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1 Introduction

This is a companion file both for the mstate package and for the Tutorial in Biostatistics:
Competing risks and multi-state models (Putter et al. 2007), simply referred to henceforth as
the tutorial. Emphasis in this document will be on the use of mstate, not on the theory of
competing risks and multi-state models. The only exception is that I have added some theory
about the Aalen-Johansen estimator that is implemented in mstate but did not appear in the
tutorial. For other theory on multi-state models, and for interpretation of the results of the
analyses, we will repeatedly refer to the tutorial. I will occasionally give more detail and show
more analyses than in the tutorial. Also I sometimes give more details on the function in mstate
than strictly necessary for the analyses in the tutorial, but not all features will be shown either.
This file and the mstate package, which in turn contains all the data used in the tutorial, can be
found at http://www.msbi.nl/multistate. This file is also a vignette of the mstate package.
Type vignette("Tutorial") after having installed and loaded mstate to access this document
within R.

I do not follow the order of the tutorial. Rather, I will start with multi-state models,
Section 4 of the tutorial, and finally switch back to the special case of competing risks models.
Sections 2, 3 and 4 of this document will discuss data preparation, estimation and prediction,
respectively in multi-state models. In Section 5 I illustrate some functions of mstate designed
especially for competing risks.

After installation, the mstate package is loaded in the usual way.

> library(mstate)

The versions of R and mstate used in this document are as follows:

> R.version$version.string

[1] "R version 2.12.1 (2010-12-16)"

> packageDescription("mstate", fields = "Version")

[1] "0.2.6"

2 Data preparation

The data used in Section 4 of the tutorial are 2204 patients transplanted at the EBMT between
1995 and 1998. These data are included in the mstate package. For (a tiny bit) more background
on the data, refer to the tutorial, or type help(ebmt3).

> data(ebmt3)

> head(ebmt3)

id prtime prstat rfstime rfsstat dissub age drmatch tcd

1 1 23 1 744 0 CML >40 Gender mismatch No TCD

2 2 35 1 360 1 CML >40 No gender mismatch No TCD

3 3 26 1 135 1 CML >40 No gender mismatch No TCD

4 4 22 1 995 0 AML 20-40 No gender mismatch No TCD

5 5 29 1 422 1 AML 20-40 No gender mismatch No TCD

6 6 38 1 119 1 ALL >40 No gender mismatch No TCD

Let us first have a look at the covariates. For instance disease subclassification:
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> n <- nrow(ebmt3)

> table(ebmt3$dissub)

AML ALL CML

853 447 904

> round(100 * table(ebmt3$dissub)/n)

AML ALL CML

39 20 41

The output of the other covariates is omitted.

> table(ebmt3$age)

> round(100 * table(ebmt3$age)/n)

> table(ebmt3$drmatch)

> round(100 * table(ebmt3$drmatch)/n)

> table(ebmt3$tcd)

> round(100 * table(ebmt3$tcd)/n)

The first step in a multi-state model analysis is to set up the transition matrix. The transition
matrix specifies which direct transitions are possible (those with NA are impossible) and assigns
numbers to the transitions for future reference. This can be done explicitly.

> tmat <- matrix(NA, 3, 3)

> tmat[1, 2:3] <- 1:2

> tmat[2, 3] <- 3

> dimnames(tmat) <- list(from = c("Tx", "PR", "RelDeath"), to = c("Tx",

+ "PR", "RelDeath"))

> tmat

to

from Tx PR RelDeath

Tx NA 1 2

PR NA NA 3

RelDeath NA NA NA

Steven McKinney has kindly provided a convenient function transMat to define transition
matrices. The same transition matrix may be constructed as follows.

> tmat <- transMat(x = list(c(2, 3), c(3), c()), names = c("Tx",

+ "PR", "RelDeath"))

> tmat

to

from Tx PR RelDeath

Tx NA 1 2

PR NA NA 3

RelDeath NA NA NA

For common multi-state models, such as the illness-death model (and competing risks models,
Section 5) there is a built-in function to obtain these transition matrices more easily.
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> tmat <- trans.illdeath(names = c("Tx", "PR", "RelDeath"))

> tmat

to

from Tx PR RelDeath

Tx NA 1 2

PR NA NA 3

RelDeath NA NA NA

The function paths can be used to give a list of all possible paths through the multi-state
model. This function should not be used for transition matrices specifying a multi-state model
with loops, since there will be infinitely many paths. At the moment there is no check for the
presence of loops, but this will be included shortly.

> paths(tmat)

[,1] [,2] [,3]

[1,] 1 NA NA

[2,] 1 2 NA

[3,] 1 2 3

[4,] 1 3 NA

Time in the ebmt3 data is reported in days; before doing any analysis, we first convert this to
years.

> ebmt3$prtime <- ebmt3$prtime/365.25

> ebmt3$rfstime <- ebmt3$rfstime/365.25

In order to prepare data in long format, we specify the names of the covariates that we are
interested in modeling. Note that I am adding prtime, which is not really a covariate, but
specifying the time of platelet recovery. The purpose of this will become clear later. The
specified covariates are to be retained in the dataset in long format (this is the argument keep),
which we are going to call msbmt. For the original dataset ebmt3, each row corresponds to a
single patient. For the long format data msbmt, each row will correspond to a transition for
which a patient is at risk. See the tutorial for more detailed information.

> covs <- c("dissub", "age", "drmatch", "tcd", "prtime")

> msbmt <- msprep(time = c(NA, "prtime", "rfstime"), status = c(NA,

+ "prstat", "rfsstat"), data = ebmt3, trans = tmat, keep = covs)

The result is an S3 object of class msdata and data.frame. An msdata object is actually only
a data frame with a trans attribute holding the transition matrix used to define it. A print

method has been defined for msdata objects, which also prints the transition matrix if requested
(set argument trans to TRUE, default is FALSE).

> head(msbmt)

An object of class 'msdata'

Data:

id from to trans Tstart Tstop time status dissub age

1 1 1 2 1 0.00000000 0.06297057 0.06297057 1 CML >40
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2 1 1 3 2 0.00000000 0.06297057 0.06297057 0 CML >40

3 1 2 3 3 0.06297057 2.03696099 1.97399042 0 CML >40

4 2 1 2 1 0.00000000 0.09582478 0.09582478 1 CML >40

5 2 1 3 2 0.00000000 0.09582478 0.09582478 0 CML >40

6 2 2 3 3 0.09582478 0.98562628 0.88980151 1 CML >40

drmatch tcd prtime

1 Gender mismatch No TCD 0.06297057

2 Gender mismatch No TCD 0.06297057

3 Gender mismatch No TCD 0.06297057

4 No gender mismatch No TCD 0.09582478

5 No gender mismatch No TCD 0.09582478

6 No gender mismatch No TCD 0.09582478

In the above call of msprep , the time and status arguments specify the column names in the
data ebmt3 corresponding to the three states in the multi-state model. Since all the patients
start in state 1 at time 0, the time and status arguments corresponding to the first state do not
really have a value. In such cases, the corresponding elements of time and status may be given
the value NA. An alternative way of specifying time and status (and keep as well) is as matrices
of dimension n× S with S the number of states (and n× p with p the number of covariates for
keep). The data argument doesn’t need to be specified then.

The number of events in the data can be summarized with the function events .

> events(msbmt)

$Frequencies

to

from Tx PR RelDeath no event total entering

Tx 0 1169 458 577 2204

PR 0 0 383 786 1169

RelDeath 0 0 0 0 0

$Proportions

to

from Tx PR RelDeath no event

Tx 0.0000000 0.5303993 0.2078040 0.2617967

PR 0.0000000 0.0000000 0.3276305 0.6723695

RelDeath

For regression purposes, we now add transition-specific covariates to the dataset. For more
details on transition-specific covariates, refer to the tutorial. For a numerical covariate cov, the
names of the expanded (transition-specific) covariates are cov.1, cov.2 etc. The extension .i

refers to transition number i. First, we define these transition-specific covariates as a separate
dataset, by setting append to FALSE.

> expcovs <- expand.covs(msbmt, covs[2:3], append = FALSE)

> head(expcovs)

age20.40.1 age20.40.2 age20.40.3 age.40.1 age.40.2 age.40.3

1 0 0 0 1 0 0

2 0 0 0 0 1 0

3 0 0 0 0 0 1
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4 0 0 0 1 0 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1

drmatchGender.mismatch.1 drmatchGender.mismatch.2 drmatchGender.mismatch.3

1 1 0 0

2 0 1 0

3 0 0 1

4 0 0 0

5 0 0 0

6 0 0 0

We see that this expanded covariates dataset is quite large, and that the covariate names are
quite long. For categorical covariates, the default names of the expanded covariates are a
combination of the covariate name, the level (similar to the names of the regression coefficients
that you see in regression output), followed by the transition number, in such a way that the
combination is allowed as column name. If these names are too long, the user may set the value
of longnames (default=TRUE) to FALSE. In this case, the covariate name is followed by 1, 2 etc,
before the transition number. In case of a covariate with only two levels, the covariate name is
just followed by the transition number. Confident that this will work out, we also set append
to TRUE (default), which will append the expanded covariates to the dataset.

> msbmt <- expand.covs(msbmt, covs, append = TRUE, longnames = FALSE)

> head(msbmt)

An object of class 'msdata'

Data:

id from to trans Tstart Tstop time status dissub age

1 1 1 2 1 0.00000000 0.06297057 0.06297057 1 CML >40

2 1 1 3 2 0.00000000 0.06297057 0.06297057 0 CML >40

3 1 2 3 3 0.06297057 2.03696099 1.97399042 0 CML >40

4 2 1 2 1 0.00000000 0.09582478 0.09582478 1 CML >40

5 2 1 3 2 0.00000000 0.09582478 0.09582478 0 CML >40

6 2 2 3 3 0.09582478 0.98562628 0.88980151 1 CML >40

drmatch tcd prtime dissub1.1 dissub1.2 dissub1.3 dissub2.1

1 Gender mismatch No TCD 0.06297057 0 0 0 1

2 Gender mismatch No TCD 0.06297057 0 0 0 0

3 Gender mismatch No TCD 0.06297057 0 0 0 0

4 No gender mismatch No TCD 0.09582478 0 0 0 1

5 No gender mismatch No TCD 0.09582478 0 0 0 0

6 No gender mismatch No TCD 0.09582478 0 0 0 0

dissub2.2 dissub2.3 age1.1 age1.2 age1.3 age2.1 age2.2 age2.3 drmatch.1

1 0 0 0 0 0 1 0 0 1

2 1 0 0 0 0 0 1 0 0

3 0 1 0 0 0 0 0 1 0

4 0 0 0 0 0 1 0 0 0

5 1 0 0 0 0 0 1 0 0

6 0 1 0 0 0 0 0 1 0

drmatch.2 drmatch.3 tcd.1 tcd.2 tcd.3 prtime.1 prtime.2 prtime.3

1 0 0 0 0 0 0.06297057 0.00000000 0.00000000
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2 1 0 0 0 0 0.00000000 0.06297057 0.00000000

3 0 1 0 0 0 0.00000000 0.00000000 0.06297057

4 0 0 0 0 0 0.09582478 0.00000000 0.00000000

5 0 0 0 0 0 0.00000000 0.09582478 0.00000000

6 0 0 0 0 0 0.00000000 0.00000000 0.09582478

The names indeed are quite a bit shorter. The downside however is that we need to remember
for ourselves to which category for instance the number 1 in age1.2 corresponds (age 20-40
with ≤ 20 as reference category).

