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1 Overview

OneMap is an environment for constructing linkage maps in several experimental crosses, in-

cluding outcrossing (full-sib families derived from two non-homozygous parents), RILs, F2 and

backcrosses. It is implemented as a package to be used under the freely distributed R software,

which is a language and environment for statistical computing (www.r-project.org). It is

designed to be fully integrated with R/qtl package (Broman et al., 2008) and Windows QTL

Cartographer (Wang et al., 2010) in order to do QTL mapping.

Wu et al. (2002a) proposed a methodology to construct genetic maps in outcrossing species,

which allows the analysis of a mixed set of different marker types containing various segregation

patterns. Also, it allows the simultaneous estimation of linkage and linkage phases between

markers, and was successfully applied in the analysis of sugarcane (Garcia et al., 2006; Oliveira

et al., 2007) and Passiflora (Oliveira et al., 2008) data sets. Actually, the analysis of these data

sets motivated the implementation of the first release of OneMap (Margarido et al., 2007).

After extensively testing the software, we noticed that the construction of linkage maps

could be greatly enhanced with the use of multipoint likelihood through Hidden Markov Models

(HMM). Jiang and Zeng (1997) explained in detail this methodology, emphasizing its advantages

and limitations for populations derived from inbred lines. Merging the ideas of Wu et al. (2002a)

and the HMM framework, as done by Wu et al. (2002b), we then developed version 1.0-0 of

OneMap, which could order markers using HMM-based algorithms for outcrossing species, in a

similar way as implemented in MAPMAKER/EXP (Lander et al., 1987). We verified the great

advantages of the new procedure through extensive simulations.

In the current released version (2.0-0) we included several major modifications to take

advantage of the fact that some segregation patterns that occur in outcrossing populations

can also occur in populations derived from inbred lines (i.e. RILs, F2 and backcrosses). For

example, a marker that segregates in 1 : 2 : 1 fashion in outcrossing context can be viewed as

a co-dominant marker in F2 populations. The main difference is that, for the later, there is

no need to estimate linkage phases. Using these ideas, we adapted OneMap to also construct

genetic maps in RILs, F2 and backcross populations, taking advantage of OneMap facilities.

Moreover, we also implemented three new ordination algorithms besides the ones included in

version 1.0-0: Rapid Chain Delineation - RCD (Doerge, 1996) and TRY (Lander et al., 1987).

They are Seriation - SER (Buetow and Chakravarti, 1987), recombination counting and ordering

- RECORD (Van Os et al., 2005) and unidirectional growth - UG (Tan and Fu, 2006). They

can be used for all experimental crosses included in OneMap, and can be chosen to give the
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best result for any situation faced by the user (Mollinari et al., 2009)

OneMap is available as source code for Windows� and Unix systems. It is released under

the GNU General Public License, is open-source and the code can be changed freely. It comes

with no warranty.

Although no advanced knowledge in R is required to use OneMap, in Section 2 we present a

short introduction to R software, where we address the basic knowledge required to start using

OneMap. People with some knowledge of R could just skip this part. In Section 3, information

about OneMap installation is provided. In Section 4, we show the usage of OneMap functions

for outcrossing (non-inbred) populations. In Section 5 we do the same for F2 populations, which

can also be applied to backcrosses and RILs. All sections could be read independently.

1.1 Citation

Margarido, G.R.A., Souza, A.P. and Garcia, A.A.F. OneMap: software for genetic mapping in

outcrossing species. Hereditas 144: 78-79, 2007.

2 Introduction to R

R is a language and environment for statistical computing and graphics. To download R, please

visit the Comprehensive R Archive Network (cran.r-project.org). Although we prefer and

recommend the Linux version, in this tutorial, it is assumed that the user is running Windows�.

Users of R under Linux or Mac® OS should have no difficult in following this tutorial.

After installing R, you can launch it by double-clicking the R icon created on your desktop

during the installation process. You will see a window with the R Console (Figure 1).

2.1 Getting started

In Figure 1, you can see a greater than sign (“>”), which means that R is waiting for a command.

We call this prompt. Let us start with a simple example adding two numbers. Type “2+3” at

the prompt then type the Enter key:

> 2+3

[1] 5

You can see the result directly on the screen. You can store this result into a variable for future

use, applying the assignment operator <- (less than sign and minus, altogether):

4
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Figure 1: The R Console.

> x<-2+3

The result of the calculation was stored into the variable x. You can access this result typing

“x” at the prompt:

> x

[1] 5

You can also use the variable x into another calculation, for example:

> x+4

[1] 9

2.2 Functions

Another fundamental aspect in R is the usage of functions. A function is a predefined routine

used to do specific calculations. For example, to calculate the natural logarithm of 6.7, we can

use the function log:
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> log(6.7)

[1] 1.902108

The function log contains a group of internal procedures to calculate the natural logarithm

of a positive real number. The input values of a function are called arguments. In previous

example, we provided only one argument to the function (6.7). Sometimes a function has more

than one argument. For example, to obtain the logarithm of 6.7 to base 4, you can use:

> log(6.7,base=4)

[1] 1.372081

It is possible to calculate the natural logarithm of a set of numbers by defining a vector and

using it as the first argument of the function log. To do so we use the function c, that combines

a set of values into a vector. Thus, to calculate the logarithm of the numbers 6.7, 3.2, 5.4, 8.1,

4.9, 9.7 and 2.5, we can use:

> y<-c(6.7, 3.2, 5.4, 8.1, 4.9, 9.7, 2.5)

> log(y)

[1] 1.9021075 1.1631508 1.6863990

[4] 2.0918641 1.5892352 2.2721259

[7] 0.9162907

2.3 Getting help

Every R function has a help page which can be accessed using a question mark before the name

of the function. For example, to get help on function log, you would type:

> ?log

This command will open a help page in the default web browser of your system. The help

page contains some important information about the function such its syntax, its arguments

and some usage examples.
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2.4 Packages

Although R has a huge amount of internal functions, for doing more specific computations,

like constructing genetic linkage maps, it is necessary to use complementary functions. These

functions can be obtained by installing a package. A package is a collection of related functions,

help files and example data files that have been bundled together (Adler, 2010).

For example, let us assume you need to convert a set of recombination fractions into centi-

morgan distance using the Kosambi function. One possible way to do that, is to use the basic

R functions to calculate the distances. Another way is use the OneMap package. To install

OneMap you can type:

> install.packages("onemap")

You also can use the console menus: Packages → Install package(s). After clicking, a box

will pop-up asking you to choose the CRAN mirror. Choose the location nearest to you. Then,

another box will pop-up asking you to choose the package you want to install. Select onemap

then click OK. The package will be automatically installed on your computer. Returning to

the console, you need to load OneMap by typing:

> library("onemap")

Let us enter some recombination fractions, for example, 0.01, 0.12, 0.05, 0.11, 0.21, 0.07,

and save it into a variable called rf:

> rf<-c(0.01, 0.12, 0.05, 0.11, 0.21, 0.07)

Now, let us use the function kosambi, which belongs to OneMap package, to do the calcu-

lation:

> kosambi(rf)

[1] 1.000133 12.238706 5.016767

[4] 11.182805 22.384601 7.046279

You can also obtain help on the function kosambi using the question mark in the same way

it was done with function log:

> ?kosambi

7



2.5 Importing and exporting data

So far, we entered the variables in R by typing them directly into the console. However, in real

situations we usually read these values from a file or a data bank. To exemplify this procedure,

copy and paste the following table into a text editor (for example, notepad) and save it to a file

called test.txt into your working directory (such as My Documents).

x y

2.13 4.50

4.48 1.98

10.95 9.29

10.03 16.25

12.72 27.38

24.63 22.60

22.57 36.87

29.78 31.73

19.54 10.42

7.86 14.68

11.75 8.68

23.71 37.39

To read these data in R, first, we have to set the working directory using the function setwd.

For example, if "C:/Users/mmollina/Documents" is the full path to My Documents directory,

one should use:

> setwd("C:/Users/mmollina/Documents")

Every time you inform paths, directories or files you have to use double quotes (“ ”), which

indicates a string of characters instead of a variable. You also can use the console menus to set

the working directory: File → Change Dir.... From here, every object will be read or saved to

this directory.

Now let us read the file test.txt into R and store it in a variable called dat using the

function read.table. The first argument is the name of the file. The second indicates if the

file contains a header, i. e. if the first line of the file contains the names of the variables:

> (dat<-read.table(file="test.txt", header=TRUE))

x y

1 2.13 4.50
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2 4.48 1.98

3 10.95 9.29

4 10.03 16.25

5 12.72 27.38

6 24.63 22.60

7 22.57 36.87

8 29.78 31.73

9 19.54 10.42

10 7.86 14.68

11 11.75 8.68

12 23.71 37.39

Notice that the whole command line is limited by parenthesis. This indicates to R to show

the results at the same time you store then into a variable. One could type the command

without parenthesis and then type dat at the prompt, to produce the same result. Inspecting

the object dat you can see a table with 12 rows and two columns. The names of the columns are

x and y. We can access the variables in columns using the dollar sign followed by the column

name:

> dat$x

[1] 2.13 4.48 10.95 10.03 12.72 24.63

[7] 22.57 29.78 19.54 7.86 11.75 23.71

> dat$y

[1] 4.50 1.98 9.29 16.25 27.38 22.60

[7] 36.87 31.73 10.42 14.68 8.68 37.39

It is also possible to use a function called summary to extract some information about the

object dat or about each one of the columns separately::

> summary(dat)

x y

Min. : 2.130 Min. : 1.980

1st Qu.: 9.488 1st Qu.: 9.137
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Median :12.235 Median :15.465

Mean :15.012 Mean :18.481

3rd Qu.:22.855 3rd Qu.:28.468

Max. :29.780 Max. :37.390

> summary(dat$x)

Min. 1st Qu. Median Mean 3rd Qu.

2.130 9.487 12.240 15.010 22.860

Max.

29.780

> summary(dat$y)

Min. 1st Qu. Median Mean 3rd Qu.

1.980 9.138 15.460 18.480 28.470

Max.

37.390

The function summary provides some basic statistics about the variables in the dataset. If

you want to export these information to a file you can use the function write.table:

> write.table(x=summary(dat), file="test_sum.txt", quote=FALSE)

The first argument is the output of the summary function. Note that is possible to use

a function as an argument of another one. The second argument is the name of the file in

which the summary is going to be written. Notice that the file will be written in the working

directory, previously set. The third argument eliminates double quotes from the output file.

After running the command, you can look for the file test_sum.txt in the working directory.

