other mixed-stock analysis. However, for264

diagnostic purposes, it may be worth running the code initially with265

returntype="bugs" and using as.mcmc.bugs and as.mixstock.est.bugs266

to convert the result to either CODA format or mixstock format. Plot-267

ting bugs format and CODA format gives different diagnostic plots;268

CODA format can also be used to run convergence diagnostics such as269

raftery.diag or gelman.diag.270

17

Plots from many-to-many runs:271

Plot BUGS format diagnostics (plot not shown):272

> plot(Zfit0)

Plot CODA diagnostics (plot not shown):273

> plot(as.mcmc.bugs(Zfit0))

Plot results:274

> print(plot(Zfit))

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

R1 R2 R3 R4

●

●

●

●

M1

R1 R2 R3 R4

●

●
●

●

M2

0.0

0.2

0.4

0.6

0.8

●

●

●

●

M3

275

Source-centric form:276

> print(plot(Zfit, sourcectr = TRUE))

18

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

M1 M2 M3 Unk

●

●

●
●

R1

M1 M2 M3 Unk

●
●

● ●

R2

●

●
●

●

R3

0.0

0.2

0.4

0.6

0.8

●

● ●

●

R4

277

Summary/confidence intervals:278

> head(summary(Zfit))

4 sources, 3 mixed stock(s), 5 distinct markers
Sample data:

R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 3 4 1
H3 2 2 11 5 3 6 3
H4 2 2 7 0 4 6 10
H5 5 13 2 6 8 8 7

Estimates:

Mixed-stock-centric:
2.5% 97.5%

M1.R1 0.5473780 0.201795000 0.8366150
M1.R2 0.2235784 0.017553250 0.5286050

19

M1.R3 0.0850429 0.003377650 0.2590050
M1.R4 0.1440014 0.007369775 0.3941075
M2.R1 0.5043251 0.171260000 0.8346125
M2.R2 0.2178163 0.014860500 0.5255300
M2.R3 0.1712309 0.011442625 0.4215025
M2.R4 0.1066277 0.004133800 0.3124100
M3.R1 0.4046099 0.047320750 0.7818925
M3.R2 0.2877887 0.018549000 0.6452925
M3.R3 0.2017308 0.015441500 0.4913425
M3.R4 0.1058681 0.002893225 0.3213625

Source-centric:
2.5% 97.5%

R1.M1 0.3171615 0.052617250 0.7088300
R1.M2 0.2584727 0.038580500 0.6387150
R1.M3 0.1997042 0.012389250 0.5542900
R1.Unk 0.2246619 0.008175600 0.6225700
R2.M1 0.2492528 0.013269500 0.6460600
R2.M2 0.2118914 0.011240250 0.6314400
R2.M3 0.2626997 0.013295500 0.7239800
R2.Unk 0.2761556 0.010689750 0.7348300
R3.M1 0.1740109 0.005432050 0.5149200
R3.M2 0.2972163 0.020928500 0.6983675
R3.M3 0.3223322 0.026362250 0.7219875
R3.Unk 0.2064394 0.005509450 0.6473575
R4.M1 0.2988757 0.011309500 0.7524525
R4.M2 0.2004035 0.007036625 0.6351050
R4.M3 0.1847740 0.004338375 0.6272475
R4.Unk 0.3159484 0.015142750 0.7827350
$data
4 sources, 3 mixed stock(s), 5 distinct markers
Sample data:

R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 3 4 1
H3 2 2 11 5 3 6 3
H4 2 2 7 0 4 6 10
H5 5 13 2 6 8 8 7

$fit

20

fitinput.freq
R1 R2 R3 R4

M1 0.5473780 0.2235784 0.0850429 0.1440014
M2 0.5043251 0.2178163 0.1712309 0.1066277
M3 0.4046099 0.2877887 0.2017308 0.1058681

fitsource.freq
NULL

fitsourcectr.freq
M1 M2 M3 Unknown

R1 0.3171615 0.2584727 0.1997042 0.2246619
R2 0.2492528 0.2118914 0.2626997 0.2761556
R3 0.1740109 0.2972163 0.3223322 0.2064394
R4 0.2988757 0.2004035 0.1847740 0.3159484