3 Estimation

After having prepared the data in long format, estimation of covariate effects using Cox regres-
sion is straightforward using the coxph function of the survival package. This is not at all a
feature of the mstate package, other than that msprep has facilitated preparation of the data.
Let us consider the Markov model, where we assume different effects of the covariates for differ-
ent transitions; hence we use the transition-specific covariates obtained by expand.covs . The
delayed entry aspect of this model for transition 3 (see discussion in the tutorial) is achieved by
specifying Surv(Tstart,Tstop,status), where (this is reflected in the long format data) Tstart is
the time of entry in the state, and Tstop the event or censoring time, depending on the value
of status. We consider first the model without any proportionality assumption on the base-
line hazards; this is achieved by adding strata(trans) to the formula, which estimates separate
baseline hazards for different values of trans (the transitions). The results appear in the left
column of Table III of the tutorial.

> c1 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

+ age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +

+ age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +

+ age1.3 + age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt,

+ method = "breslow")

> c1

Call:

coxph(formula = Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +

age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +

age1.3 + age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt,

method = "breslow")

coef exp(coef) se(coef) z p

dissub1.1 -0.0436 0.957 0.0779 -0.560 5.8e-01

dissub2.1 -0.2972 0.743 0.0680 -4.371 1.2e-05

age1.1 -0.1646 0.848 0.0791 -2.082 3.7e-02

age2.1 -0.0898 0.914 0.0865 -1.038 3.0e-01

drmatch.1 0.0458 1.047 0.0666 0.687 4.9e-01

tcd.1 0.4291 1.536 0.0804 5.335 9.6e-08

dissub1.2 0.2559 1.292 0.1352 1.893 5.8e-02

dissub2.2 0.0167 1.017 0.1084 0.155 8.8e-01

age1.2 0.2552 1.291 0.1510 1.689 9.1e-02
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age2.2 0.5265 1.693 0.1579 3.334 8.6e-04

drmatch.2 -0.0753 0.928 0.1103 -0.682 5.0e-01

tcd.2 0.2967 1.345 0.1501 1.977 4.8e-02

dissub1.3 0.1365 1.146 0.1480 0.922 3.6e-01

dissub2.3 0.2469 1.280 0.1169 2.113 3.5e-02

age1.3 0.0616 1.063 0.1534 0.401 6.9e-01

age2.3 0.5807 1.787 0.1601 3.627 2.9e-04

drmatch.3 0.1728 1.189 0.1145 1.509 1.3e-01

tcd.3 0.2009 1.222 0.1264 1.590 1.1e-01

Likelihood ratio test=118 on 18 df, p=1.11e-16 n= 5577, number of events= 2010

The interpretation is discussed in the tutorial.
The next model considered is the Markov model where the transition hazards into relapse or

death (these correspond to transitions 2 and 3) are assumed to be proportional. For this purpose
transition 1 (transplantation → platelet recovery) belongs to one stratum and transitions 2
(transplantation→ relapse/death) and 3 (platelet recovery→ relapse/death) belong to a second
stratum. Transitions 2 and 3 have the same receiving state, hence the same value of to, so the
two strata can be distinguished by the variable to in our dataset. In order to distinguish between
transitions 2 and 3, we introduce a time-dependent covariate pr that indicates whether or not
platelet recovery has already occurred. For transition 2 (Tx→ RelDeath) the value of pr equals
0, while for transition 3 (PR → RelDeath) the value of pr equals 1. Results are found in the
middle of Table III of the tutorial.

> msbmt$pr <- 0

> msbmt$pr[msbmt$trans == 3] <- 1

> c2 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

+ age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +

+ age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +

+ age1.3 + age2.3 + drmatch.3 + tcd.3 + pr + strata(to), data = msbmt,

+ method = "breslow")

> c2

Call:

coxph(formula = Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +

age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +

age1.3 + age2.3 + drmatch.3 + tcd.3 + pr + strata(to), data = msbmt,

method = "breslow")

coef exp(coef) se(coef) z p

dissub1.1 -0.04359 0.957 0.0779 -0.5597 5.8e-01

dissub2.1 -0.29724 0.743 0.0680 -4.3714 1.2e-05

age1.1 -0.16461 0.848 0.0791 -2.0823 3.7e-02

age2.1 -0.08979 0.914 0.0865 -1.0384 3.0e-01

drmatch.1 0.04575 1.047 0.0666 0.6869 4.9e-01

tcd.1 0.42907 1.536 0.0804 5.3346 9.6e-08

dissub1.2 0.26097 1.298 0.1352 1.9305 5.4e-02

dissub2.2 0.00364 1.004 0.1084 0.0336 9.7e-01
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age1.2 0.25089 1.285 0.1511 1.6609 9.7e-02

age2.2 0.52579 1.692 0.1579 3.3300 8.7e-04

drmatch.2 -0.07207 0.930 0.1103 -0.6536 5.1e-01

tcd.2 0.31854 1.375 0.1500 2.1240 3.4e-02

dissub1.3 0.13981 1.150 0.1480 0.9448 3.4e-01

dissub2.3 0.25033 1.284 0.1168 2.1434 3.2e-02

age1.3 0.05556 1.057 0.1534 0.3622 7.2e-01

age2.3 0.56248 1.755 0.1600 3.5162 4.4e-04

drmatch.3 0.16915 1.184 0.1144 1.4780 1.4e-01

tcd.3 0.21103 1.235 0.1262 1.6722 9.4e-02

pr -0.37863 0.685 0.2115 -1.7900 7.3e-02

Likelihood ratio test=135 on 19 df, p=0 n= 5577, number of events= 2010

For a discussion of the results we again refer to the tutorial. The hazard ratio of pr (0.685) and
its p-value (0.073) indicate a trend-significant beneficial effect of platelet recovery on relapse-
free survival. Later on we will look at the corresponding baseline transition intensities for these
two models and see as a graphical check that the assumption of proportionality of the baseline
hazards for transitions 2 and 3 is reasonable. This can also be tested formally using the function
cox.zph (part of the survival package, not of mstate).

> cox.zph(c2)

rho chisq p

dissub1.1 0.05050 5.11474 2.37e-02

dissub2.1 -0.00982 0.19522 6.59e-01

age1.1 -0.03058 1.93805 1.64e-01

age2.1 -0.03957 3.10494 7.81e-02

drmatch.1 0.03315 2.20235 1.38e-01

tcd.1 0.05742 6.74519 9.40e-03

dissub1.2 0.00150 0.00437 9.47e-01

dissub2.2 0.07669 11.86991 5.70e-04

age1.2 -0.03684 2.65186 1.03e-01

age2.2 -0.03593 2.52297 1.12e-01

drmatch.2 0.02100 0.88576 3.47e-01

tcd.2 0.03896 3.10115 7.82e-02

dissub1.3 -0.00338 0.02306 8.79e-01

dissub2.3 0.03787 2.95284 8.57e-02

age1.3 -0.01551 0.49723 4.81e-01

age2.3 -0.01741 0.64403 4.22e-01

drmatch.3 0.00338 0.02321 8.79e-01

tcd.3 0.03959 3.24944 7.14e-02

pr 0.01543 0.46320 4.96e-01

GLOBAL NA 53.06349 4.58e-05

There is no evidence of non-proportionality of the baseline transition intensities of transitions
2 (p=0.496 for pr). There is strong evidence that the proportional hazards assumption for
dissub2 (CML vs AML) is violated, at least for the transitions into relapse and death. This
makes sense, clinically, since CML and AML are two diseases with completely different biological
pathways. It would have been much better to study separate multi-state models for the three
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disease subclassifications. However, since the purpose of this manuscript is to illustrate the
use of mstate, we will blatantly ignore the clear evidence of non-proportionality for the disease
subclassifications.

Building on the Markov PH model, we can investigate whether the time at which a patient
arrived in state 2 (PR) influences the subsequent RFS rate, that is, the transition hazard of
PR → RelDeath. Here the purpose of expanding prtime becomes apparent. Since prtime

only makes sense for transition 3 (PR → RelDeath), we need the transition-specific covariate
of prtime for transition 3, which is prtime.3. The corresponding model is termed the ”state
arrival extended Markov PH” model in the tutorial, and appears on the right of Table III.

> c3 <- coxph(Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

+ age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +

+ age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +

+ age1.3 + age2.3 + drmatch.3 + tcd.3 + pr + prtime.3 + strata(to),

+ data = msbmt, method = "breslow")

> c3

Call:

coxph(formula = Surv(Tstart, Tstop, status) ~ dissub1.1 + dissub2.1 +

age1.1 + age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 +

age1.2 + age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 +

age1.3 + age2.3 + drmatch.3 + tcd.3 + pr + prtime.3 + strata(to),

data = msbmt, method = "breslow")

coef exp(coef) se(coef) z p

dissub1.1 -0.04359 0.957 0.0779 -0.5597 5.8e-01

dissub2.1 -0.29724 0.743 0.0680 -4.3714 1.2e-05

age1.1 -0.16461 0.848 0.0791 -2.0823 3.7e-02

age2.1 -0.08979 0.914 0.0865 -1.0384 3.0e-01

drmatch.1 0.04575 1.047 0.0666 0.6869 4.9e-01

tcd.1 0.42907 1.536 0.0804 5.3346 9.6e-08

dissub1.2 0.26090 1.298 0.1352 1.9300 5.4e-02

dissub2.2 0.00376 1.004 0.1084 0.0347 9.7e-01

age1.2 0.25095 1.285 0.1511 1.6613 9.7e-02

age2.2 0.52577 1.692 0.1579 3.3299 8.7e-04

drmatch.2 -0.07209 0.930 0.1103 -0.6538 5.1e-01

tcd.2 0.31824 1.375 0.1500 2.1220 3.4e-02

dissub1.3 0.13202 1.141 0.1488 0.8869 3.8e-01

dissub2.3 0.25181 1.286 0.1168 2.1555 3.1e-02

age1.3 0.05823 1.060 0.1534 0.3795 7.0e-01

age2.3 0.56575 1.761 0.1600 3.5357 4.1e-04

drmatch.3 0.16682 1.182 0.1146 1.4562 1.5e-01

tcd.3 0.20740 1.230 0.1264 1.6405 1.0e-01

pr -0.40687 0.666 0.2191 -1.8572 6.3e-02

prtime.3 0.29523 1.343 0.5950 0.4962 6.2e-01

Likelihood ratio test=136 on 20 df, p=0 n= 5577, number of events= 2010

The influence of the time at which platelet recovery occurred seems small and is not significant
(p=0.62, last row).
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The clock-reset models may be obtained very similarly to those of the clock-forward models.
The only difference is that Surv(Tstart,Tstop,status) is replaced by Surv(time,status). This
reflects the fact (recall that in our long format data each row corresponds to a transition) that
for each transition the time starts at 0, rather than Tstart, the time since start of study at
which the state has been entered. We will only show the code, not the output; the reader may
try this for him-or herself.