2.6 Classes and methods

In R, every object belongs to a class. For example, the object dat belongs to a class called

data.frame. We can obtain this information using the function class:

> class(dat)

[1] "data.frame"
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When we use the function summary, it recognizes the class of the dat and applies a specific

procedure to the data.frame class, which in this case involves the computation of some de-

scriptive statistics. This procedure is called method. However, another classes of objects can

be used as arguments to function summary and the result will be different. For example, let us

adjust a linear model using column y as the dependent variable and column x as independent.

This can be done with the function lm():

> ft.mod<-lm(dat$y~dat$x)

> ft.mod

Call:

lm(formula = dat$y ~ dat$x)

Coefficients:

(Intercept) dat$x

1.803 1.111

Function lm is used to fit linear models and, by default, returns just a formula and the

coefficients of the linear regression. Object ft.mod is of class lm:

> class(ft.mod)

[1] "lm"

To obtain more information about the fitted model, we can use the function summary:

> summary(ft.mod)

Call:

lm(formula = dat$y ~ dat$x)

Residuals:

Min 1Q Median 3Q Max

-13.091 -5.144 -1.413 5.421 11.446

Coefficients:

Estimate Std. Error t value
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(Intercept) 1.8026 4.7689 0.378

dat$x 1.1110 0.2771 4.009

Pr(>|t|)

(Intercept) 0.71334

dat$x 0.00248

Residual standard error: 8.075 on 10 degrees of freedom

Multiple R-squared: 0.6164, Adjusted R-squared: 0.5781

F-statistic: 16.07 on 1 and 10 DF, p-value: 0.002482

In this case, the function summary recognizes lm.fit as an object of class lm and applies a

method which shows information about the fitted model such as distribution of the residuals,

regression coefficients, t-tests, and the coefficient of determination (r2), etc (significance stars

not shown). Thus, it is possible to use the same function in different classes of object to

obtain different results. This concept is very important in OneMap. For example, depending

on the class of the dataset, which can be outcross, f2.onemap, bc.onemap, riself.onemap

and risib.onemap, a certain set of procedures will be applied.

2.7 Saving a Workspace

You can save your analysis using the function save.image. For example, if you want to save

your analysis in a file called myworkspace.RData, you should use:

> save.image("myworkspace.RData")

You can also use the console menus: File → Save Workspace. Now, you can load your

analysis into R, using the function load:

> load("myworkspace.RData")

This is useful if you want to stop one session and continuing on the following day, etc.

3 Installation and Introduction to OneMap

OneMap can be installed by opening R and typing the command

> install.packages("onemap")

12



You also can use the console menus: Packages → Install package(s). After clicking, a box

will pop-up asking you to choose the CRAN mirror. Choose the location nearest to you. Then,

another box will pop-up asking you to choose the package you want to install. Select onemap

then click OK. The package will be automatically installed on your computer.

OneMap can also be installed by downloading the appropriate files directly at the CRAN web

site and following the instructions given in the section “6.3 Installing Packages” of the “R Instal-

lation and Administration”manual (http://cran.r-project.org/doc/manuals/R-admin.pdf).

OneMap is comprised by set of functions (listed on Table 1). There are other functions used

internally by the software. However, you do not need to use them directly.

After OneMap is installed, you can load it with

> library(onemap)

A list of packages and datasets that are available on your computer can be obtained with

> library()

> data()

4 Outcrossing populations

The following example is intended to show the usage of OneMap functions for linkage mapping

in outcrossing (non-inbred) species. With basic knowledge of R syntax, one should have no

big problems using it. If you are not familiar with R software, we recommend reading Section

2. It is assumed that the user is running Windows�. Hopefully these examples will be clear

enough to help any user to understand its functionality and start using it.

1. Start R by double-clicking its icon.

2. Load OneMap, after installing it:

> library(onemap)

3. To save your project anytime, type:

> save.image("C:/.../yourfile.RData")

or access the toolbar File → Save Workspace.

13
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Table 1: OneMap functions

Function type Function name Function description

Input read.outcross Read data from an outcross

read.mapmaker Read data from a Mapmaker raw file

Data manipulation make.seq Creates a sequence of markers based on objects of

other types

marker.type Informs the segregation type of genetic markers

add.marker Adds markers to a sequence

drop.marker Drops markers from a sequence

Genetic mapping rf.2pts Estimates recombination fractions (two points)

group Assigns markers to linkage groups

set.map.fun Defines the default mapping function

rcd Orders markers in a sequence using RCD algorithm

seriation Orders markers in a sequence using SERIATION algorithm

record Orders markers in a sequence using RECORD algorithm

ug Orders markers in a sequence using UG algorithm

compare Compares all possible orders of markers in a sequence

try.seq Tries to map a marker into a given linkage group

order.seq Automates map construction through “compare” and

“try.seq” functions

ripple.seq Compares alternative orders for a map and displays

the plausible ones

map Constructs a multipoint linkage map for a sequence

in a given order

rf.graph.table Plots a pairwise recombination fraction and LOD

matrix using a color scale.

draw.map Draws a genetic map

Output write.map Writes a genetic map to a file to be used in other

softwares (only for backcrosses, F2 and RILs)

Defunct def.rf.3pts Estimates recombination fractions (three points method)

4.1 Creating the data file

This step might be quite difficult, since the data file is not very simple and many errors can

occur while reading it. The input file format is similar to that used by MAPMAKER/EXP

(Lander et al., 1987), so experienced users of genetic analysis software should be already familiar
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with it.

Basically, the input file is a text file, where the first line indicates the number of individuals

and the number of markers. Then, the genotype information is included separately for each

marker. The character “*” indicates the beginning of information input for a new marker,

followed by the marker name. Next, there is a code indicating the marker type, according to

Wu’s et al. (2002a) notation (Table 2)

Table 2: Notation used to identify markers and genotypes
Parent Offspring

crosstype Cross Observed

bands

Observed bands Segregation

A 1 ab × cd ab × cd ac, ad, bc, bd 1:1:1:1

2 ab × ac ab × ac a, ac, ba, bc 1:1:1:1

3 ab × co ab × c ac, a, bc, b 1:1:1:1

4 ao × bo a × b ab, a, b, o 1:1:1:1

B B1 5 ab × ao ab × a ab, 2a, b 1:2:1

B2 6 ao × ab a × ab ab, 2a, b 1:2:1

B3 7 ab × ab ab × ab a, 2ab, b 1:2:1

C 8 ao × ao a × a 3a, o 3:1

D D1 9 ab × cc ab × c ac, bc 1:1

10 ab × aa ab × a a, ab 1:1

11 ab × oo ab × o a, b 1:1

12 bo × aa b × a ab, a 1:1

13 ao × oo a × o a, o 1:1

D2 14 cc × ab c × ab ac, bc 1:1

15 aa × ab a × ab a, ab 1:1

16 oo × ab o × ab a, b 1:1

17 aa × bo a × b ab, a 1:1

18 oo × ao o × a a, o 1:1

Actually, it is recommended to check Wu’s et al. (2002a) paper before using OneMap.

Marker types must be one of the following: A.1, A.2, A.3, A.4, B1.5, B2.6, B3.7, C.8, D1.9,

D1.10, D1.11, D1.12, D1.13, D2.14, D2.15, D2.16, D2.17 or D2.18, each one corresponding to a

row of the table. The letter and the number before the dot indicate the segregation type (i.e.,

1:1:1:1, 1:2:1, 3:1 or 1:1), while the number after the dot indicates the observed bands in the

offspring. The paper cited above gives details with respect to marker types; we will not discuss

them here, but it is easy to see that each marker is classified based on the band patterns on

parents and progeny.

Finally, after each marker name, comes the genotype data for the segregating population.
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The coding for marker genotypes used by OneMap is also the same one proposed by Wu et al.

(2002a) and the possible values vary according to the specific marker type. Missing data are

indicated with the character “-” (minus sign) and a comma separates the information for each

individual.

Here is an example of such file for 10 individuals and 5 markers:

10 5

*M1 B3.7 ab,ab,-,ab,b,ab,ab,-,ab,b

*M2 D2.18 o,-,a,a,-,o,a,-,o,o

*M3 D1.13 o,a,a,o,o,-,a,o,a,o

*M4 A.4 ab,b,-,ab,a,b,ab,b,-,a

*M5 D2.18 a,a,o,-,o,o,a,o,o,o

Notice that once the marker type is identified, no variations of symbols presented on the

table for the“observed bands”is allowed. For example, for A.1, only ac, ad, bc and bd genotypes

are expected (plus missing values). We notice that this is a common mistake made by users, so

be careful.

The input file must be saved in text format, with extensions like “.txt”. It is a good idea to

open the text file called “example.out.txt” (available with OneMap and saved in the directory

you installed it to see how this file should be. You can see where OneMap is installed using the

command

> system.file(package="onemap")

4.2 Importing data

1. Once the input file is created, data can be loaded and saved into an R object. The function

used to import data is named read.outcross. Its usage is quite simple:

> example.out<- read.outcross("C:/workingdirectory","example.out.txt")

Working...

--Read the following data:

Number of individuals: 100

Number of markers: 30
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The first argument is the directory where the input file is located, so modify it accordingly.

The second one is the data file name. In this example, an object named example.out

was created. If you leave the argument dir blank, the file will be read from your working

directory. To set a working directory, see Section 2.5.

2. You can change the working directory in R using function setwd() or in the toolbar

clicking File → Change dir. If you set your working directory to the one containing the

input file, you can just type:

> example.out<- read.outcross(file="example.out.txt")

If no error has occurred, a message will display some basic information about the data,

such as number of individuals and number of markers:

Working...

--Read the following data:

Number of individuals: 100

Number of markers: 30

3. Because this particular data set is distributed along with the package, as an alternative

you can load it typing

> data(example.out)

4. Loading the data creates an object of class outcross, which will further be used in the

analysis. R command print recognizes objects of this class. Thus, if you type

> example.out

you will see some information about the object.

This is an object of class 'outcross'

No. individuals: 100

No. markers: 30

Segregation types:

A.1: 3

A.2: 1

A.4: 4
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B1.5: 1

B2.6: 2

B3.7: 5

C.8: 2

D1.10: 2

D1.12: 1

D1.13: 2

D2.15: 1

D2.16: 2

D2.17: 2

D2.18: 2

4.3 Estimating two-point recombination fractions

1. To start the analysis, the first step is estimating the recombination fraction between all

pairs of markers, using two-point tests:

> twopts <- rf.2pts(example.out)

The function rf.2pts uses as default values of LOD Score 3 and maximum recombination

fraction 0.50.