$resample.sum
mean median sd Q02.5 Q05 Q95 Q97.5

M1.R1 0.5473780 0.553600 0.16110594 0.201795000 0.2595000 0.799230 0.8366150
M1.R2 0.2235784 0.204450 0.13855505 0.017553250 0.0260570 0.474390 0.5286050
M1.R3 0.0850429 0.068225 0.06931447 0.003377650 0.0065684 0.233520 0.2590050
M1.R4 0.1440014 0.126050 0.10132943 0.007369775 0.0140235 0.334100 0.3941075
M2.R1 0.5043251 0.503550 0.16885282 0.171260000 0.2143150 0.782120 0.8346125
M2.R2 0.2178163 0.204700 0.13563086 0.014860500 0.0260610 0.468530 0.5255300
M2.R3 0.1712309 0.154500 0.10862593 0.011442625 0.0224255 0.379490 0.4215025
M2.R4 0.1066277 0.087870 0.08396023 0.004133800 0.0089415 0.272715 0.3124100
M3.R1 0.4046099 0.399100 0.20215962 0.047320750 0.0800140 0.738310 0.7818925
M3.R2 0.2877887 0.274750 0.17065027 0.018549000 0.0354680 0.596360 0.6452925
M3.R3 0.2017308 0.184400 0.12848814 0.015441500 0.0253800 0.435915 0.4913425
M3.R4 0.1058681 0.084805 0.08726567 0.002893225 0.0070214 0.287610 0.3213625
R1.M1 0.3171615 0.292000 0.17826667 0.052617250 0.0752155 0.651575 0.7088300
R1.M2 0.2584727 0.225500 0.16266044 0.038580500 0.0508010 0.574510 0.6387150
R1.M3 0.1997042 0.161000 0.15118056 0.012389250 0.0201575 0.504265 0.5542900
R1.Unk 0.2246619 0.185450 0.17268818 0.008175600 0.0161995 0.551420 0.6225700
R2.M1 0.2492528 0.221400 0.17715397 0.013269500 0.0206450 0.579150 0.6460600
R2.M2 0.2118914 0.175000 0.16305664 0.011240250 0.0201865 0.522395 0.6314400
R2.M3 0.2626997 0.223000 0.19132121 0.013295500 0.0223965 0.634180 0.7239800
R2.Unk 0.2761556 0.241950 0.19892308 0.010689750 0.0219895 0.644830 0.7348300
R3.M1 0.1740109 0.135750 0.14152211 0.005432050 0.0128130 0.451170 0.5149200

21

R3.M2 0.2972163 0.272700 0.18146115 0.020928500 0.0434125 0.629540 0.6983675
R3.M3 0.3223322 0.298150 0.19033388 0.026362250 0.0460470 0.656430 0.7219875
R3.Unk 0.2064394 0.158350 0.17602759 0.005509450 0.0108000 0.571265 0.6473575
R4.M1 0.2988757 0.256650 0.20717218 0.011309500 0.0235090 0.687640 0.7524525
R4.M2 0.2004035 0.150150 0.16932025 0.007036625 0.0121855 0.531450 0.6351050
R4.M3 0.1847740 0.134400 0.16408396 0.004338375 0.0093100 0.520820 0.6272475
R4.Unk 0.3159484 0.269400 0.21798576 0.015142750 0.0292240 0.729235 0.7827350