> c4 <- coxph(Surv(time, status) ~ dissub1.1 + dissub2.1 + age1.1 +

+ age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 + age1.2 +

+ age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 + age1.3 +

+ age2.3 + drmatch.3 + tcd.3 + strata(trans), data = msbmt,

+ method = "breslow")

> c5 <- coxph(Surv(time, status) ~ dissub1.1 + dissub2.1 + age1.1 +

+ age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 + age1.2 +

+ age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 + age1.3 +

+ age2.3 + drmatch.3 + tcd.3 + pr + strata(to), data = msbmt,

+ method = "breslow")

> c6 <- coxph(Surv(time, status) ~ dissub1.1 + dissub2.1 + age1.1 +

+ age2.1 + drmatch.1 + tcd.1 + dissub1.2 + dissub2.2 + age1.2 +

+ age2.2 + drmatch.2 + tcd.2 + dissub1.3 + dissub2.3 + age1.3 +

+ age2.3 + drmatch.3 + tcd.3 + pr + prtime.3 + strata(to),

+ data = msbmt, method = "breslow")

4 Prediction

In order to obtain prediction probabilities in the context of the Markov multi-state models
discussed in the previous section, basically two steps are involved. The first is to use the
estimated parameters and baseline transition hazards and the covariate values of a patient of
interest, to obtain patient-specific transition hazards for that patient, for each of the transitions
in the multi-state model. This is what the function msfit is designed to do. The second step is
to use the resulting patient-specific transition hazards (and variances and covariances) as input
for probtrans to obtain (patient-specific) transition probabilities.

I will first show how msfit can be used to obtain the baseline hazards associated with
the Markov stratified and PH models. The hazards of the Markov stratified models (and their
variances and covariates) are obtained by first creating a new dataset containing the (expanded)
covariates along with their values (in this case 0). This is very similar to the use of survfit
from the survival package. The important difference is that for one patient, this newdata data
frame needs to have exactly one line for each transition. When transition-specific covariates have
been used in the model, the easiest way to obtain such a data frame is to first create a data
frame with the basic covariates and then using expand.covs to obtain the transition-specific
covariates. Since expand.covs expects an msdata object, we set the class of the newdata data
to msdata explicitly. We also copy the levels of the categorical covariates before expanding,
although this is not really necessary here.

> newd <- data.frame(dissub = rep(0, 3), age = rep(0, 3), drmatch = rep(0,

+ 3), tcd = rep(0, 3), trans = 1:3)

> newd$dissub <- factor(newd$dissub, levels = 0:2, labels = levels(ebmt3$dissub))

> newd$age <- factor(newd$age, levels = 0:2, labels = levels(ebmt3$age))

> newd$drmatch <- factor(newd$drmatch, levels = 0:1, labels = levels(ebmt3$drmatch))

> newd$tcd <- factor(newd$tcd, levels = 0:1, labels = levels(ebmt3$tcd))
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> attr(newd, "trans") <- tmat

> class(newd) <- c("msdata", "data.frame")

> newd <- expand.covs(newd, covs[1:4], longnames = FALSE)

> newd$strata = 1:3

> newd

An object of class 'msdata'

Data:

dissub age drmatch tcd trans dissub1.1 dissub1.2 dissub1.3

1 AML <=20 No gender mismatch No TCD 1 0 0 0

2 AML <=20 No gender mismatch No TCD 2 0 0 0

3 AML <=20 No gender mismatch No TCD 3 0 0 0

dissub2.1 dissub2.2 dissub2.3 age1.1 age1.2 age1.3 age2.1 age2.2 age2.3

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

drmatch.1 drmatch.2 drmatch.3 tcd.1 tcd.2 tcd.3 strata

1 0 0 0 0 0 0 1

2 0 0 0 0 0 0 2

3 0 0 0 0 0 0 3

The last command where the column strata is added is important and points to a second
major difference between survfit and msfit . The newdata data frame needs to have a column
strata specifying to which stratum in the coxph object each transition belongs. Here each
transition corresponds to a separate stratum, so we specify 1, 2, and 3.

To obtain an estimate of the baseline cumulative hazard for the ”stratified hazards” model,
msfit can be called with the first Cox model, c1, as input model, and newd as newdata argu-
ment.

> msf1 <- msfit(c1, newdata = newd, trans = tmat)

The result is an object of class msfit , which is a list with three items, Haz, varHaz, and trans.
The item trans records the transition matrix used when constructing the msfit object. Haz

contains the estimated cumulative hazard for each of the transitions for the particular patient
specified in newd, while varHaz contains the estimated variances of these cumulative hazards,
as well as the covariances for each combination of two transitions. All are evaluated at the
time points for which any event in any transition occurs, possibly augmented with the largest
(non-event) time point in the data. The summary method for msfit objects is most conveniently
used for a summary. If we also would like to have a look at the covariances, we could set the
argument variance equal to TRUE.

> summary(msf1)

An object of class 'msfit'

Transition 1 (head and tail):

time Haz trans

1 0.002737851 0.0005277714 1

2 0.008213552 0.0010560892 1

12



3 0.010951403 0.0010560892 1

4 0.016427105 0.0010560892 1

5 0.019164956 0.0015857558 1

6 0.021902806 0.0015857558 1

...

time Haz trans

500 6.253251 0.9513165 1

501 6.357290 0.9513165 1

502 6.362765 0.9513165 1

503 6.798084 0.9513165 1

504 7.110198 0.9513165 1

505 7.731691 0.9513165 1

Transition 2 (head and tail):

time Haz trans

506 0.002737851 0.0003046955 2

507 0.008213552 0.0003046955 2

508 0.010951403 0.0006097444 2

509 0.016427105 0.0012203981 2

510 0.019164956 0.0018316171 2

511 0.021902806 0.0024438486 2

...

time Haz trans

1005 6.253251 0.5020560 2

1006 6.357290 0.5020560 2

1007 6.362765 0.5248419 2

1008 6.798084 0.5248419 2

1009 7.110198 0.5248419 2

1010 7.731691 0.5248419 2

Transition 3 (head and tail):

time Haz trans

1011 0.002737851 0 3

1012 0.008213552 0 3

1013 0.010951403 0 3

1014 0.016427105 0 3

1015 0.019164956 0 3

1016 0.021902806 0 3

...

time Haz trans

1510 6.253251 0.3291154 3
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1511 6.357290 0.3427115 3

1512 6.362765 0.3427115 3

1513 6.798084 0.3693677 3

1514 7.110198 0.4647197 3

1515 7.731691 0.4647197 3

Let us have a closer look at some of the variances and covariances as well.

> vH1 <- msf1$varHaz

> head(vH1[vH1$trans1 == 1 & vH1$trans2 == 1, ])

time varHaz trans1 trans2

1 0.002737851 2.798518e-07 1 1

2 0.008213552 5.629062e-07 1 1

3 0.010951403 5.629062e-07 1 1

4 0.016427105 5.629062e-07 1 1

5 0.019164956 8.500376e-07 1 1

6 0.021902806 8.500376e-07 1 1

> tail(vH1[vH1$trans1 == 1 & vH1$trans2 == 1, ])

time varHaz trans1 trans2

500 6.253251 0.005158522 1 1

501 6.357290 0.005158522 1 1

502 6.362765 0.005158522 1 1

503 6.798084 0.005158522 1 1

504 7.110198 0.005158522 1 1

505 7.731691 0.005158522 1 1

> tail(vH1[vH1$trans1 == 1 & vH1$trans2 == 2, ])

time varHaz trans1 trans2

1005 6.253251 -6.872431e-17 1 2

1006 6.357290 -6.872431e-17 1 2

1007 6.362765 -7.199375e-17 1 2

1008 6.798084 -7.199375e-17 1 2

1009 7.110198 -7.199375e-17 1 2

1010 7.731691 -7.199375e-17 1 2

> tail(vH1[vH1$trans1 == 1 & vH1$trans2 == 3, ])

time varHaz trans1 trans2

1510 6.253251 -1.021989e-17 1 3

1511 6.357290 -1.071929e-17 1 3

1512 6.362765 -1.071929e-17 1 3

1513 6.798084 -1.161979e-17 1 3

1514 7.110198 -1.436747e-17 1 3

1515 7.731691 -1.436747e-17 1 3

> tail(vH1[vH1$trans1 == 2 & vH1$trans2 == 3, ])

14



time varHaz trans1 trans2

2520 6.253251 -1.581164e-17 2 3

2521 6.357290 -1.638088e-17 2 3

2522 6.362765 -1.712518e-17 2 3

2523 6.798084 -1.837780e-17 2 3

2524 7.110198 -2.211676e-17 2 3

2525 7.731691 -2.211676e-17 2 3

Note that the covariances of the estimated cumulative hazards are practically (apart from round-
ing errors) 0. Theoretically, they should be 0, because with separate strata and separate covari-
ate effects for the different transitions, the estimates of the three transitions could in fact have
been estimated as three separate Cox models (this would give exactly the same results).

The estimated baseline cumulative hazards for the Markov PH model are obtained in mostly
the same way. The only exception is the specification of the strata argument in newd. Instead
of taking the values 1, 2, and 3, for the three transitions, they take values 1, 2, 2, to indicate
that transition 1 corresponds to stratum 1, and both transitions 2 and 3 correspond to stratum
2 (the order of the strata as defined in the coxph object). Also the time-dependent covariate
pr needs to be included, taking the value 0 for transitions 1 and 2, and 1 for transition 3.