2. Different values for the criteria can be chosen using:

> twopts <- rf.2pts(example.out, LOD=3, max.rf=0.4)

3. Although two-point tests were implemented in C language, which is much faster than R,

this step can take quite some time, depending on the number of markers involved and

their segregation type, since all combinations will be estimated and tested. Besides, the

results use a lot of memory and a rather powerful computer is needed. For example, the

analysis of a real data set with 1741 markers (segregating 3:1 and 1:1) took 2.8 hours,

running under Windows� on a Pentium® 4 CPU 3.00 GHz with 1 GB RAM memory.

4. When the two-point analysis is finished, an object of class rf.2pts is created. Typing

> twopts

will show a message with the criteria used in the analysis and some other information:
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This is an object of class 'rf.2pts'

Criteria: LOD = 3 , Maximum recombination fraction = 0.4

This object is too complex to print

Type 'print(object,mrk1=marker,mrk2=marker)' to see the analysis for two markers

mrk1 and mrk2 can be the names or numbers of both markers

5. If you want to see the results for given markers, say M1 and M3, the command is:

> print(twopts, "M1", "M3")

Results of the 2-point analysis for markers: M1 and M3

Criteria: LOD = 3 , Maximum recombination fraction = 0.4

Theta LODs

1 0.2943606 1.646823

2 0.2943606 1.646823

3 0.7033764 1.646815

4 0.7033764 1.646815

Each line corresponds to a possible linkage phase. 1 denotes coupling phase in both parents

(CC), 2 and 3 denote coupling phase in parent 1 and 2, respectively, and repulsion in the

other (CR and RC), and 4 denotes repulsion phase in both parents (RR). Theta is the

maximum likelihood estimate of the recombination fraction, with its LOD Scores.

4.4 Assigning markers to linkage groups

1. Once the recombination fractions and linkage phases for all pairs of markers have been

estimated and tested, markers can be assigned to linkage groups. To do this, first use the

function make.seq to create a sequence with the markers you want to assign:

> mark.all <- make.seq(twopts, "all")

The function make.seq is used to create sequences from objects of several kinds, as will

be seen along this tutorial. Here, the object is of class rf.2pts and the second argument

specifies which markers one wants to use. In this example, the argument "all" indicates
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that all markers will be analyzed. If one wants to use only a subset of markers, say M1

and M2, the option will be c(1,2). These numbers refer to the lines where markers are

located on the data file. Since the identification of the markers can be cumbersome, one

should use the function marker type to see their numbers, names and types:

> marker.type(mark.all)

Marker 1 ( M1 ) has type B3.7

Marker 2 ( M2 ) has type D2.18

Marker 3 ( M3 ) has type D1.13

Marker 4 ( M4 ) has type A.4

Marker 5 ( M5 ) has type D2.18

Marker 6 ( M6 ) has type B3.7

Marker 7 ( M7 ) has type D2.15

Marker 8 ( M8 ) has type B3.7

Marker 9 ( M9 ) has type D1.10

Marker 10 ( M10 ) has type D2.17

Marker 11 ( M11 ) has type D2.16

Marker 12 ( M12 ) has type A.2

Marker 13 ( M13 ) has type C.8

Marker 14 ( M14 ) has type A.4

Marker 15 ( M15 ) has type A.4

Marker 16 ( M16 ) has type D2.17

Marker 17 ( M17 ) has type B2.6

Marker 18 ( M18 ) has type A.1

Marker 19 ( M19 ) has type B1.5

Marker 20 ( M20 ) has type A.1

Marker 21 ( M21 ) has type D2.16

Marker 22 ( M22 ) has type D1.10

Marker 23 ( M23 ) has type C.8

Marker 24 ( M24 ) has type B3.7

Marker 25 ( M25 ) has type B2.6

Marker 26 ( M26 ) has type A.1

Marker 27 ( M27 ) has type D1.12

Marker 28 ( M28 ) has type A.4
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Marker 29 ( M29 ) has type D1.13

Marker 30 ( M30 ) has type B3.7

2. The grouping step is very simple and can be done by using the function group:

> LGs <- group(mark.all)

For this function, optional arguments are LOD and max.rf, which define thresholds to

be used when assigning markers to linkage groups. If none provided (default), criteria

previously defined for the object twopts are used.

3. The previous command generates an object of class group and the command print for

such object has two options. If you type:

> LGs

you will get detailed information about the groups, i.e., all linkage groups will be printed,

displaying the names of markers in each one of them.

This is an object of class 'group'

It was generated from the object "mark.all"

Criteria used to assign markers to groups:

LOD = 3 , Maximum recombination fraction = 0.4

No. markers: 30

No. groups: 3

No. linked markers: 30

No. unlinked markers: 0

Printing groups:

Group 1 : 15 markers

M1 M2 M3 M5 M6 M10 M11 M12 M14 M15 M17 M25 M26 M28 M30

Group 2 : 10 markers

M4 M9 M16 M19 M20 M21 M23 M24 M27 M29
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Group 3 : 5 markers

M7 M8 M13 M18 M22

However, in case you just want to see some basic information (such as the number of

groups, number of linked markers, etc):

> print(LGs, detailed=FALSE)

This is an object of class 'group'

It was generated from the object "mark.all"

Criteria used to assign markers to groups:

LOD = 3 , Maximum recombination fraction = 0.4

No. markers: 30

No. groups: 3

No. linked markers: 30

No. unlinked markers: 0

4. You can notice that all markers are linked to some linkage group. If the LOD Score

threshold is changed to a higher value, some markers are kept unassigned:

> LGs <- group(mark.all, LOD=6)

> LGs

This is an object of class 'group'

It was generated from the object "mark.all"

Criteria used to assign markers to groups:

LOD = 6 , Maximum recombination fraction = 0.4

No. markers: 30

No. groups: 3

No. linked markers: 27

No. unlinked markers: 3

Printing groups:
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Group 1 : 15 markers

M1 M2 M3 M5 M6 M10 M11 M12 M14 M15 M17 M25 M26 M28 M30

Group 2 : 8 markers

M4 M9 M16 M19 M20 M21 M23 M27

Group 3 : 4 markers

M8 M13 M18 M22

Unlinked markers: 3 markers

M7 M24 M29

5. Changing back to the previous criteria, now setting the maximum recombination fraction

to 0.40:

> LGs <- group(mark.all, LOD=3, max.rf=0.4)

> LGs

This is an object of class 'group'

It was generated from the object "mark.all"

Criteria used to assign markers to groups:

LOD = 3 , Maximum recombination fraction = 0.4

No. markers: 30

No. groups: 3

No. linked markers: 30

No. unlinked markers: 0

Printing groups:

Group 1 : 15 markers

M1 M2 M3 M5 M6 M10 M11 M12 M14 M15 M17 M25 M26 M28 M30

Group 2 : 10 markers

M4 M9 M16 M19 M20 M21 M23 M24 M27 M29
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Group 3 : 5 markers

M7 M8 M13 M18 M22

4.5 Genetic mapping of linkage group 3

1. Once marker assignment to linkage groups is finished, the mapping step can take place.

First of all, you must set the mapping function that should be used to display the ge-

netic map through the analysis. You can choose between Kosambi or Haldane mapping

functions. To use Haldane, type

> set.map.fun(type="haldane")

To use Kosambi

> set.map.fun(type="kosambi")

Now, you must define which linkage group will be mapped. In other words, a linkage

group must be “extracted” from the object of class group, in order to be mapped. For

simplicity, we will start here with the smallest one, which is linkage group 3. This can be

easily done using the following code:

> LG3 <- make.seq(LGs, 3)

The first argument (LGs) is an object of class group and the second is a number indicating

which linkage group will be extracted, according to the results stored in object LGs. The

object LG3, generated by function make.seq, is of class sequence, showing that this

function can be used with several types of objects.

2. If you type

> LG3

you will see which markers are comprised in the sequence, and also that no parameters

have been estimated.

Number of markers: 5

Markers in the sequence:

M7 M8 M13 M18 M22
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Parameters not estimated.

3. To order these markers, one can use a two-point based algorithm such as Seriation (Bue-

tow and Chakravarti, 1987), Rapid Chain Delineation (Doerge, 1996), Recombination

Counting and Ordering (Van Os et al., 2005) and Unidirectional Growth (Tan and Fu,

2006):

> LG3.ser <- seriation(LG3)

> LG3.rcd <- rcd(LG3)

> LG3.rec <- record(LG3)

> LG3.ug <- ug(LG3)

In this case, all algorithms provided the same results (results not showed).

4. To order by comparing all possible orders (exhaustive search), the function compare can

be used:

> LG3.comp <- compare(LG3)

This order step can take some time, depending on marker types in the linkage group.

In the example, LG3 contains one marker of type D1 and one of type D2, besides one

marker segregating in 3:1 fashion (type C). Thus, although the number of possible orders

is relatively small (60), for each order there are various possible combinations of linkage

phases. Also, the convergence of the EM algorithm takes considerably more time, since

markers of type C are not very informative.

The first argument to compare function is an object of class sequence (the extracted

group LG3), and the object generated by this function is of class compare.