(check this!)279

6 Quick start280

• Download and install R from CRAN (find the site closest to you at281

http://cran.r-project.org/mirrors.html; go to “Precompiled bi-282

nary distributions” and from there to the base package; pick your283

operating system; download the setup program; and run the setup284

program).285

• Start R.286

• From within R, download and install the mixstock package and aux-287

iliary packages:288

> bbcontrib = "http://www.zoo.ufl.edu/bolker/R/windows"

> install.packages("mixstock", contriburl = bbcontrib)

> install.packages("plotrix")

> install.packages("coda")

> install.packages("abind")

> install.packages("R2WinBUGS")

(This installation procedure needs to be done only once, although the289

library command below, loading the package, needs to be done for290

every new R session.)291

• Load the package: library(mixstock)292

• Load data from a comma-separated value (CSV) file, convert to proper293

format, and condense haplotypes:294

> mydata = hapfreq.condense(as.mixstock.data(read.csv("myfile.dat")))

• analyze, e.g:295

22

> mydata.mcmc = tmcmc(mydata)

> mydata.mcmc

> intervals(mydata.mcmc)

> plot(mydata.mcmc)

7 To do296

• read.csv/read.table + as.mixstock.data combined into a single read.mixstock.data297

command? (also incorporate hapfreq.condense as a default option)298

• print.mixstock.est could print sample frequencies instead of saying299

“no estimate” for CML300

• MCMC section could be cleaned up considerably, explained better,301

R&L parameters not hard-coded, more efficient — don’t re-run chains302

every time303

• incorporate rookery sizes in data304

• keep CODA objects or potential for CODA plots in MCMC results305

• make MCMC convergence process more efficient: more explanation306

• add hierarchical models????307

• describe fuzz and bounds parameters on CML/UML, E-M algorithm308

• plot(...,legend=TRUE) doesn’t work for CML. add unstacked/beside=TRUE309

option to plot.mixstock.est310

• incorporate source size data as part of data object311

• some functions don’t work with uncondensed data: fix or issue warning312

• use HPDinterval from CODA for confidence intervals, rather than313

quantiles?314

References315

[1] Benjamin Bolker, Toshinori Okuyama, Karen Bjorndal, and Alan Bolten.316

Stock estimation for sea turtle populations using genetic markers: ac-317

counting for sampling error of rare genotypes. Ecological Applications,318

13(3):763–775, 2003.319

23

[2] Benjamin M. Bolker, Toshinori Okuyama, Karen A. Bjorndal, and320

Alan B. Bolten. Incorporating multiple mixed stocks in mixed stock321

analysis: ’many-to-many’ analyses. Molecular Ecology, 2007. in press.322

[3] Alan B. Bolten, Karen A. Bjorndal, Helen R. Martins, Thomas Dellinger,323

Manuel J. Biscotio, Sandra E. Encalada, and Brian W. Bowen. Transat-324

lantic developmental migrations of loggerhead sea turtles demonstrated325

by mtDNA sequence analysis. Ecological Applications, 8(1):1–7, 1998.326

[4] A. Gelman, J. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data327

analysis. Chapman and Hall, New York, New York, USA, 1996.328

[5] P. N. Lahanas, K. A. Bjorndal, A. B. Bolten, S. E. Encalada, M. M.329

Miyamoto, R. A. Valverde, and B. W. Bowen. Genetic composition of a330

green turtle (Chelonia mydas) feeding ground population: evidence for331

multiple origins. Marine Biology, 130:345–352, 1998.332

[6] J. Pella and M. Masuda. Bayesian methods for analysis of stock mixtures333

from genetic characters. Fisheries Bulletin, 99:151–167, 2001.334

[7] R Development Core Team. R: A language and environment for statisti-335

cal computing. R Foundation for Statistical Computing, Vienna, Austria,336

2005. ISBN 3-900051-07-0.337

[8] P. E. Smouse, R. S. Waples, and J. A. Tworek. A genetic mixture analysis338

for use with incomplete source population data. Canadian Journal of339

Fisheries and Aquatic Sciences, 47:620–634, 1990.340

24