> newd$strata = c(1, 2, 2)

> newd$pr <- c(0, 0, 1)

> msf2 <- msfit(c2, newdata = newd, trans = tmat)

> summary(msf2)

An object of class 'msfit'

Transition 1 (head and tail):

time Haz trans

1 0.002737851 0.0005277714 1

2 0.008213552 0.0010560892 1

3 0.010951403 0.0010560892 1

4 0.016427105 0.0010560892 1

5 0.019164956 0.0015857558 1

6 0.021902806 0.0015857558 1

...

time Haz trans

500 6.253251 0.9513165 1

501 6.357290 0.9513165 1

502 6.362765 0.9513165 1

503 6.798084 0.9513165 1

504 7.110198 0.9513165 1

505 7.731691 0.9513165 1

Transition 2 (head and tail):

time Haz trans

506 0.002737851 0.0003053084 2
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507 0.008213552 0.0003053084 2

508 0.010951403 0.0006107971 2

509 0.016427105 0.0012223306 2

510 0.019164956 0.0018344413 2

511 0.021902806 0.0024473467 2

...

time Haz trans

1005 6.253251 0.5040408 2

1006 6.357290 0.5146993 2

1007 6.362765 0.5255361 2

1008 6.798084 0.5476683 2

1009 7.110198 0.6357669 2

1010 7.731691 0.6357669 2

Transition 3 (head and tail):

time Haz trans

1011 0.002737851 0.0002090742 3

1012 0.008213552 0.0002090742 3

1013 0.010951403 0.0004182719 3

1014 0.016427105 0.0008370481 3

1015 0.019164956 0.0012562195 3

1016 0.021902806 0.0016759351 3

...

time Haz trans

1510 6.253251 0.3451655 3

1511 6.357290 0.3524644 3

1512 6.362765 0.3598855 3

1513 6.798084 0.3750415 3

1514 7.110198 0.4353712 3

1515 7.731691 0.4353712 3

> vH2 <- msf2$varHaz

> tail(vH2[vH2$trans1 == 1 & vH2$trans2 == 2, ])

time varHaz trans1 trans2

1005 6.253251 -8.249012e-17 1 2

1006 6.357290 -8.424262e-17 1 2

1007 6.362765 -8.602802e-17 1 2

1008 6.798084 -8.976176e-17 1 2

1009 7.110198 -1.050475e-16 1 2

1010 7.731691 -1.050475e-16 1 2

> tail(vH2[vH2$trans1 == 1 & vH2$trans2 == 3, ])

time varHaz trans1 trans2

1510 6.253251 5.559220e-17 1 3

16



1511 6.357290 5.676218e-17 1 3

1512 6.362765 5.794927e-17 1 3

1513 6.798084 6.031385e-17 1 3

1514 7.110198 6.943630e-17 1 3

1515 7.731691 6.943630e-17 1 3

> tail(vH2[vH2$trans1 == 2 & vH2$trans2 == 3, ])

time varHaz trans1 trans2

2520 6.253251 0.0004142378 2 3

2521 6.357290 0.0005227029 2 3

2522 6.362765 0.0006348311 2 3

2523 6.798084 0.0011112104 2 3

2524 7.110198 0.0088628795 2 3

2525 7.731691 0.0088628795 2 3

Note that the estimated cumulative hazards and variances for transition 1 are identical to those
from msf1. We saw earlier that the estimated regression coefficients were also identical for the
Markov stratified and the Markon PH models. Note also that the variance of the cumulative
hazard of transition 3 (and 2, not shown) is smaller than with msf1. The cumulative hazard
estimates of transitions 1 and 2 are still uncorrelated (and 1 and 3), but those of transitions 2
and 3 are correlated now, because they share a common baseline.

Let us compare the baseline hazards of the Markov stratified and PH models graphically.
For this we use the plot method for msfit objects. Figure 1 corresponds to Figure 14 in the
tutorial.

> par(mfrow = c(1, 2))

> plot(msf1, cols = rep(1, 3), lwd = 2, lty = 1:3, legend = c("1 -> 2 ",

+ "1 -> 3 ", "2 -> 3 "), xlab = "Years since transplant",

+ ylab = "Stratified baseline hazards", legend.pos = c(2, 0.9))

> plot(msf2, cols = rep(1, 3), lwd = 2, lty = 1:3, legend = c("1 -> 2 ",

+ "1 -> 3 ", "2 -> 3 "), xlab = "Years since transplant",

+ ylab = "Proportional baseline hazards", legend.pos = c(2,

+ 0.9))

> par(mfrow = c(1, 1))

Define the multi-state model as X(t), a random process taking values in 1, . . . , S (S being the
number of states). We are interested in estimating so called transition probabilities Pgh(s, t) =
P (X(t) = h |X(s) = g), possibly depending on covariates. For instance, P13(0, t) indicates
the probability of having relapsed/died (state 3) by time t, given that the individual was alive
without relapse or platelet recovery (state 1) at time s = 0. By fixing s and varying t, we can
predict the future behavior of the multi-state model given the present at time s. For Markov
models, these probabilities will depend only on the state at time s, not on what happened before.
For these Markov models there is a powerful relation between these transition probabilities and
the transition intensities, given by

(1) P(s, t) =
∏
(s,t]

(I + dΛ(u))

Here P(s, t) is an S × S matrix with as (g, h) element the Pgh(s, t) in which we are interested,
and Λ(t) is an S × S matrix with as off-diagonal (g, h) elements the transition intensities
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Figure 1: Baseline cumulative hazard curves for the EBMT illness-death model. On the left the
Markov stratified hazards model, on the right the Markov PH model.

Λgh(t) of transition g → h. If such a direct transition is not possible, then Λgh(t) = 0. The
diagonal elements of Λ(t) are defined as Λgg(t) = −

∑
h6=g Λgh(t), i.e. as minus the sum of the

transition intensities of the transitions out from state g. Finally, I is the S ×S identity matrix.
Equation (1) describes a theoretical relation between the true underlying transition intensities
and transition probabilities. The product is a so called product integral (Andersen et al. 1993)
when the transition intensities are continuous.

We already have estimates of all the transition intensities. If we gather these in a matrix
and plug them in equation (1), we get

(2) P̂(s, t) =
∏

s<u≤t

(
I + dΛ̂(u)

)
as an estimate of the transition probabilities. This estimator is called the Aalen-Johansen
estimator, and it is implemented in probtrans . By working with matrices, we immediately
get all the transition probabilities from all the starting states g to all the receiving states h in
one go. When we fix s, we can calculate all these transition probabilities by forward matrix
multiplications using the simple recursive relation

P̂(s, t+) = P̂(s, t) ·
(
I + dΛ̂(t+)

)
.
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Andersen et al. (1993) and de Wreede et al. (2009) also describe recursive formulas for the
covariance matrix of P̂(s, t), with and without covariates, which are implemented in mstate.

Let us see all this theory in action and let us recreate Figure 15 of the tutorial. For this we
need to calculate transition probabilities for a baseline patient, based on the Markov PH model.
We thus use msf2 as input for probtrans . By default, probtrans uses forward prediction,
which means that s is kept fixed and t > s. The argument predt specifies either s or t. In this
case (forward prediction) it specifies s. From version 0.2.3 on, probtrans no longer needs a
trans argument, but takes that from the trans item of the msfit object.

> pt <- probtrans(msf2, predt = 0)

The result of probtrans is a probtrans object, which is a list, where item [[i]] contains
predictions from state i. Each item of the list is a data frame with time containing all event
time points, and pstate1, pstate2, etc the probabilities of being in state 1, 2, etc, and finally
se1, se2 etc the standard errors of these estimated probabilities. The item [[3]] contains
predictions P̂3h(0, t) (we chose s = 0) starting from the RelDeath state, which is absorbing.

> head(pt[[3]])

time pstate1 pstate2 pstate3 se1 se2 se3

1 0.000000000 0 0 1 0 0 0

2 0.002737851 0 0 1 0 0 0

3 0.008213552 0 0 1 0 0 0

4 0.010951403 0 0 1 0 0 0

5 0.016427105 0 0 1 0 0 0

6 0.019164956 0 0 1 0 0 0

> tail(pt[[3]])

time pstate1 pstate2 pstate3 se1 se2 se3

501 6.253251 0 0 1 0 0 0

502 6.357290 0 0 1 0 0 0

503 6.362765 0 0 1 0 0 0

504 6.798084 0 0 1 0 0 0

505 7.110198 0 0 1 0 0 0

506 7.731691 0 0 1 0 0 0

We see that these prediction probabilities are not so interesting; the probabilities are all 0 or 1,
and, since there is no randomness, all the SE’s are 0. Item [[2]] contains predictions P̂2h(0, t)
from state 2.

It is easier to use the summary method for probtrans objects. The user may specify a from
argument, specifying from which state the predictions are to be printed. The summary method
prints a selection, the head and tail by default unless there are fewer than 12 time points.
When complete is set to TRUE, predictions for all time points are printed. If the from argument
is missing in the function call, then predictions from all states are printed.

> summary(pt, from = 2)

An object of class 'probtrans'

Prediction from state 2 (head and tail):
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time pstate1 pstate2 pstate3 se1 se2 se3

1 0.000000000 0 1.0000000 0.0000000000 0 0.0000000000 0.0000000000

2 0.002737851 0 0.9997909 0.0002090742 0 0.0002115858 0.0002115858

3 0.008213552 0 0.9997909 0.0002090742 0 0.0002115858 0.0002115858

4 0.010951403 0 0.9995818 0.0004182281 0 0.0003028232 0.0003028232

5 0.016427105 0 0.9991632 0.0008368292 0 0.0004382601 0.0004382601

6 0.019164956 0 0.9987444 0.0012556499 0 0.0005486946 0.0005486946

...

time pstate1 pstate2 pstate3 se1 se2 se3

501 6.253251 0 0.7079572 0.2920428 0 0.03724432 0.03724432

502 6.357290 0 0.7027899 0.2972101 0 0.03803252 0.03803252

503 6.362765 0 0.6975745 0.3024255 0 0.03881087 0.03881087

504 6.798084 0 0.6870020 0.3129980 0 0.04097391 0.04097391

505 7.110198 0 0.6455554 0.3544446 0 0.05856528 0.05856528

506 7.731691 0 0.6455554 0.3544446 0 0.05856528 0.05856528

From state 2 it is only possible to visit state 3 or to remain in state 2. The probability of going
to state 1 is 0. The predictions P̂1h(0, t) from state 1 in [[1]] are perhaps of most interest here.