5. To see the results of the previous step, type

> LG3.comp

Number of orders: 50

Best 30 unique orders LOD Nested LOD

------------------------------------------------------

order 1: 22 7 13 8 18

CC CC RR RR 0.00 0.00
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CC RC RR RR -2.43 -2.43

------------------------------------------------------

order 2: 7 22 13 8 18

CC CC RR RR -0.02 0.00

CC CR RR RR -3.02 -2.99

------------------------------------------------------

order 3: 7 18 8 13 22

CC RR RR CC -0.76 0.00

------------------------------------------------------

order 4: 7 13 8 18 22

CC RR RR CC -0.95 0.00

------------------------------------------------------

order 5: 22 7 18 8 13

CC CC RR RR -1.49 0.00

CC RC RR RR -2.97 -1.48

------------------------------------------------------

order 6: 7 22 18 8 13

CC CC RR RR -1.54 0.00

CC CR RR RR -3.75 -2.21

------------------------------------------------------

order 7: 22 7 8 13 18

CC RR RR CC -4.97 0.00

CC CR RR CC -6.72 -1.75

------------------------------------------------------

order 8: 7 22 8 13 18

CC RR RR CC -4.99 0.00

CC RC RR CC -7.27 -2.27

------------------------------------------------------

order 9: 7 18 13 8 22

CC CC RR RC -5.00 0.00

------------------------------------------------------

order 10: 22 7 13 18 8

CC CC CC RR -5.02 0.00

CC RC CC RR -7.16 -2.15
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------------------------------------------------------

order 11: 7 22 13 18 8

CC CC CC RR -5.05 0.00

CC CR CC RR -7.94 -2.89

------------------------------------------------------

order 12: 7 8 13 18 22

CR RR CC CC -5.24 0.00

------------------------------------------------------

order 13: 22 7 18 13 8

CC CC CC RR -5.28 0.00

CC RC CC RR -6.76 -1.48

------------------------------------------------------

order 14: 7 22 18 13 8

CC CC CC RR -5.33 0.00

CC CR CC RR -7.54 -2.21

------------------------------------------------------

order 15: 7 13 18 8 22

CC CC RR RC -5.52 0.00

------------------------------------------------------

order 16: 7 8 18 13 22

CR RR CC CC -5.76 0.00

------------------------------------------------------

order 17: 22 7 8 18 13

CC RR RR CC -6.02 0.00

CC CR RR CC -7.83 -1.80

------------------------------------------------------

order 18: 7 22 8 18 13

CC RR RR CC -6.05 0.00

CC RC RR CC -8.36 -2.31

------------------------------------------------------

order 19: 18 8 7 13 22

RR CR RC CC -9.62 0.00

RR CR CC CC -13.88 -4.26

------------------------------------------------------
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order 20: 7 13 22 8 18

CC CC RR RR -9.87 0.00

------------------------------------------------------

order 21: 8 18 7 13 22

RR CC CC CC -10.36 0.00

RR CC RC CC -13.64 -3.28

------------------------------------------------------

order 22: 7 13 22 18 8

CC CC CC RR -10.42 0.00

------------------------------------------------------

order 23: 18 8 7 22 13

RR CR RC CC -10.48 0.00

RR CR CC CC -13.96 -3.48

------------------------------------------------------

order 24: 8 18 7 22 13

RR CC CC CC -10.69 0.00

RR CC RC CC -13.84 -3.15

RR CC CC CR -14.38 -3.69

RR CC RC CR -14.38 -3.69

------------------------------------------------------

order 25: 13 7 22 8 18

CC CC RR RR -10.72 0.00

------------------------------------------------------

order 26: 13 7 22 18 8

CC CC CC RR -10.98 0.00

------------------------------------------------------

order 27: 7 18 8 22 13

CC RR RC CR -11.02 0.00

CC RR RC CC -14.15 -3.13

------------------------------------------------------

order 28: 7 8 18 22 13

CR RR CC CC -11.53 0.00

CR RR CC CR -14.25 -2.72

------------------------------------------------------

28



order 29: 13 7 8 18 22

CC RR RR CC -13.11 0.00

------------------------------------------------------

order 30: 13 7 18 8 22

CC CC RR RC -13.62 0.00

------------------------------------------------------

Remember that for outcrossing populations, one needs to estimate marker order and also

linkage phases between markers for a given order. However, since two point analysis also

provided information about linkage phases, this information was taken into consideration

in the compare function, reducing the number of combinations to be evaluated. If at least

one linkage phase has LOD equals to 0.005 in the two point analysis, we assumed that

this phase is very unlikely and so do not need to be evaluated in the multipoint procedure

used by compare. We did extensive simulations that showed that this is a good procedure.

By default, OneMap stores 50 orders, which may or may not be unique. The value of

LOD refers to the overall LOD Score, considering all orders tested. Nested LOD refers to

LOD Scores within a given order, i.e., scores for different combinations of linkage phases

for the same marker order.

For example, order 1 has the largest value of log-likelihood and, therefore, its LOD Score is

zero for a given combination of linkage phases (CC, CC, RR, RR). For this same order and

other linkage phases, LOD Score is -2.43. Analyzing the results for order 2, notice that its

highest LOD Score is very close to zero, indicating that this order is also quite plausible.

Notice also that Nested LOD will always contain at least one zero value, corresponding

to the best combination of phases for markers in a given order. Due to the information

provided by two-point analysis, not all combinations are tested and that is the reason

why the number of Nested LOD is different for each order.

6. Unless one has some biological information, it is a good idea to choose the order with the

highest likelihood. The final map can then be obtained with the command

> LG3.final <- make.seq(LG3.comp,1,1)

The first argument is the object of class compare. The second argument indicates which

order is chosen: 1 is for the order with highest likelihood, 2 is for the second best, and

so on. The third argument indicates which combination of phases is chosen for a given
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order: 1 also means the combination with highest likelihood among all combinations of

phases (based on Nested LOD).

For simplicity, these values are defaults, so typing

> LG3.final <- make.seq(LG3.comp)

will have the same effect.

7. To see the final map type

> LG3.final

Printing map:

Markers Position Parent 1 Parent 2

22 M22 0.00 a | | b a | | a

7 M7 6.48 a | | a a | | b

13 M13 40.62 a | | o a | | o

8 M8 44.89 b | | a b | | a

18 M18 50.75 a | | b c | | d

5 markers log-likelihood: -318.8077

At the leftmost position, marker names are displayed. Position shows the cumulative

distance using the Kosambi mapping function. Finally, Parent 1 and Parent 2 show

the diplotypes of both parents, that is, the manner in which alleles are arranged in the

chromosomes, given the estimated linkage phase. Notation is the same as that used by

Wu et al. (2002a). Details about how ordering algorithms can be chosen and used are

presented by Mollinari et al. (2009).

4.6 Genetic mapping of linkage group 2

Now let us map the markers in linkage group number 2.

1. Again, “extract” that group from the object LGs:
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> LG2 <- make.seq(LGs, 2)

> LG2

Number of markers: 10

Markers in the sequence:

M4 M9 M16 M19 M20 M21 M23 M24 M27 M29

Parameters not estimated.

Note that there are 10 markers in this group, so it is unfeasible to use the compare function

with all of them since it will take a very long time to proceed.

2. First, use rcd to get a preliminary order estimate:

> LG2.rcd <- rcd(LG2)

order obtained using RCD algorithm:

27 9 21 23 19 4 20 16 29 24

calculating multipoint map using tol = 10E-5.

> LG2.rcd

Printing map:

Markers Position Parent 1 Parent 2

27 M27 0.00 b | | o a | | a

9 M9 49.81 a | | b a | | a

21 M21 65.05 o | | o a | | b

23 M23 68.79 a | | o a | | o

19 M19 81.61 b | | a a | | o

4 M4 83.91 a | | o o | | b

20 M20 96.68 a | | b c | | d

16 M16 107.89 a | | a b | | o

29 M29 182.57 o | | a o | | o
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24 M24 203.88 a | | b b | | a

10 markers log-likelihood: -616.1494

3. Use the marker.type function to check the segregation types of all markers in this group:

> marker.type(LG2)

Marker 4 ( M4 ) has type A.4

Marker 9 ( M9 ) has type D1.10

Marker 16 ( M16 ) has type D2.17

Marker 19 ( M19 ) has type B1.5

Marker 20 ( M20 ) has type A.1

Marker 21 ( M21 ) has type D2.16

Marker 23 ( M23 ) has type C.8

Marker 24 ( M24 ) has type B3.7

Marker 27 ( M27 ) has type D1.12

Marker 29 ( M29 ) has type D1.13

4. Based on their segregation types and distribution on the preliminary map, markers M4,

M23, M19, M20 and M24 are the most informative ones (type A is the better, followed

by type B). So, let us create a framework of ordered markers using compare for the most

informative ones:

> LG2.init <- make.seq(twopts,c(4,23,19,20,24))

> LG2.comp <- compare(LG2.init)

> LG2.comp

Number of orders: 50

Best 35 unique orders LOD Nested LOD

------------------------------------------------------

order 1: 20 4 19 23 24

CR RR RC CR 0.00 0.00

CR RR RC RC -1.32 -1.32

CR RR RR CR -10.25 -10.25

CR RR RR RC -10.44 -10.44
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------------------------------------------------------

order 2: 24 23 4 19 20

CR CR RR RC -4.02 0.00

RC CR RR RC -5.57 -1.55

------------------------------------------------------

order 3: 20 4 23 19 24

CR CR RC RR -4.31 0.00

------------------------------------------------------

order 4: 19 4 20 23 24

RR CR CC CR -4.77 0.00

RR CR CC RC -5.81 -1.04

------------------------------------------------------

order 5: 23 19 4 20 24

RC RR CR CR -4.84 0.00

RR RR CR CR -21.42 -16.58

------------------------------------------------------

order 6: 19 23 4 20 24

RC CR CR CR -4.86 0.00

------------------------------------------------------

order 7: 23 4 19 20 24

CR RR RC CR -4.90 0.00

------------------------------------------------------

order 8: 23 20 4 19 24

CC CR RR RR -5.15 0.00

------------------------------------------------------

order 9: 4 19 20 23 24

RR RC CC CR -7.34 0.00

RR RC CC RC -8.38 -1.04

------------------------------------------------------

order 10: 24 4 19 20 23

CC RR RC CC -7.41 0.00

------------------------------------------------------

order 11: 20 4 19 24 23

CR RR RR CR -8.46 0.00
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CR RR RR RC -11.26 -2.80

------------------------------------------------------

order 12: 19 4 20 24 23

RR CR CR CR -9.90 0.00

RR CR CR RC -10.81 -0.91

------------------------------------------------------

order 13: 24 4 19 23 20

CC RR RC CC -10.66 0.00

------------------------------------------------------

order 14: 23 24 4 19 20

CR CC RR RC -10.75 0.00

RC CC RR RC -13.83 -3.08

------------------------------------------------------

order 15: 4 19 23 20 24

RR RC CC CR -10.96 0.00

------------------------------------------------------

order 16: 4 19 20 24 23

RR RC CR CR -12.47 0.00

RR RC CR RC -13.38 -0.91

------------------------------------------------------

order 17: 19 4 23 20 24

RR CR CC CR -12.52 0.00

------------------------------------------------------

order 18: 20 23 4 19 24

CC CR RR RR -12.54 0.00

------------------------------------------------------

order 19: 24 4 23 19 20

CC CR RC RC -14.69 0.00

------------------------------------------------------

order 20: 4 23 19 20 24

CR RC RC CR -14.99 0.00

------------------------------------------------------

order 21: 4 20 19 23 24

CR RC RC CR -20.89 0.00
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CR RC RC RC -22.10 -1.22

------------------------------------------------------

order 22: 4 20 23 19 24

CR CC RC RR -20.89 0.00

------------------------------------------------------

order 23: 24 4 20 19 23

CC CR RC RC -21.14 0.00

------------------------------------------------------

order 24: 24 4 20 23 19

CC CR CC RC -21.14 0.00

------------------------------------------------------

order 25: 24 23 4 20 19

CR CR CR RC -22.91 0.00

RC CR CR RC -24.47 -1.55

------------------------------------------------------

order 26: 23 4 20 19 24

CR CR RC RR -23.80 0.00

------------------------------------------------------

order 27: 23 19 4 24 20

RC RR CC CR -25.36 0.00

------------------------------------------------------

order 28: 4 19 23 24 20

RR RC CR CR -25.71 0.00

RR RC RC CR -28.13 -2.42

------------------------------------------------------

order 29: 19 4 23 24 20

RR CR CR CR -27.13 0.00

RR CR RC CR -29.82 -2.69

------------------------------------------------------

order 30: 23 4 19 24 20

CR RR RR CR -27.66 0.00

------------------------------------------------------

order 31: 19 4 24 23 20

RR CC CR CC -29.11 0.00
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------------------------------------------------------

order 32: 4 19 24 23 20

RR RR CR CC -29.41 0.00

------------------------------------------------------

order 33: 19 23 4 24 20

RC CR CC CR -29.58 0.00

------------------------------------------------------

order 34: 23 24 4 20 19

CR CC CR RC -29.64 0.00

------------------------------------------------------

order 35: 19 4 24 20 23

RR CC CR CC -29.86 0.00

------------------------------------------------------

Now, the first argument to make.seq is an object of class rf.2pts, and the second argu-

ment is a vector of integers, specifying which molecular markers will be in the sequence.