> summary(pt, from = 1)

An object of class 'probtrans'

Prediction from state 1 (head and tail):

time pstate1 pstate2 pstate3 se1 se2

1 0.000000000 1.0000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

2 0.002737851 0.9991669 0.0005277714 0.0003053084 0.0006117979 0.0005285695

3 0.008213552 0.9986390 0.0010556490 0.0003053084 0.0008100529 0.0007492497

4 0.010951403 0.9983340 0.0010554282 0.0006106022 0.0008685356 0.0007490930

5 0.016427105 0.9977235 0.0010549862 0.0012215589 0.0009807157 0.0007487794

6 0.019164956 0.9965843 0.0015830048 0.0018327183 0.0012115670 0.0009191199

se3

1 0.0000000000

2 0.0003082357

3 0.0003082357

4 0.0004401329

5 0.0006342283

6 0.0007908588

...

time pstate1 pstate2 pstate3 se1 se2 se3

501 6.253251 0.2308531 0.4336481 0.3354989 0.02448884 0.02974526 0.03063866

502 6.357290 0.2283925 0.4304829 0.3411246 0.02460675 0.03002904 0.03150500

503 6.362765 0.2259175 0.4272883 0.3467942 0.02472281 0.03031296 0.03234850

504 6.798084 0.2209174 0.4208123 0.3582703 0.02518284 0.03119272 0.03507050

505 7.110198 0.2014549 0.3954248 0.4031203 0.03067690 0.03987257 0.05867417

506 7.731691 0.2014549 0.3954248 0.4031203 0.03067690 0.03987257 0.05867417
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But we see that we do not have enough information to create Figure 15 of the tutorial, since
the probability of the relapse/death state (pstate3) does not distinguish between relapse/death
before or after platelet recovery. The remedy is actually easy in this case. Consider a different
multi-state model with two RelDeath states, the first one (state 3) after platelet recovery, the
second one (state 4) without platelet recovery. The transition matrix of this multi-state model
is defined as

> tmat2 <- transMat(x = list(c(2, 4), c(3), c(), c()))

> tmat2

to

from State 1 State 2 State 3 State 4

State 1 NA 1 NA 2

State 2 NA NA 3 NA

State 3 NA NA NA NA

State 4 NA NA NA NA

The multi-state model has four states and the same three transitions as before. If we apply
probtrans to this new multi-state model with the same estimated cumulative hazards and
standard errors as before, we get exactly what we want. Thus, we just have to call probtrans
with the old msf2 and the new tmat2. From version 0.2.3 on, since the transition matrix is in
the msfit object, we just need to replace the trans item of msf2 by tmat2. In the elements of
the resulting lists, pstate3 will indicate the probability of relapse/death after platelet recovery
and pstate4 the probability of relapse/death without platelet recovery.

> msf2$trans <- tmat2

> pt <- probtrans(msf2, predt = 0)

> summary(pt, from = 1)

An object of class 'probtrans'

Prediction from state 1 (head and tail):

time pstate1 pstate2 pstate3 pstate4 se1

1 0.000000000 1.0000000 0.0000000000 0.000000e+00 0.0000000000 0.0000000000

2 0.002737851 0.9991669 0.0005277714 0.000000e+00 0.0003053084 0.0006117979

3 0.008213552 0.9986390 0.0010556490 0.000000e+00 0.0003053084 0.0008100529

4 0.010951403 0.9983340 0.0010554282 2.208393e-07 0.0006103813 0.0008685356

5 0.016427105 0.9977235 0.0010549862 6.628276e-07 0.0012208961 0.0009807157

6 0.019164956 0.9965843 0.0015830048 1.105048e-06 0.0018316132 0.0012115670

se2 se3 se4

1 0.0000000000 0.000000e+00 0.0000000000

2 0.0005285695 1.116923e-07 0.0003080762

3 0.0007492497 1.116923e-07 0.0003080762

4 0.0007490930 2.989514e-07 0.0004397978

5 0.0007487794 6.308958e-07 0.0006336859

6 0.0009191199 1.032427e-06 0.0007900509

...

time pstate1 pstate2 pstate3 pstate4 se1 se2
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501 6.253251 0.2308531 0.4336481 0.1681264 0.1673724 0.02448884 0.02974526

502 6.357290 0.2283925 0.4304829 0.1712916 0.1698330 0.02460675 0.03002904

503 6.362765 0.2259175 0.4272883 0.1744862 0.1723080 0.02472281 0.03031296

504 6.798084 0.2209174 0.4208123 0.1809622 0.1773081 0.02518284 0.03119272

505 7.110198 0.2014549 0.3954248 0.2063497 0.1967706 0.03067690 0.03987257

506 7.731691 0.2014549 0.3954248 0.2063497 0.1967706 0.03067690 0.03987257

se3 se4

501 0.02379684 0.02100629

502 0.02430502 0.02136056

503 0.02480762 0.02170882

504 0.02616939 0.02264879

505 0.03690104 0.02987965

506 0.03690104 0.02987965

The reader may check that the pstate3 and pstate4 probabilities of this new Aalen-Johansen
estimator sum up to the pstate3 probability of the result of the previous call to probtrans ,
and that the pstate1 and pstate2 probabilities are unchanged.

Figure 2 contains a plot of pt1. For this we use the plot method for probtrans objects.

> plot(pt, ord = c(2, 3, 4, 1), lwd = 2, xlab = "Years since transplant",

+ ylab = "Prediction probabilities", cex = 0.75, legend = c("Alive in remission, no PR",

+ "Alive in remission, PR", "Relapse or death after PR",

+ "Relapse or death without PR"))
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Figure 2: Stacked prediction probabilities at s = 0 for a reference patient. PR stands for platelet
recovery

22



The argument from determines from which state the transition probabilities are to be plotted.
The default is from state 1, which is what we want, so the from argument is omitted here. The
default type of the plot method for probtrans objects is a ”stacked”plot, for which the difference
between two adjacent lines represents the probability of being in a state. The argument ord
specifies the order of the states of which the probabilities are stacked. The present order, 2, 3,
4, 1, allows states 2 and 3 to be combined visually (states with platelet recovery) and states
3 and 4 (death states). Other plot types are ”filled”, which is like ”stacked”, but uses colors
to fill the space between adjacent lines, ”single”, which simply plots the transition probabilities
as different lines in a single plot, and ”separate”, which uses separate plots for the transition
probabilities.

To obtain the predictions P̂1h(s, t) for s = 0.5, which are plotted in Figure 16 of the tutorial,
we simply change the value of predt in the call to probtrans .

> pt <- probtrans(msf2, predt = 0.5)

> summary(pt, from = 1)

An object of class 'probtrans'

Prediction from state 1 (head and tail):

time pstate1 pstate2 pstate3 pstate4 se1

1 0.5000000 1.0000000 0.000000000 0.000000e+00 0.000000000 0.000000000

2 0.5010267 0.9985898 0.000000000 0.000000e+00 0.001410218 0.003237571

3 0.5037645 0.9976488 0.000000000 0.000000e+00 0.002351164 0.004183373

4 0.5065024 0.9955387 0.001639506 0.000000e+00 0.002821775 0.006169060

5 0.5092402 0.9938957 0.003282495 0.000000e+00 0.002821775 0.007422321

6 0.5119781 0.9915469 0.003277183 5.312169e-06 0.005170580 0.008513835

se2 se3 se4

1 0.000000000 0.000000e+00 0.000000000

2 0.000000000 0.000000e+00 0.003237571

3 0.000000000 0.000000e+00 0.004183373

4 0.004136138 2.101143e-06 0.004583357

5 0.005848968 2.101143e-06 0.004583357

6 0.005839510 1.353036e-05 0.006209919

...

time pstate1 pstate2 pstate3 pstate4 se1 se2

330 6.253251 0.6872018 0.02597812 0.005991102 0.2808290 0.05248379 0.01448894

331 6.357290 0.6798772 0.02578851 0.006180714 0.2881535 0.05348008 0.01438691

332 6.362765 0.6725095 0.02559713 0.006372091 0.2955212 0.05445049 0.01428397

333 6.798084 0.6576254 0.02520918 0.006760043 0.3104053 0.05723289 0.01407791

334 7.110198 0.5996895 0.02368832 0.008280903 0.3683412 0.07993696 0.01332734

335 7.731691 0.5996895 0.02368832 0.008280903 0.3683412 0.07993696 0.01332734

se3 se4

330 0.003565503 0.05117341

331 0.003675647 0.05224080

332 0.003786522 0.05327926

333 0.004019125 0.05620683

334 0.005060910 0.07944552
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Figure 3: Stacked prediction probabilities at s = 0.5 for a reference patient

335 0.005060910 0.07944552

The result now contains only time points t ≥ 0.5. Figure 3 contains a plot of pt1.

> plot(pt, ord = c(2, 3, 4, 1), lwd = 2, xlab = "Years since transplant",

+ ylab = "Prediction probabilities", cex = 0.75, legend = c("Alive in remission, no PR",

+ "Alive in remission, PR", "Relapse or death after PR",

+ "Relapse or death without PR"))

Figure 17 of the tutorial distinguishes between three patients, one being the good old (or rather
young) reference patient, for which we have already calculated the probabilities, one for a patient
in the age category 20-40, and one for a patient older than 40. To obtain prediction probabilities
for the latter two patients as well, we have to repeat part of the calculations, changing only the
value of age in the newdata data frame.

> msf2$trans <- tmat

> msf.20 <- msf2 # copy msfit result for reference (young) patient

> newd <- newd[,1:5] # use the basic covariates of the reference patient

> newd2 <- newd

> newd2$age <- 1

> newd2$age <- factor(newd2$age,levels=0:2,labels=levels(ebmt3$age))

> attr(newd2, "trans") <- tmat

> class(newd2) <- c("msdata","data.frame")

> newd2 <- expand.covs(newd2,covs[1:4],longnames=FALSE)

> newd2$strata=c(1,2,2)

> newd2$pr <- c(0,0,1)
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> msf.2040 <- msfit(c2, newdata=newd2, trans=tmat)

> newd3 <- newd

> newd3$age <- 2

> newd3$age <- factor(newd3$age,levels=0:2,labels=levels(ebmt3$age))

> attr(newd3, "trans") <- tmat

> class(newd3) <- c("msdata","data.frame")

> newd3 <- expand.covs(newd3,covs[1:4],longnames=FALSE)

> newd3$strata=c(1,2,2)

> newd3$pr <- c(0,0,1)

> msf.40 <- msfit(c2, newdata=newd3, trans=tmat)

> pt.20 <- probtrans(msf.20,predt=0) # original young (<= 20) patient

> pt.201 <- pt.20[[1]]; pt.202 <- pt.20[[2]]

> pt.2040 <- probtrans(msf.2040,predt=0) # patient 20-40

> pt.20401 <- pt.2040[[1]]; pt.20402 <- pt.2040[[2]]

> pt.40 <- probtrans(msf.40,predt=0) # patient > 40

> pt.401 <- pt.40[[1]]; pt.402 <- pt.40[[2]]

The 5-years transition probabilities P13(0, 5) and P23(0, 5) are estimated as 0.30275 and 0.26210
respectively.

> pt.201[488:489,] # 5 years falls between 488th and 489th time point

time pstate1 pstate2 pstate3 se1 se2 se3

488 4.985626 0.2452605 0.4519872 0.3027523 0.02411439 0.02853645 0.02693539

489 5.084189 0.2445602 0.4511034 0.3043365 0.02412385 0.02858110 0.02707436

> pt.202[488:489,] # 5-years probabilities

time pstate1 pstate2 pstate3 se1 se2 se3

488 4.985626 0 0.7378970 0.2621030 0 0.03339911 0.03339911

489 5.084189 0 0.7364541 0.2635459 0 0.03356217 0.03356217

Figure 4 shows relapse-free survival probabilities without distinction between before or after
platelet recovery, so we can use the first transition matrix tmat. The probabilities we want are
1 − P̂13(0, t) and 1 − P̂23(0, t), the first one conditioning on being in state 1 (transplantation,
i.e. no PR), the second in being in state 2 (PR).

> plot(pt.201$time, 1 - pt.201$pstate3, ylim = c(0.425, 1), type = "s",

+ lwd = 2, col = "red", xlab = "Years since transplant", ylab = "Relapse-free survival")

> lines(pt.20401$time, 1 - pt.20401$pstate3, type = "s", lwd = 2,

+ col = "blue")

> lines(pt.401$time, 1 - pt.401$pstate3, type = "s", lwd = 2, col = "green")

> lines(pt.202$time, 1 - pt.202$pstate3, type = "s", lwd = 2, col = "red",

+ lty = 2)

> lines(pt.20402$time, 1 - pt.20402$pstate3, type = "s", lwd = 2,

+ col = "blue", lty = 2)

> lines(pt.402$time, 1 - pt.402$pstate3, type = "s", lwd = 2, col = "green",

+ lty = 2)

> legend(6, 1, c("no PR", "PR"), lwd = 2, lty = 1:2, xjust = 1,

+ bty = "n")

> legend("topright", c("<=20", "20-40", ">40"), lwd = 2, col = c("red",

+ "blue", "green"), bty = "n")
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Figure 4: Predicted relapse-free survival probabilities for three patients in different age cat-
egories, given platelet recovery (dashed) and given no platelet recovery (solid). The time of
prediction was at transplant (note: in the tutorial this was at 1 month after transplant).
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It is also possible to do prediction with a fixed horizon. This should not be understood as
attempting to predict the past. It means that in our prediction probabilities Pgh(s, t), we fix
t, a time horizon, and we want to study how Pgh(s, t) changes as more and more information
on a patient becomes available. From a computational point of view this just means that the
order of the matrix multiplication in (2) is reversed. We will plot 1− P̂13(s, 5) and 1− P̂23(s, 5),
the 5-years relapse-free survival probabilities given that the patient is in state 1 (no PR) and in
state 2 (PR), respectively, for the same three patients as before.

> pt.20 <- probtrans(msf.20, direction = "fixedhorizon", predt = 5)

> pt.201 <- pt.20[[1]]

> pt.202 <- pt.20[[2]]

> head(pt.201)

time pstate1 pstate2 pstate3 se1 se2 se3

1 0.000000000 0.2452605 0.4519872 0.3027523 0.02411439 0.02853645 0.02693539

2 0.002737851 0.2454650 0.4519742 0.3025608 0.02413403 0.02854695 0.02694328

3 0.008213552 0.2455948 0.4518230 0.3025823 0.02414644 0.02854909 0.02694380

4 0.010951403 0.2456698 0.4519611 0.3023691 0.02415369 0.02855746 0.02695114

5 0.016427105 0.2458201 0.4522376 0.3019422 0.02416821 0.02857418 0.02696574

6 0.019164956 0.2461011 0.4523628 0.3015361 0.02419520 0.02859303 0.02698076

> head(pt.202)

time pstate1 pstate2 pstate3 se1 se2 se3

1 0.000000000 0 0.7378970 0.2621030 0 0.03339911 0.03339911

2 0.002737851 0 0.7380513 0.2619487 0 0.03340572 0.03340572

3 0.008213552 0 0.7380513 0.2619487 0 0.03340572 0.03340572

4 0.010951403 0 0.7382057 0.2617943 0 0.03341233 0.03341233

5 0.016427105 0 0.7385150 0.2614850 0 0.03342551 0.03342551

6 0.019164956 0 0.7388247 0.2611753 0 0.03343863 0.03343863

Here item [[1]] gives estimates P̂1h(s, 5) and [[2]] gives estimates P̂2h(s, 5). For item [[g]],
the column time gives the different values of s and pstate1 etc give the estimated probabilities
of being in state 1 etc at 5 years, conditional on being in state g at time s. In pt.201 we
recognize at time (s)=0) 0.30275 as P̂1h(0, 5) and in pt.202 we see 0.26210 as P̂2h(0, 5). The
backward transition probabilities for the other two patients are calculated similarly.

> pt.2040 <- probtrans(msf.2040, direction = "fixedhorizon", predt = 5)

> pt.20401 <- pt.2040[[1]]

> pt.20402 <- pt.2040[[2]]

> pt.40 <- probtrans(msf.40, direction = "fixedhorizon", predt = 5)

> pt.401 <- pt.40[[1]]

> pt.402 <- pt.40[[2]]

As mentioned before, in s = 0, these probabilities are the same as the five-years probabilities of
Figure 4, and as s approaches 5, the probabilities approach 1, since both P̂13(s, 5) and P̂23(s, 5)
approach 0. Figure 5 shows 5-years relapse-free survival probabilities, both with and without
platelet recovery, with the prediction time s varying.

> plot(pt.201$time, 1 - pt.201$pstate3, ylim = c(0.425, 1), type = "s",

+ lwd = 2, col = "red", xlab = "Years since transplant", ylab = "Relapse-free survival")
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Figure 5: Predicted probabilities of 5-years relapse-free survival, conditional on being alive with-
out relapse with (PR) and without platelet recovery (no PR). Patients in three age categories.

> lines(pt.20401$time, 1 - pt.20401$pstate3, type = "s", lwd = 2,

+ col = "blue")

> lines(pt.401$time, 1 - pt.401$pstate3, type = "s", lwd = 2, col = "green")

> lines(pt.202$time, 1 - pt.202$pstate3, type = "s", lwd = 2, col = "red",

+ lty = 2)

> lines(pt.20402$time, 1 - pt.20402$pstate3, type = "s", lwd = 2,

+ col = "blue", lty = 2)

> lines(pt.402$time, 1 - pt.402$pstate3, type = "s", lwd = 2, col = "green",

+ lty = 2)

> legend("topleft", c("<=20", "20-40", ">40"), lwd = 2, col = c("red",

+ "blue", "green"), bty = "n")

> legend(1, 1, c("no PR", "PR"), lwd = 2, lty = 1:2, bty = "n")

> title(main = "Backward prediction")

5 Competing risks

The data used in Section 3 of the tutorial is available in mstate under the name aidssi. See
the help file for more information.

> data(aidssi)

> si <- aidssi # Just a shorter name

> head(si)
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patnr time status cause ccr5

1 1 9.106 1 AIDS WW

2 2 11.039 0 event-free WM

3 3 2.234 1 AIDS WW

4 4 9.878 2 SI WM

5 5 3.819 1 AIDS WW

6 6 6.801 1 AIDS WW

> table(si$status)

0 1 2

107 114 108

To prepare data in long format, it is possible to use msprep . In this case there is not a huge ad-
vantage in using msprep ; the long data may just as easily be prepared directly. Nevertheless we
will illustrate the use of msprep to obtain data in long format. The function trans.comprisk

prepares a transition matrix for competing risks models. The first argument is the number of
causes of failure; in the names argument a character vector of length three (the total number
of states in the multi-state model including the failure-free state) may be given. The transi-
tion matrix has three states with stte 1 being the failure-free state and the subsequent sttes
representing the different causes of failure.

> tmat <- trans.comprisk(2, names = c("event-free", "AIDS", "SI"))

> tmat

to

from event-free AIDS SI

event-free NA 1 2

AIDS NA NA NA

SI NA NA NA

Now follows the actual call to msprep .

> si$stat1 <- as.numeric(si$status == 1)

> si$stat2 <- as.numeric(si$status == 2)

> silong <- msprep(time = c(NA, "time", "time"), status = c(NA,

+ "stat1", "stat2"), data = si, keep = "ccr5", trans = tmat)

We can use events to check whether the number of events from original data (si) corresponds
with long data.

> events(silong)

$Frequencies

to

from event-free AIDS SI no event total entering

event-free 0 114 108 107 329

AIDS 0 0 0 0 0

SI 0 0 0 0 0

$Proportions

to

29



from event-free AIDS SI no event

event-free 0.0000000 0.3465046 0.3282675 0.3252280

AIDS

SI

For the regression analyses to be performed later we add transition-specific covariates. In the
context of competing risks one could call them cause-specific covariates. Since the factor levels
of CCR5 are quite short we keep the default setting (TRUE) of longnames.

> silong <- expand.covs(silong, "ccr5")

> silong[1:8, ]

An object of class 'msdata'

Data:

id from to trans Tstart Tstop time status ccr5 ccr5WM.1 ccr5WM.2

1 1 1 2 1 0 9.106 9.106 1 WW 0 0

2 1 1 3 2 0 9.106 9.106 0 WW 0 0

3 2 1 2 1 0 11.039 11.039 0 WM 1 0

4 2 1 3 2 0 11.039 11.039 0 WM 0 1

5 3 1 2 1 0 2.234 2.234 1 WW 0 0

6 3 1 3 2 0 2.234 2.234 0 WW 0 0

7 4 1 2 1 0 9.878 9.878 0 WM 1 0

8 4 1 3 2 0 9.878 9.878 1 WM 0 1

To illustrate the fact that naive Kaplan-Meiers are biased estimators of the probabilities of
failing from the different causes of failure, we just make use of the functions in the survival
package. I am using coxph below, probably this could be done quicker.

> c1 <- coxph(Surv(time, status) ~ 1, data = silong, subset = (trans ==

+ 1), method = "breslow")

> c2 <- coxph(Surv(time, status) ~ 1, data = silong, subset = (trans ==

+ 2), method = "breslow")

> h1 <- survfit(c1)

> h1 <- data.frame(time = h1$time, surv = h1$surv)

> h2 <- survfit(c2)

> h2 <- data.frame(time = h2$time, surv = h2$surv)

These naive Kaplan-Meier curves are shown in Figure 6 (Figure 2 in the tutorial). The Kaplan-
Meier estimate of AIDS is plotted as a survival curve, while that of SI appearance is shown as
a distribution function. There is some extra code to chop the time at 13 years. This was just
done to make the picture prettier.