5. Select the best order:

> LG2.frame <- make.seq(LG2.comp)

6. Next, let us try to map the remaining markers, one at a time. Since there are more

markers of type D1 than D2, the latter will be tried later. Starting with M9:

> LG2.extend <- try.seq(LG2.frame,9)

9 --> M9 : ......

> LG2.extend

LOD scores correspond to the best linkage phase combination

for each position

The symbol "*" outside the box indicates that more than one

linkage phase is possible for the corresponding position
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Marker tested: 9

Markers LOD

=====================

| |

| -5.94 | 1

| 20 |

| -15.82 | 2 *

| 4 |

| -24.89 | 3 *

| 19 |

| -4.21 | 4 *

| 23 |

| 0.00 | 5 *

| 24 |

| -6.32 | 6

| |

=====================

Based on the LOD Scores, marker M9 is probably better located between markers M23

and M24. However, the “*” symbol indicates that more than one linkage phase is possible.

Detailed results can be seen with

> print(LG2.extend,5)

LOD is the overall LOD score (among all orders)

NEST.LOD is the LOD score within the order

Marker tested: 9

---------------------

| | | |

| 20 | | |

| | CR | CR |

| 4 | | |
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| | RR | RR |

| 19 | | |

| | RC | RC |

| 23 | | |

| | CC | CC |

| 9 | | |

| | CR | CC |

| 24 | | |

| | | |

|-------------------|

| LOD | 0.0| -3.2|

|-------------------|

|NEST.| | |

| LOD | 0.0| -3.2|

---------------------

The second argument indicates the position where to place the marker. Note that the

first allele arrangement is the most likely one.

Also, we can obtain some useful diagnostic graphics using the argument draw.try=TRUE

when using function try.seq:

> LG2.extend <- try.seq(LG2.frame, 9, draw.try=TRUE)
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The top figure represents the new genetic map obtained with the insertion of marker 9

between markers M23 and M24 (most likely one). The left bottom figure represents the

frame map M24 - M23 - M4 - M19 - M20 on x-axis and the LOD Scores of the linkage

maps obtained with the insertion of marker 9 at the beginning, between markers and at

the end of the frame map. The red triangle indicates the most likely position, where

the marker 9 it is supposed to be placed. The right bottom figure is the recombination

fraction matrix based on a color scale using the function rf.graph.table. See Section

4.9 for details. The diagnostic graphics show an almost monotonic recombination fraction

matrix (the values are bigger as their distance from diagonal increases). This pattern is

typical of ordered linkage groups. We can see that the position between markers M23 and

M24 is the most likely one for positioning marker M9

7. Finally, the best order can be obtained with:
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> LG2.frame <- make.seq(LG2.extend,5,1)

When using make.seq with an object of class try, the second argument is the position

on the map (according to the scale on the right of the output) and the last argument

indicates linkage phases (defaults to 1, higher nested LOD).

It should be pointed out that the framework created by the function compare with (M20,

M4, M19, M23 and M24) could be in reverse order (M24, M23, M19, M4 and M20) and still be

the same map. Thus, the positioning of markers by command try.seq can be different

in your computer. For example, here, marker M9 was better placed in position 5, however

if you obtain a reverse order, marker M9 would be better placed in position 2. In both

cases the best position is between markers M24 and M23.

Adding other markers, one by one (output not shown):

> LG2.extend <- try.seq(LG2.frame,29)

> LG2.frame <- make.seq(LG2.extend,7)

> LG2.extend <- try.seq(LG2.frame,27)

> LG2.frame <- make.seq(LG2.extend,1)

> LG2.extend <- try.seq(LG2.frame, 16)

> LG2.frame <- make.seq(LG2.extend,2)

> LG2.extend <- try.seq(LG2.frame,21)

> LG2.final <- make.seq(LG2.extend,6)

8. The process of adding markers sequentially can be automated with the use of function

order.seq.

> LG2.ord <- order.seq(LG2, n.init=5, THRES=3, draw.try=TRUE, wait=1)

Cross type: outcross

Using segregation types of the markers to choose initial subset

Comparing 60 orders:

Running try algorithm

9 --> M9 : ......

27 --> M27 : .......
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29 --> M29 : ........

16 --> M16 : ........

21 --> M21 : .........

LOD threshold = 3

Positioned markers: 27 16 20 4 19 23 9 24

Markers not placed on the map: 21 29

Calculating LOD-Scores

21 --> M21 : .........

29 --> M29 : .........

Placing remaining marker(s) at most likely position

21 --> M21 : .........

29 --> M29 : ..........

Estimating final genetic map using tol = 10E-5.

Basically, this function automates what the try.seq function does, using some pre-defined

rules. In the function, n.init = 5 means that five markers (the most informative ones)

will be used in the compare step; THRES = 3 indicates that the try.seq step will only

add markers to the sequence which can be mapped with LOD Score greater than 3;

draw.try=TRUE will display a diagnostic graphic for each try.seq step; wait=1 indicates

the minimum time interval in seconds to display the diagnostic graphic.

NOTE: Although very useful, this function can be misleading, specially if there are not

many fully informative markers, so use it carefully. Results can vary for each running, of

course.

9. Check the final order:

> LG2.ord
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Best sequence found.

Printing map:

Markers Position Parent 1 Parent 2

27 M27 0.00 b | | o a | | a

16 M16 11.76 a | | a b | | o

20 M20 22.94 a | | b c | | d

4 M4 35.71 a | | o o | | b

19 M19 38.13 b | | a a | | o

23 M23 52.45 a | | o a | | o

9 M9 67.18 a | | b a | | a

24 M24 96.74 a | | b b | | a

8 markers log-likelihood: -497.5146

The following markers could not be uniquely positioned.

Printing most likely positions for each unpositioned marker:

------------------

| | 21 | 29 |

|----|-----|-----|

| | | |

| 27 | | |

| | | |

| 16 | | |

| | | |

| 20 | | |

| | | |

| 4 | | |

| | | |

| 19 | | |
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| | *** | |

| 23 | | |

| | | |

| 9 | | |

| | | * |

| 24 | | |

| | | *** |

------------------

'***' indicates the most likely position(s) (LOD = 0.0)

'**' indicates very likely positions (LOD > -1.0)

'*' indicates likely positions (LOD > -2.0)

Note that markers 21 and 29 could not be safely mapped to a single position (LOD Score

> THRES in absolute value). The output displays the “safe” order and the most likely

positions for markers not mapped, where “***” indicates the most likely position and “*”

corresponds to other plausible positions.

10. To get the safe order (i.e. without markers 21 and 29), use

> LG2.safe <- make.seq(LG2.ord,"safe")

and to get the order with all markers, use

> LG2.all <- make.seq(LG2.ord,"force")

> LG2.all

Printing map:

Markers Position Parent 1 Parent 2

27 M27 0.00 b | | o a | | a

16 M16 11.76 a | | a b | | o

20 M20 22.94 a | | b c | | d

4 M4 35.71 a | | o o | | b
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19 M19 37.99 b | | a a | | o

21 M21 49.08 o | | o a | | b

23 M23 53.93 a | | o a | | o

9 M9 70.29 a | | b a | | a

24 M24 97.75 a | | b b | | a

29 M29 120.14 o | | a o | | o

10 markers log-likelihood: -583.8772

Notice that, for this linkage group, the “forced” map obtained with order.seq is the same

as that obtained with compare plus try.seq, but this is not always the case.

11. The order.seq function can also performs two rounds of the try.seq algorithms, first

using THRES and then THRES - 1 as threshold. This generally results in safe orders with

more markers mapped, but may take longer to run. To do this use the touchdown options:

> LG2.ord <- order.seq(LG2, n.init=5, THRES=3, touchdown=TRUE)

Cross type: outcross

Using segregation types of the markers to choose initial subset

Comparing 60 orders:

Running try algorithm

9 --> M9 : ......

27 --> M27 : .......

29 --> M29 : ........

16 --> M16 : ........

21 --> M21 : .........

LOD threshold = 3

Positioned markers: 27 16 20 4 19 23 9 24

Markers not placed on the map: 21 29
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Trying to map remaining markers with LOD threshold 2

21 --> M21 : .........

29 --> M29 : ..........

LOD threshold = 2

Positioned markers: 27 16 20 4 19 21 23 9 24 29

Markers not placed on the map:

Estimating final genetic map using tol = 10E-5.

> LG2.ord

Best sequence found.

Printing map:

Markers Position Parent 1 Parent 2

27 M27 0.00 b | | o a | | a

16 M16 11.76 a | | a b | | o

20 M20 22.94 a | | b c | | d

4 M4 35.71 a | | o o | | b

19 M19 37.99 b | | a a | | o

21 M21 49.08 o | | o a | | b

23 M23 53.93 a | | o a | | o

9 M9 70.29 a | | b a | | a

24 M24 97.75 a | | b b | | a

29 M29 120.14 o | | a o | | o

10 markers log-likelihood: -583.8772

For this particular sequence, the touchdown step could not map any additional marker,
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but this depends on the specific dataset.

12. Finally, to check for alternative orders (since we did not use exhaustive search), use the

ripple.seq function:

> ripple.seq(LG2.all, ws=4, LOD=3)

27 16 20 4 ... OK

16 20 4 19 ... OK

20 4 19 21 ... OK

4 19 21 23 ... OK

19 21 23 9 ... OK

21 23 9 24 ... OK

23 9 24 29 ...

Alternative orders:

... 21 23 9 24 29 : 0.00 ( linkage phases: ... 3 1 2 3 )

... 21 23 9 29 24 : -2.06 ( linkage phases: ... 3 1 4 3 )

We should do this to any of the orders we found, either using try.seq or order.seq.

Here, we choose LG2.all only for didactic purpose. The second argument, ws = 4, means

that subsets (windows) of four markers will be permutated sequentially (4! orders for each

window), to search for other plausible orders. The LOD argument means that only orders

with LOD Score smaller than 3 will be printed.

The output shows sequences of four numbers, since ws = 4. They will be followed by an

OK, if there is no alternative orders with LOD Scores smaller than LOD = 3 in absolute

value, or by a list of alternative orders. On the example, just the last sequence showed an

alternative order with LOD smaller than LOD=3 (2.06, in absolute value). However, the

best order was the previous one (LOD=0.00).

If there was an alternative order most likely than the original, one should check the
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difference between these orders (and linkage phases) and change it using, for exam-

ple, the function drop.marker (see Section 4.8) and seq.try or typing the new order.

You can use $seq.num and $seq.phases after the name of the sequence (for example,

LG2.all$seq.num and LG2.all$seq.phases) to obtain the original order and linkage

phases, make the necessary changes (by copying and paste) and then use the function map

(see Section 4.8) to reestimate the genetic map for the new order.

Here, the function ripple.seq showed that the final order obtained is indeed the best

for this linkage group. The map can then be printed using

> LG2.all

Printing map:

Markers Position Parent 1 Parent 2

27 M27 0.00 b | | o a | | a

16 M16 11.76 a | | a b | | o

20 M20 22.94 a | | b c | | d

4 M4 35.71 a | | o o | | b

19 M19 37.99 b | | a a | | o

21 M21 49.08 o | | o a | | b

23 M23 53.93 a | | o a | | o

9 M9 70.29 a | | b a | | a

24 M24 97.75 a | | b b | | a

29 M29 120.14 o | | a o | | o

10 markers log-likelihood: -583.8772

4.7 Genetic mapping of linkage group 1

1. Finally, linkage group 1 (the largest one) will be analyzed. Extract markers:

> LG1 <- make.seq(LGs, 1)

2. Construct the linkage map, by automatic using try algorithm:

> LG1.ord <- order.seq(LG1, n.init=6, touchdown=TRUE)
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Cross type: outcross

Using segregation types of the markers to choose initial subset

WARNING: this operation may take a VERY long time

Comparing 360 orders:

Running try algorithm

25 --> M25 : .......

1 --> M1 : .......

6 --> M6 : ........

30 --> M30 : .........

2 --> M2 : .........

5 --> M5 : ..........

10 --> M10 : ..........

11 --> M11 : ...........

3 --> M3 : ............

LOD threshold = 3

Positioned markers: 12 3 14 2 1 10 17 28 26 6 15 11

Markers not placed on the map: 5 25 30

Trying to map remaining markers with LOD threshold 2

5 --> M5 : .............

25 --> M25 : ..............

30 --> M30 : ...............

LOD threshold = 2

Positioned markers: 12 3 14 2 1 10 17 28 26 6 15 5 25 11
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Markers not placed on the map: 30

Calculating LOD-Scores

30 --> M30 : ...............

Placing remaining marker(s) at most likely position

30 --> M30 : ...............

Estimating final genetic map using tol = 10E-5.

> LG1.ord

Best sequence found.

Printing map:

Markers Position Parent 1 Parent 2

12 M12 0.00 a | | b a | | c

3 M3 19.57 a | | o o | | o

14 M14 32.63 o | | a o | | b

2 M2 39.79 o | | o a | | o

1 M1 60.61 a | | b a | | b

10 M10 66.73 a | | a b | | o

17 M17 81.52 o | | a b | | a

28 M28 82.88 o | | a o | | b

26 M26 115.25 b | | a c | | d

6 M6 124.27 a | | b a | | b

15 M15 156.64 a | | o b | | o

5 M5 162.11 o | | o a | | o

25 M25 174.45 a | | o b | | a

11 M11 184.58 o | | o a | | b

14 markers log-likelihood: -938.2253
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The following markers could not be uniquely positioned.

Printing most likely positions for each unpositioned marker:

------------

| | 30 |

|----|-----|

| | *** |

| 12 | |

| | ** |

| 3 | |

| | |

| 14 | |

| | |

| 2 | |

| | |

| 1 | |

| | |

| 10 | |

| | |

| 17 | |

| | |

| 28 | |

| | |

| 26 | |

| | |

| 6 | |

| | |

| 15 | |

| | |

| 5 | |

| | |
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| 25 | |

| | |

| 11 | |

| | |

------------

'***' indicates the most likely position(s) (LOD = 0.0)

'**' indicates very likely positions (LOD > -1.0)

'*' indicates likely positions (LOD > -2.0)

Notice that the second round of try.seq added markers M5 and M25.

3. Now, get the order with all markers:

> (LG1.final <- make.seq(LG1.ord,"force"))

Printing map:

Markers Position Parent 1 Parent 2

30 M30 0.00 a | | b a | | b

12 M12 1.00 b | | a c | | a

3 M3 20.58 o | | a o | | o

14 M14 33.64 a | | o b | | o

2 M2 40.79 o | | o o | | a

1 M1 61.62 b | | a b | | a

10 M10 67.73 a | | a o | | b

17 M17 82.52 a | | o a | | b

28 M28 83.88 a | | o b | | o

26 M26 116.26 a | | b d | | c

6 M6 125.27 b | | a b | | a

15 M15 157.65 o | | a o | | b

5 M5 163.12 o | | o o | | a

25 M25 175.45 o | | a a | | b
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11 M11 185.59 o | | o b | | a

15 markers log-likelihood: -948.0345

4. Check the final map:

> ripple.seq(LG1.final)

30 12 3 14 ...

Alternative orders:

30 12 3 14 2 ... : 0.00 ( linkage phases: 4 1 4 2 ... )

12 30 3 14 2 ... : -0.20 ( linkage phases: 4 4 4 2 ... )

12 3 14 2 ... OK

3 14 2 1 ... OK

14 2 1 10 ... OK

2 1 10 17 ... OK

1 10 17 28 ...

Alternative orders:

... 2 1 10 17 28 26 ... : 0.00 ( linkage phases: ... 3 1 4 1 2 ... )

... 2 1 10 28 17 26 ... : -2.34 ( linkage phases: ... 3 1 4 1 2 ... )

10 17 28 26 ...

Alternative orders:

... 1 10 17 28 26 6 ... : 0.00 ( linkage phases: ... 1 4 1 2 3 ... )

... 1 10 28 17 26 6 ... : -2.34 ( linkage phases: ... 1 4 1 2 3 ... )

17 28 26 6 ...

Alternative orders:

... 10 17 28 26 6 15 ... : 0.00 ( linkage phases: ... 4 1 2 3 1 ... )

... 10 28 17 26 6 15 ... : -2.34 ( linkage phases: ... 4 1 2 3 1 ... )
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28 26 6 15 ... OK

26 6 15 5 ... OK

6 15 5 25 ... OK

15 5 25 11 ... OK

No better order was observed.

5. Print it

> LG1.final

Printing map:

Markers Position Parent 1 Parent 2

30 M30 0.00 a | | b a | | b

12 M12 1.00 b | | a c | | a

3 M3 20.58 o | | a o | | o

14 M14 33.64 a | | o b | | o

2 M2 40.79 o | | o o | | a

1 M1 61.62 b | | a b | | a

10 M10 67.73 a | | a o | | b

17 M17 82.52 a | | o a | | b

28 M28 83.88 a | | o b | | o

26 M26 116.26 a | | b d | | c

6 M6 125.27 b | | a b | | a

15 M15 157.65 o | | a o | | b

5 M5 163.12 o | | o o | | a

25 M25 175.45 o | | a a | | b

11 M11 185.59 o | | o b | | a

15 markers log-likelihood: -948.0345
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6. As an option, different algorithms to order markers should be applied:

> LG1.ser <- seriation(LG1)

> LG1.rcd <- rcd(LG1)

> LG1.rec <- record(LG1)

> LG1.ug <- ug(LG1)

There are some differences between the results. Seriation did not provide good results in

this case. See Mollinari et al. (2009) for an evaluation of these methods.

4.8 Map estimation for an arbitrary order

1. If, for any reason, one wants to estimate parameters for a given linkage map (e.g. for

other orders on published papers), it is possible to define a sequence and use the map

function. For example, for markers M30, M12, M3, M14 and M2, in this order, use

> any.seq <- make.seq(twopts,c(30,12,3,14,2))

> (any.seq.map <- map(any.seq))

Printing map:

Markers Position Parent 1 Parent 2

30 M30 0.00 a | | b a | | b

12 M12 1.00 b | | a c | | a

3 M3 20.58 o | | a o | | o

14 M14 33.64 a | | o b | | o

2 M2 41.71 o | | o o | | a

5 markers log-likelihood: -320.8997

This is a subset of the first linkage group. When used this way, map function searches for

the best combination of phases between markers and print the results.

2. Furthermore, a sequence can also have user-defined linkage phases. The next example

shows (incorrect) phases used for the same order of markers:
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> any.seq <- make.seq(twopts,c(30,12,3,14,2),phase=c(4,1,4,3))

> (any.seq.map <- map(any.seq))

Printing map:

Markers Position Parent 1 Parent 2

30 M30 0.00 a | | b a | | b

12 M12 1.00 b | | a c | | a

3 M3 20.58 o | | a o | | o

14 M14 33.64 a | | o b | | o

2 M2 379.02 o | | o a | | o

5 markers log-likelihood: -362.3376

3. If one needs to add or drop markers from a predefined sequence, functions add.marker

and drop.marker can be used. For example, to add markers 4 to 8 to any.seq

> (any.seq <- add.marker(any.seq, 4:8))

Number of markers: 10

Markers in the sequence:

M30 M12 M3 M14 M2 M4 M5 M6 M7 M8

Parameters not estimated.

Removing markers 3, 4, 5, 12 and 30 from any.seq:

> (any.seq <- drop.marker(any.seq, c(3,4,5,12,30)))

Number of markers: 5

Markers in the sequence:

M14 M2 M6 M7 M8

Parameters not estimated.

After that, the map needs to be re-estimated.
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4.9 Plotting the recombination fraction matrix

For a given sequence, it is possible to plot the recombination fraction matrix and LOD Scores

based on a color scale using the function rf.graph.table. This matrix can be useful to make

some diagnostics about the map.