> idx1 <- (h1$time<13) # this restricts the plot to the first 13 years

> plot(c(0,h1$time[idx1],13),c(1,h1$surv[idx1],min(h1$surv[idx1])),type="s",

+ ylim=c(0,1),xlab="Years from HIV infection",ylab="Probability",lwd=2)

> idx2 <- (h2$time<13)

> lines(c(0,h2$time[idx2],13),c(0,1-h2$surv[idx2],max(1-h2$surv[idx2])),type="s",lwd=2)

> text(8,0.71,adj=0,"AIDS")

> text(8,0.32,adj=0,"SI")

Cumulative incidence functions can be computed using the function Cuminc . It takes as main
arguments time and status, which can be provided as vectors
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Figure 6: Estimated survival curve for AIDS and probability of SI appearance, based on the
naive Kaplan-Meier estimator.

> ci <- Cuminc(time = si$time, status = si$status)

or, alternatively, as column names representing time and status, along with a data argument
containing these column names.

> ci <- Cuminc(time = "time", status = "status", data = aidssi)

The result is a data frame containing the failure-free probabilities (Surv) and the cumulative
incidence functions with their standard errors. Other arguments allow to specify the codes for
the causes of failure and a group identifier.

> head(ci)

time Surv CI.1 CI.2 seSurv seCI.1 seCI.2

1 0.000 1.0000000 0 0.000000000 0.000000000 0 0.000000000

2 0.112 0.9969605 0 0.003039514 0.003034891 0 0.003034891

3 0.137 0.9939210 0 0.006079027 0.004285436 0 0.004285436

4 0.474 0.9908628 0 0.009137246 0.005251290 0 0.005251290

5 0.824 0.9877760 0 0.012224046 0.006074796 0 0.006074796

6 0.884 0.9846795 0 0.015320522 0.006799283 0 0.006799283

> tail(ci)

time Surv CI.1 CI.2 seSurv seCI.1 seCI.2

212 11.943 0.2312339 0.4035707 0.3651954 0.02638091 0.02978948 0.02881464
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Figure 7: Estimates of probabilities of AIDS and SI appearance, based on the naive Kaplan-
Meier (grey) and on cumulative incidence functions (black).

213 12.129 0.2266092 0.4081954 0.3651954 0.02625552 0.02989297 0.02881464

214 12.400 0.2219845 0.4081954 0.3698201 0.02612382 0.02989297 0.02896110

215 12.936 0.2165702 0.4081954 0.3752344 0.02604167 0.02989297 0.02919663

216 13.361 0.2067261 0.4180395 0.3752344 0.02665370 0.03089977 0.02919663

217 13.936 0.0000000 0.4180395 0.5819605 0.00000000 0.03089977 0.03089977

The cumulative incidence functions just obtained can be used to reproduce Figure 3 of the
tutorial. The plots are shown in Figure 7.

> idx0 <- (ci$time < 13)

> plot(c(0, ci$time[idx0], 13), c(1, 1 - ci$CI.1[idx0], min(1 -

+ ci$CI.1[idx0])), type = "s", ylim = c(0, 1), xlab = "Years from HIV infection",

+ ylab = "Probability", lwd = 2)

> idx1 <- (h1$time < 13)

> lines(c(0, h1$time[idx1], 13), c(1, h1$surv[idx1], min(h1$surv[idx1])),

+ type = "s", lwd = 2, col = 8)

> lines(c(0, ci$time[idx0], 13), c(0, ci$CI.2[idx0], max(ci$CI.2[idx0])),

+ type = "s", lwd = 2)

> idx2 <- (h2$time < 13)

> lines(c(0, h2$time[idx2], 13), c(0, 1 - h2$surv[idx2], max(1 -

+ h2$surv[idx2])), type = "s", lwd = 2, col = 8)

> text(8, 0.77, adj = 0, "AIDS")

> text(8, 0.275, adj = 0, "SI")

The stacked plots of Figure 4 of the tutorial are shown in Figure 8.
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Figure 8: Cumulative incidence curves of AIDS and SI appearance. The cumulative incidence
functions are stacked; the distances between two curves represent the probabilities of the differ-
ent events.

> idx0 <- (ci$time < 13)

> plot(c(0, ci$time[idx0]), c(0, ci$CI.1[idx0]), type = "s", ylim = c(0,

+ 1), xlab = "Years from HIV infection", ylab = "Probability",

+ lwd = 2)

> lines(c(0, ci$time[idx0]), c(0, ci$CI.1[idx0] + ci$CI.2[idx0]),

+ type = "s", lwd = 2)

> text(13, 0.5 * max(ci$CI.1[idx0]), adj = 1, "AIDS")

> text(13, max(ci$CI.1[idx0]) + 0.5 * max(ci$CI.2[idx0]), adj = 1,

+ "SI")

> text(13, 0.5 + 0.5 * max(ci$CI.1[idx0]) + 0.5 * max(ci$CI.2[idx0]),

+ adj = 1, "Event-free")

Regression

The section on regression in the tutorial already shows some R code and occasional output.
Because of the fact that I used msprep to prepare the long data, occasionally there will be
very small differences with the code in the tutorial. We start with regression on cause-specific
hazards. Using the original dataset, we can apply ordinary Cox regression for cause 1 (AIDS),
taking only the AIDS cases as events. This is done by specifying status==1 below (observations
with status=0 (true censorings) and status=2 (SI) are treated as censorings). Similarly for cause
2 (SI appearance), where status==2 indicates that only failures due to SI appearance are to be
treated as events.
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> coxph(Surv(time, status == 1) ~ ccr5, data = si) # AIDS

Call:

coxph(formula = Surv(time, status == 1) ~ ccr5, data = si)

coef exp(coef) se(coef) z p

ccr5WM -1.24 0.291 0.307 -4.02 5.7e-05

Likelihood ratio test=22 on 1 df, p=2.76e-06 n= 324, number of events= 113

(5 observations deleted due to missingness)

> coxph(Surv(time, status == 2) ~ ccr5, data = si) # SI appearance

Call:

coxph(formula = Surv(time, status == 2) ~ ccr5, data = si)

coef exp(coef) se(coef) z p

ccr5WM -0.254 0.776 0.238 -1.07 0.29

Likelihood ratio test=1.19 on 1 df, p=0.275 n= 324, number of events= 107

(5 observations deleted due to missingness)

The same analysis can be performed using the long format dataset silong in several ways. For
instance, as separate Cox regressions.

> coxph(Surv(time, status) ~ ccr5, data = silong, subset = (trans ==

+ 1), method = "breslow")

Call:

coxph(formula = Surv(time, status) ~ ccr5, data = silong, subset = (trans ==

1), method = "breslow")

coef exp(coef) se(coef) z p

ccr5WM -1.24 0.291 0.307 -4.02 5.7e-05

Likelihood ratio test=22 on 1 df, p=2.76e-06 n= 324, number of events= 113

(5 observations deleted due to missingness)

> coxph(Surv(time, status) ~ ccr5, data = silong, subset = (trans ==

+ 2), method = "breslow")

Call:

coxph(formula = Surv(time, status) ~ ccr5, data = silong, subset = (trans ==

2), method = "breslow")

coef exp(coef) se(coef) z p

ccr5WM -0.254 0.776 0.238 -1.07 0.29
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Likelihood ratio test=1.19 on 1 df, p=0.275 n= 324, number of events= 107

(5 observations deleted due to missingness)

And in a single analysis, using the expanded covariates.

> coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),

+ data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),

data = silong)

coef exp(coef) se(coef) z p

ccr5WM.1 -1.236 0.291 0.307 -4.02 5.7e-05

ccr5WM.2 -0.254 0.776 0.238 -1.07 2.9e-01

Likelihood ratio test=23.2 on 2 df, p=9.3e-06 n= 648, number of events= 220

(10 observations deleted due to missingness)

The same model, but now using a covariate by cause interaction.

> coxph(Surv(time, status) ~ ccr5 * factor(trans) + strata(trans),

+ data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5 * factor(trans) + strata(trans),

data = silong)

coef exp(coef) se(coef) z p

ccr5WM -1.236 0.291 0.307 -4.02 5.7e-05

factor(trans)2 NA NA 0.000 NA NA

ccr5WM:factor(trans)2 0.982 2.669 0.389 2.53 1.2e-02

Likelihood ratio test=23.2 on 2 df, p=9.3e-06 n= 648, number of events= 220

(10 observations deleted due to missingness)

In the model below we assume that the effect of CCR5 on the two cause-specific hazards is
equal. The significant effect of the interaction in the model we just saw indicates that this is
not a good idea. But, again, this is just for educational purposes.

> coxph(Surv(time, status) ~ ccr5 + strata(trans), data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5 + strata(trans), data = silong)

coef exp(coef) se(coef) z p

ccr5WM -0.701 0.496 0.186 -3.77 0.00016

Likelihood ratio test=16.5 on 1 df, p=4.97e-05 n= 648, number of events= 220

(10 observations deleted due to missingness)
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There are two alternative ways yielding the same result. First, we can actually leave out the
strata term.

> coxph(Surv(time, status) ~ ccr5, data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5, data = silong)

coef exp(coef) se(coef) z p

ccr5WM -0.701 0.496 0.186 -3.77 0.00016

Likelihood ratio test=16.5 on 1 df, p=4.96e-05 n= 648, number of events= 220

(10 observations deleted due to missingness)

Second, since the strata term is not needed we can use si.

> coxph(Surv(time, status != 0) ~ ccr5, data = si)

Call:

coxph(formula = Surv(time, status != 0) ~ ccr5, data = si)

coef exp(coef) se(coef) z p

ccr5WM -0.701 0.496 0.186 -3.77 0.00016

Likelihood ratio test=16.5 on 1 df, p=4.95e-05 n= 324, number of events= 220

(5 observations deleted due to missingness)

Note: the actual estimated baseline hazards may be different, whether or not the strata term
is used.

Assuming that baseline hazards for AIDS and SI are proportional (this is generally not a
realistic assumption by the way, but just for illustration purposes).

> coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + factor(trans),

+ data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + factor(trans),

data = silong)

coef exp(coef) se(coef) z p

ccr5WM.1 -1.166 0.311 0.306 -3.81 0.00014

ccr5WM.2 -0.332 0.718 0.237 -1.40 0.16000

factor(trans)2 -0.184 0.832 0.148 -1.25 0.21000

Likelihood ratio test=21.5 on 3 df, p=8.12e-05 n= 648, number of events= 220

(10 observations deleted due to missingness)

Or, again using covariate by cause (transition) interaction.
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> coxph(Surv(time, status) ~ ccr5 * factor(trans), data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5 * factor(trans), data = silong)

coef exp(coef) se(coef) z p

ccr5WM -1.166 0.311 0.306 -3.81 0.00014

factor(trans)2 -0.184 0.832 0.148 -1.25 0.21000

ccr5WM:factor(trans)2 0.835 2.304 0.386 2.17 0.03000

Likelihood ratio test=21.5 on 3 df, p=8.12e-05 n= 648, number of events= 220

(10 observations deleted due to missingness)

Note that, even though patients are replicated in the long format, it is not necessary to use
robust standard errors. Any of the previous analyses with the silong dataset gives identical
results when a cluster(id) term is added. For instance,

> coxph(Surv(time, status) ~ ccr5 * factor(trans) + cluster(id),

+ data = silong)

Call:

coxph(formula = Surv(time, status) ~ ccr5 * factor(trans) + cluster(id),

data = silong)

coef exp(coef) se(coef) robust se z p

ccr5WM -1.166 0.311 0.306 0.293 -3.98 6.8e-05

factor(trans)2 -0.184 0.832 0.148 0.148 -1.25 2.1e-01

ccr5WM:factor(trans)2 0.835 2.304 0.386 0.386 2.17 3.0e-02

Likelihood ratio test=21.5 on 3 df, p=8.12e-05 n= 648, number of events= 220

(10 observations deleted due to missingness)

gives the same result as before.
So far in the regression context we have just used the coxph function of the survival package.