1. For example, using the function group with LOD=2.5:

> (LGs <- group(mark.all, LOD=2.5))

Due to the small value used for the LOD Score (2.5, not adequate and resulting in false

positives), markers from different groups were placed together.

2. Ordering markers (results not shown):

> LG.err<-make.seq(LGs, 2)

> LG.err.ord<-order.seq(LG.err)

The map using option “force”:

> (LG.err.map<-make.seq(LG.err.ord, "force"))

Printing map:

Markers Position Parent 1 Parent 2

27 M27 0.00 b | | o a | | a

16 M16 11.75 a | | a b | | o

20 M20 22.93 a | | b c | | d

4 M4 35.70 a | | o o | | b

19 M19 37.98 b | | a a | | o

21 M21 49.07 o | | o a | | b

23 M23 53.92 a | | o a | | o

9 M9 70.28 a | | b a | | a

24 M24 97.66 a | | b b | | a

29 M29 119.62 o | | a o | | o

22 M22 198.71 a | | b a | | a

7 M7 203.51 a | | a a | | b

56



18 M18 246.34 a | | b c | | d

8 M8 252.02 b | | a b | | a

13 M13 256.16 a | | o a | | o

15 markers log-likelihood: -905.7379

3. A careful examination of the results shows that there are problems on the map. This can

be done by plotting the recombination fraction matrix:

> rf.graph.table(LG.err.map)

LOD (above diag.) and Recombination Fraction Matrix

27 16 20 4 19 21 23 9 24 29 22 7 18 8 13

27

16

20

4

19

21

23

9

24

29

22

7

18

8

13

The recombination fractions are plotted below the diagonal and the LOD Scores are

plotted above the diagonal. The color scale varies from red (small distances or big LODs)

to dark blue. This color scale follows the “rainbow” color palette with start argument
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equals to 0 and end argument equals to 0.65. White cells indicate for combinations of

markers whose recombination fractions cannot be estimated (D1 and D2).

Clicking on the cell corresponding to two markers (off secondary diagonal), you can see

some information about them. For example, clicking on the cell corresponding to mark-

ers M4 and M19 you can see their names, types (A.4 and B1.5), recombination fraction

(rf=0.02281) and LOD Scores for each possible linkage phase. Clicking in a cell on the

diagonal, some information about the corresponding marker is shown, including percent

of missing data. We think this is quite useful in helping to interpret the results.

Looking at the matrix, it is possible to see two groups: one with markers from LG2 (M27,

M16, M20, M4, M19, M21, M23, M9, M24, and M29) and other with markers from LG3 (M22,

M7, M18, M8 and M13). There is a gap between markers M22 and M29 (rf=0.4594). At this

position, the group should be divided, that is, a higher LOD Score should be used. Notice

that these two groups were placed together due to a false linkage (false positive) detected

between markers M4 and M22 (LOD Score 2.9) due to the fact of not using appropriated

LOD threshold (more conservative value).

The rf.graph.table can also be used to check the order of markers based on the mono-

tonicity of the matrix, i.e. as we get away from the secondary diagonal, the recombination

fraction values should increase. For another example of function rf.graph.table, see

Section 5.9.

4.10 Drawing the genetic map

1. Once all linkage groups were obtained, we can draw a simple map using the function

draw.map. We can draw a genetic map for all linkage groups:

> maps<-list(LG1.final, LG2.final, LG3.final)

> draw.map(maps, names= TRUE, grid=TRUE, cex.mrk=0.7)
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2. For a specific linkage group:

> draw.map(LG1.final, names= TRUE, grid=TRUE, cex.mrk=0.7)
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It is obvious that function draw.maps draws a very simple graphic representation of the

genetic map. But once the distances and the linkage phases are estimated, better map

figures can be drawn by the user using any appropriate software. There are several free

softwares that can be used, such as MapChart (Voorrips, 2002).

5 F2 example

Starting in version 2.0-0, OneMap can also deal with inbred-based populations (F2, backcrosses

and RILs). In this section we explain how to proceed the analysis in an F2 population. This

procedure can be used for backcrosses and RILs as well. If you are not familiar with R software,

we recommend the reading of Section 2. Most of the steps for constructing an F2 genetic map

are the same as those used in the outcrossing example, thus details can be obtained on Section

4, However, this section could be read alone.
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5.1 Creating the data file

For F2, backcrosses and RILs we used exactly the same raw file used by MAPMAKER/EXP

(Lander et al., 1987). Therefore, one should have no difficult in using data sets already available

for MAPMAKER/EXP. This raw file can contain phenotypic information in the same way as

a MAPMAKER/EXP file, but this will not be used during the map construction. This file,

combined with the map file produced by OneMap, can be readily used for QTL mapping

using R/qtl (Broman et al., 2008) or QTL Cartographer (Wang et al., 2010), among others.

Here, we briefly present how to set up this data file. For more detailed information see the

MAPMAKER/EXP manual (Lincon et al., 1993).

The first line of your data file should be:

data type xxxx

where xxxx is one of the following data types:

f2 backcross for backcrosses

f2 intercross for F2

ri self for RILs by selfing

ri sib for RILs by sib mating

The second line should contain the number of individuals on the progeny, the number of

markers and the number of quantitative traits. Then, the genotype information is included for

each marker. The character “*” indicates the beginning of information of a marker, followed by

the marker name. The codification for genotypes is the following:

A: homozygous for allele A (from parental 1 - AA)

B: homozygous for allele B (from parental 2 - BB)

H: heterozygous carrying both alleles (AB)

C: Not homozygous for allele A (Not AA)

D: Not homozygous for allele B (Not BB)

-: Missing data for the individual at this marker

The “symbols” option, used in MAPMAKER/EXP files, is also accepted (please, see the

manual).

The quantitative trait data should come after the genotypic data and has a similar format,

except the trait values for each individual must be separate by at least one space, a tab or a line
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break. A dash (-) indicates missing data. Here is an example of such file for an F2 population,

10 individuals, 5 markers and 2 quantitative traits:

data type f2 intercross

10 5 2

*M1 A B H H A - B A A B

*M2 C - C C C - - C C A

*M3 D B D D - - B D D B

*M4 C C C - A C C A A C

*M5 C C C C C C C C C C

*weight 10.2 - 9.4 11.3 11.9 8.9 - 11.2 7.8 8.1

*length 1.7 2.1 - 1.8 2.0 1.0 - 1.7 1.0 1.1

This file must be saved in plain text format using a simple text editor such as notepad.

Historically, MAPMAKER/EXP uses the “.raw” extension for this file, however, you can use

other extensions, for example, “.txt”. If you want to see an example how this file should be,

you can open“fake.bc.onemap.raw”and“fake.f2.onemap.raw”, both available with OneMap and

saved in the directory you installed it (use system.file(package="onemap") to see where it

is).

. Now, let us load OneMap:

1. Start R by double-clicking its icon.

2. Load OneMap (after installing it; for details see Sections 2.4 and 3):

> library(onemap)

3. To save your project anytime, type:

> save.image("C:/.../yourfile.RData")

specifying where to have and naming the file, or access the toolbar File → Save Workspace.
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5.2 Importing data

1. Once you created your data file, you can use the function read.mapmaker to import it to

OneMap.

> fake.f2.onemap <- read.mapmaker(dir="C:/workingdirectory",

+ file="your_data_file.raw")

The first argument is the directory where the input file is located, so modify it accordingly.

The second one is the data file name. In this example, an object named fake.f2.onemap

was created. Notice that if you leave the argument dir blank, the file will be read from

your working directory. To set a working directory, see Section 2.5.

2. For this example, we will use a simulated data set from an F2 population which is dis-

tributed along with the OneMap package. Since this particular data set is distributed

along with the package, you can load it typing

> data(fake.f2.onemap)

> fake.f2.onemap

This is an object of class 'f2.onemap'

No. individuals: 200

No. markers: 66

Percent genotyped: 85

Number of markers per segregation type:

AA : AB : BB (1:2:1): 36

Not BB : BB (3:1): 15

Not AA : AA (3:1): 15

This data contains phenotypic information

The data consists in a sample of 200 individuals genotyped for 66 markers (36 co-dominant

(AA, AB or BB), 15 dominant (Not AA or AA) and 15 dominant (Not BB or BB) with

15% of missing data. You also can see that there is phenotypic information on the data

set.
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5.3 Estimating two-point recombination fractions

1. Let us start the analysis estimating the recombination fraction between all pairs of markers

using two-point tests:

> twopts.f2 <- rf.2pts(fake.f2.onemap)

There are two optional arguments in function rf.2pts: LOD and max.rf which indicate

the minimum LOD Score and the maximum recombination fraction to declare linkage

(defaults to 3.0 and 0.5).

2. If you want to see the results for any given markers, say M12 and M42, use:

> print(twopts.f2, "M12", "M42")

Results of the 2-point analysis for markers: M12 and M42

Criteria: LOD = 3 , Maximum recombination fraction = 0.5

rf LOD

0.3572168 1.9430819

5.4 Assigning markers to linkage groups

1. To assign markers to linkage groups, first use the function make.seq to create a sequence

with all markers:

> mark.all.f2 <- make.seq(twopts.f2, "all")

The function make.seq is used to create sequences from objects of several kinds. Here,

the first argument is of class rf.2pts and the second argument specifies which markers

one wants to use ("all" indicates that all markers will be analyzed). To subset markers,

say M1, M3 and M7, use:

> mrk.subset<-make.seq(twopts.f2, c(1,3,7))

2. You can assign markers to linkage groups using the function group:

> (LGs.f2 <- group(mark.all.f2, LOD=3, max.rf=0.5))
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This is an object of class 'group'

It was generated from the object "mark.all.f2"

Criteria used to assign markers to groups:

LOD = 3 , Maximum recombination fraction = 0.5

No. markers: 66

No. groups: 3

No. linked markers: 66

No. unlinked markers: 0

Printing groups:

Group 1 : 27 markers

M1 M3 M4 M6 M7 M9 M12 M13 M17 M23 M26 M27 M29 M30 M31 M34 M35 M36 M40 M42 M44 M46 M53 M55 M58 M60 M63

Group 2 : 16 markers

M2 M5 M8 M10 M11 M25 M32 M33 M37 M41 M43 M45 M51 M54 M61 M66

Group 3 : 23 markers

M14 M15 M16 M18 M19 M20 M21 M22 M24 M28 M38 M39 M47 M48 M49 M50 M52 M56 M57 M59 M62 M64 M65

The arguments LOD and max.rf define thresholds to be used when assigning markers

to linkage groups. If none provided (default), criteria previously defined for the object

twopts are used. We can see that the markers were assigned to three linkage groups with

27, 16 and 23 markers, with no unlinked markers.