In order to obtain predicted cumulative incidences, msprep is useful. First let us store our
analysis with separate covariate effects for the two causes.

> c1 <- coxph(Surv(time, status) ~ ccr5WM.1 + ccr5WM.2 + strata(trans),

+ data = silong, method = "breslow")

If we want the predicted cumulative incidences for an individual with CCR5 wild-type (WW),
we make a newdata data frame containing the (transition-specific) covariate values for each of
the transitions for the individual of interest. Then we apply msfit as illustrated earlier in the
context of multi-state models.

> WW <- data.frame(ccr5WM.1 = c(0, 0), ccr5WM.2 = c(0, 0), trans = c(1,

+ 2), strata = c(1, 2))

> msf.WW <- msfit(c1, WW, trans = tmat)

And finally, to obtain the cumulative incidences we apply probtrans . Item [[1]] is selected
because the prediction starts from state 1 (event-free) at time s = 0.

37



> pt.WW <- probtrans(msf.WW, 0)[[1]]

Similarly for an individual with the CCR5 mutant (WM) genotype.

> WM <- data.frame(ccr5WM.1 = c(1, 0), ccr5WM.2 = c(0, 1), trans = c(1,

+ 2), strata = c(1, 2))

> msf.WM <- msfit(c1, WM, trans = tmat)

> pt.WM <- probtrans(msf.WM, 0)[[1]]

We now plot these cumulative incidence curves for AIDS (pstate2) and SI appearance (pstate3),
for wild-type (WW) and mutant (WM) in Figure 9 (Figure 5 in the tutorial).

> idx1 <- (pt.WW$time < 13)

> idx2 <- (pt.WM$time < 13)

> plot(c(0, pt.WW$time[idx1]), c(0, pt.WW$pstate2[idx1]), type = "s",

+ ylim = c(0, 0.5), xlab = "Years from HIV infection", ylab = "Probability",

+ lwd = 2)

> lines(c(0, pt.WM$time[idx2]), c(0, pt.WM$pstate2[idx2]), type = "s",

+ lwd = 2, col = 8)

> title(main = "AIDS")

> text(9.2, 0.345, "WW", adj = 0, cex = 0.75)

> text(9.2, 0.125, "WM", adj = 0, cex = 0.75)

> plot(c(0, pt.WW$time[idx1]), c(0, pt.WW$pstate3[idx1]), type = "s",

+ ylim = c(0, 0.5), xlab = "Years from HIV infection", ylab = "Probability",

+ lwd = 2)

> lines(c(0, pt.WM$time[idx2]), c(0, pt.WM$pstate3[idx2]), type = "s",

+ lwd = 2, col = 8)

> title(main = "SI appearance")

> text(7.5, 0.31, "WW", adj = 0, cex = 0.75)

> text(7.5, 0.245, "WM", adj = 0, cex = 0.75)

The illustration of the phenomenon that the same cause-specific hazard ratio may have differ-
ent effects on the cumulative incidences (Figure 7 in the tutorial) may be performed as well,
by replacing the appropriate parts of the cumulative hazard of AIDS (trans=1), and calling
probtrans . We are interested in SI appearance and adjust the hazards of the competing risk
(AIDS) while keeping the remainder the same (Figure 7 in the tutorial). The result is shown in
Figure 10. We multiply the baseline hazard of AIDS with factors (ff = 0, 0.5, 1, 1.5, 2, 4).

> ffs <- c(0, 0.5, 1, 1.5, 2, 4)

> newmsf.WW <- msf.WW

> newmsf.WM <- msf.WM

> par(mfrow = c(2, 3))

> for (ff in ffs) {

+ newmsf.WW$Haz$Haz[newmsf.WW$Haz$trans == 1] <- ff * msf.WW$Haz$Haz[msf.WW$Haz$trans ==

+ 1]

+ pt.WW <- probtrans(newmsf.WW, 0, variance = FALSE)[[1]]

+ newmsf.WM$Haz$Haz[newmsf.WM$Haz$trans == 1] <- ff * msf.WM$Haz$Haz[msf.WM$Haz$trans ==

+ 1]

+ pt.WM <- probtrans(newmsf.WM, 0, variance = FALSE)[[1]]

+ idx1 <- (pt.WW$time < 13)

+ idx2 <- (pt.WM$time < 13)

+ plot(c(0, pt.WW$time[idx1]), c(0, pt.WW$pstate3[idx1]), type = "s",
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Figure 9: Cumulative incidence functions for AIDS (left) and SI appearance (right), for wild-
type (WW) and mutant (WM) CCR5 genotype, based on a proportional hazards model on the
cause-specific hazards.

+ ylim = c(0, 0.52), xlab = "Years from HIV infection",

+ ylab = "Probability", lwd = 2)

+ lines(c(0, pt.WM$time[idx2]), c(0, pt.WM$pstate3[idx2]),

+ type = "s", lwd = 2, col = 8)

+ title(main = paste("Factor =", ff))

+ }

> par(mfrow = c(1, 1))

Fine and Gray regression on cumulative incidence functions is not implemented in mstate, but
in the R package cmprsk . Since our main purpose here is illustration of mstate, we just give the
code and the output.

> library(cmprsk)

> sic <- si[!is.na(si$ccr5),]

> ftime <- sic$time

> fstatus <- sic$status

> cov <- as.numeric(sic$ccr5)-1

> # for failures of type 1 (AIDS)

> z1 <- crr(ftime,fstatus,cov)

> z1

convergence: TRUE

coefficients:

cov1

-1.004

standard errors:

[1] 0.295

two-sided p-values:

cov1

0.00066
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Figure 10: Cumulative incidence functions for Si appearance, for CCR5 wild-type WW (black)
and mutant WM (grey). The baseline hazard of AIDS was multiplied with different factors, while
keeping everything else the same.
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> # for failures of type 2 (SI)

> z2 <- crr(ftime,fstatus,cov,failcode=2)

> z2

convergence: TRUE

coefficients:

cov1

0.02359

standard errors:

[1] 0.2266

two-sided p-values:

cov1

0.92

The result (Figure 8 in the tutorial) is shown in Figure 11.

> z1.pr <- predict(z1,matrix(c(0,1),2,1))

> # this will contain predicted cum inc curves, both for WW (2nd column) and WM (3rd)

> z2.pr <- predict(z2,matrix(c(0,1),2,1))

> # Standard plots, not shown

> par(mfrow=c(1,2))

> plot(z1.pr,lty=1,lwd=2,color=c(8,1))

> plot(z2.pr,lty=1,lwd=2,color=c(8,1))

> par(mfrow=c(1,1))

> ## AIDS

> n1 <- nrow(z1.pr) # remove last jump

> plot(c(0,z1.pr[-n1,1]),c(0,z1.pr[-n1,2]),type="s",ylim=c(0,0.5),

+ xlab="Years from HIV infection",ylab="Probability",lwd=2)

> lines(c(0,z1.pr[-n1,1]),c(0,z1.pr[-n1,3]),type="s",lwd=2,col=8)

> title(main="AIDS")

> text(9.3,0.35,"WW",adj=0,cex=0.75)

> text(9.3,0.14,"WM",adj=0,cex=0.75)

> ## SI appearance

> n2 <- nrow(z2.pr) # again remove last jump

> plot(c(0,z2.pr[-n2,1]),c(0,z2.pr[-n2,2]),type="s",ylim=c(0,0.5),

+ xlab="Years from HIV infection",ylab="Probability",lwd=2)

> lines(c(0,z2.pr[-n2,1]),c(0,z2.pr[-n2,3]),type="s",lwd=2,col=8)

> title(main="SI appearance")

> text(7.9,0.28,"WW",adj=0,cex=0.75)

> text(7.9,0.31,"WM",adj=0,cex=0.75)

To judge the ”fit”of the cause-specific and Fine & Gray regression models we estimate cumulative
incidence curves nonparametrically, i.e., for two subgroups of WW and WM CCR5-genotypes.
Here we can use the group argument of Cuminc .

> ci <- Cuminc(si$time, si$status, group = si$ccr5)

> ci.WW <- ci[ci$group == "WW", ]

> ci.WM <- ci[ci$group == "WM", ]

We show these nonparametric estimates in Figure 12 (Figure 9 in the tutorial).
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Figure 11: Cumulative incidence functions for AIDS (left) and SI appearance (right), for CCR5
wild-type WW and mutant WM, based on the Fine and Gray model.

> idx1 <- (ci.WW$time < 13)

> idx2 <- (ci.WM$time < 13)

> plot(c(0, ci.WW$time[idx1]), c(0, ci.WW$CI.1[idx1]), type = "s",

+ ylim = c(0, 0.5), xlab = "Years from HIV infection", ylab = "Probability",

+ lwd = 2)

> lines(c(0, ci.WM$time[idx2]), c(0, ci.WM$CI.1[idx2]), type = "s",

+ lwd = 2, col = 8)

> title(main = "AIDS")

> text(9.3, 0.35, "WW", adj = 0, cex = 0.75)

> text(9.3, 0.11, "WM", adj = 0, cex = 0.75)

> plot(c(0, ci.WW$time[idx1]), c(0, ci.WW$CI.2[idx1]), type = "s",

+ ylim = c(0, 0.5), xlab = "Years from HIV infection", ylab = "Probability",

+ lwd = 2)

> lines(c(0, ci.WM$time[idx2]), c(0, ci.WM$CI.2[idx2]), type = "s",

+ lwd = 2, col = 8)

> title(main = "SI appearance")

> text(7.9, 0.32, "WW", adj = 0, cex = 0.75)

> text(7.9, 0.245, "WM", adj = 0, cex = 0.75)
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Figure 12: Non-parametric cumulative incidence functions for AIDS (left) and SI appearance
(right), for CCR5 wild-type WW and mutant WM.
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