5.5 Genetic mapping of linkage group 2

After the assignment of markers to linkage groups, the next step is to order the markers within

each group.

1. First, let us choose the mapping function used to display the genetic map. We can choose

between Kosambi or Haldane mapping functions. To use Haldane, type

> set.map.fun(type="haldane")
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To use Kosambi

> set.map.fun(type="kosambi")

2. To define which linkage group will be mapped, we must “extract” it from the object of

class group. Let us extract the group 2 using:

> LG2.f2 <- make.seq(LGs.f2, 2)

The first argument is an object of class group and the second is a number indicating which

linkage group will be extracted. In this case, the object LGs.f2, generated by function

group, is of class group, showing this function can handle different classes of objects.

3. If you type

> LG2.f2

you will see which markers are comprised in the sequence, and also that no parameters

have been estimated.

Number of markers: 16

Markers in the sequence:

M2 M5 M8 M10 M11 M25 M32 M33 M37 M41

M43 M45 M51 M54 M61 M66

Parameters not estimated.

4. To order these markers, one can use a two-point based algorithm such as Seriation (Bue-

tow and Chakravarti, 1987), Rapid Chain Delineation (Doerge, 1996), Recombination

Counting and Ordering (Van Os et al., 2005) and Unidirectional Growth (Tan and Fu,

2006):

> LG2.ser.f2 <- seriation(LG2.f2)

> LG2.rcd.f2 <- rcd(LG2.f2)

> LG2.rec.f2 <- record(LG2.f2)

> LG2.ug.f2 <- ug(LG2.f2)

For this particular data set, the algorithms provided different results (results not show

here). For an evaluation and comparison of these methods, see Mollinari et al. (2009).
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Now, let us use a multipoint approach to order markers within group 2. We could use the

following: for each possible order of this group, we calculate the multipoint likelihood, and

then compare all of them, choosing the most likely one (high likelihood). For a moderate

number of markers (up to 10 or 11), this is feasible. This procedure is implemented in the

function compare. Although feasible, with up to 7 markers the function compare could

take a very long time, depending on the data set and computational resources used. A

detailed use of this function can be seen in Section 4.5. It is important to say that for

F2 populations, we do not need to estimate the linkage phases, therefore, we can use a

slightly large number of markers in function compare. However, for 16 markers, which

is the number of markers in group 2, the use of function compare is unfeasible, and we

should use another approach.

Thus we will apply the same procedure used in Section 4.6. We will choose a moderate

number of markers, say 6, to create a framework using the function compare and then

positioning the remaining markers using the function try.seq. The way we choose these

markers in inbred-based populations (F2, backcrosses and RILs) is somewhat different

from outcrossing populations.

We recommend two methods: i) randomly choose a number of markers and calculate the

multipoint likelihood of all possible orders (using the function compare). If the LOD

Score of the second best order is greater than a threshold, say 3, then take the best order

to proceed with the next step. If not, repeat the procedure. ii) use some two-point based

algorithm to construct a map; then, take equally spaced markers from this map. Then,

create a framework of ordered markers using the function compare. Next, try to map the

remaining markers, one at a time, beginning with co-dominants (most informative ones),

then add the dominants. You can do this procedure manually, like shown in Section 4.6;

this procedure is also automated in function order.seq which we will use here for the

latter procedure:

> LG2.f2.ord <- order.seq(input.seq=LG2.f2, n.init = 5,

+ subset.search = "twopt",

+ twopt.alg = "rcd", THRES = 3,

+ draw.try = TRUE, wait = 1)

Cross type: f2

Choosing initial subset using 'two-point' approach

67



order obtained using RCD algorithm:

41 10 43 11 2 32 45 54 66 61 25 5 51 33 37 8

calculating multipoint map using tol = 10E-5.

Comparing 60 orders:

Running try algorithm

66 --> M66 : ......

37 --> M37 : .......

61 --> M61 : ........

10 --> M10 : ........

33 --> M33 : .........

25 --> M25 : ..........

43 --> M43 : ...........

32 --> M32 : ............

51 --> M51 : .............

45 --> M45 : ..............

11 --> M11 : ..............

LOD threshold = 3

Positioned markers: 41 10 2 43 32 54 66 25 5 51 33 37 8

Markers not placed on the map: 11 45 61

Calculating LOD-Scores

11 --> M11 : ..............

45 --> M45 : ..............

61 --> M61 : ..............
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Placing remaining marker(s) at most likely position

61 --> M61 : ..............

45 --> M45 : ...............

11 --> M11 : ................

Estimating final genetic map using tol = 10E-5.

>

The first argument is an object of class sequence. n.init = 5 means that five markers

will be used in the compare step. The argument subset.search = "twopt" indicates

that these five markers should be chosen by using a two point method, which will be

Rapid Chain Delineation, as indicated by the argument twopt.alg = "rcd". THRES =

3 indicates that the try.seq step will only add markers to the sequence which can be

mapped with LOD Score greater than 3. draw.try=TRUE will display a diagnostic graphic

for each try.seq step (see Section 4.6). wait=1 indicates the minimum time interval in

seconds to display the diagnostic graphic. NOTE: Although very useful, this function can

be misleading, specially if there are a considerable amount of missing data and dominant

markers, use it carefully.

5. Check the final order:

> LG2.f2.ord

Best sequence found.

Printing map:

Markers Position

41 M41 0.00

10 M10 8.66

2 M2 16.88

43 M43 22.27

32 M32 25.78
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54 M54 33.28

66 M66 40.00

25 M25 47.16

5 M5 51.31

51 M51 55.64

33 M33 61.27

37 M37 65.59

8 M8 71.47

13 markers log-likelihood: -942.954

The following markers could not be uniquely positioned.

Printing most likely positions for each unpositioned marker:

------------------------

| | 11 | 45 | 61 |

|----|-----|-----|-----|

| | | | |

| 41 | | | |

| | | | |

| 10 | | | |

| | ** | | |

| 2 | | | |

| | *** | | |

| 43 | | | |

| | | * | |

| 32 | | | |

| | | *** | |

| 54 | | | |

| | | | |

| 66 | | | |

| | | | *** |
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| 25 | | | |

| | | | |

| 5 | | | |

| | | | |

| 51 | | | |

| | | | |

| 33 | | | |

| | | | |

| 37 | | | |

| | | | |

| 8 | | | |

| | | | |

------------------------

'***' indicates the most likely position(s) (LOD = 0.0)

'**' indicates very likely positions (LOD > -1.0)

'*' indicates likely positions (LOD > -2.0)

Note that markers 11 and 45 could not be safely mapped to a single position (LOD Score

> THRES in absolute value). The output displays the “safe” order and the most likely

positions for markers not mapped, where “***” indicates the most likely position and “*”

corresponds to other plausible positions.

6. To get the “safe” order, use

> LG2.f2.safe <- make.seq(LG2.f2.ord,"safe")

and to get the order with all markers (i.e. including the ones not mapped to a single

position), use:

> (LG2.f2.all <- make.seq(LG2.f2.ord,"force"))

Printing map:

Markers Position
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41 M41 0.00

10 M10 8.53

2 M2 16.60

11 M11 19.27

43 M43 22.56

32 M32 26.34

45 M45 32.28

54 M54 34.59

66 M66 41.60

61 M61 43.27

25 M25 48.97

5 M5 53.02

51 M51 57.37

33 M33 63.00

37 M37 67.32

8 M8 73.21

16 markers log-likelihood: -997.5836

Which places markers 11 and 45 into their most likely positions (between markers 2 and

43 and 32 and 54, respectively).

7. The order.seq function can perform two rounds of the try.seq step, first using THRES

and then THRES - 1 as threshold. This generally results in safe orders with more markers

mapped, but takes longer to run. To do this,type:

> LG2.f2.ord <- order.seq(input.seq=LG2.f2, n.init = 5,

+ subset.search = "twopt",

+ twopt.alg = "rcd", THRES = 3,

+ draw.try = TRUE, wait = 1,

+ touchdown=TRUE)

The output is too big to be included here, so please try to see what happened. In short,

for this particular sequence, the touchdown step could not map any additional marker,

but this depends on the dataset. Since there is no other reason to change position of
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markers 11 and 45 (e.g. biological information), let us use the order with all markers as

suggested by the function order.seq:

> (LG2.f2.final<-make.seq(LG2.f2.ord, "force"))

Printing map:

Markers Position

41 M41 0.00

10 M10 8.53

2 M2 16.60

11 M11 19.27

43 M43 22.56

32 M32 26.34

45 M45 32.28

54 M54 34.59

66 M66 41.60

61 M61 43.27

25 M25 48.97

5 M5 53.02

51 M51 57.37

33 M33 63.00

37 M37 67.32

8 M8 73.21

16 markers log-likelihood: -997.5836

8. Finally, to check for alternative orders, use the ripple.seq function:

> ripple.seq(LG2.f2.final, ws=5, LOD=3)

41 10 2 11 43 ...

Alternative orders:

41 10 2 11 43 32 ... : 0.00

41 10 11 2 43 32 ... : -0.74
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10 2 11 43 32 ...

Alternative orders:

41 10 2 11 43 32 45 ... : 0.00

41 10 11 2 43 32 45 ... : -0.74

2 11 43 32 45 ...

Alternative orders:

... 10 2 11 43 32 45 54 ... : 0.00

... 10 11 2 43 32 45 54 ... : -0.74

... 10 2 11 43 45 32 54 ... : -2.03

... 10 11 2 43 45 32 54 ... : -2.72

11 43 32 45 54 ...

Alternative orders:

... 2 11 43 32 45 54 66 ... : 0.00

... 2 11 43 45 32 54 66 ... : -2.03

43 32 45 54 66 ...

Alternative orders:

... 11 43 32 45 54 66 61 ... : 0.00

... 11 43 45 32 54 66 61 ... : -2.03

32 45 54 66 61 ...

Alternative orders:

... 43 32 45 54 66 61 25 ... : 0.00

... 43 45 32 54 66 61 25 ... : -2.03

45 54 66 61 25 ... OK

54 66 61 25 5 ... OK

66 61 25 5 51 ... OK
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61 25 5 51 33 ... OK

25 5 51 33 37 ... OK

5 51 33 37 8 ... OK

The second argument, ws = 5, means that subsets (windows) of five markers will be

permutated sequentially (5! orders for each window), to search for other plausible orders.

The LOD argument means that only orders with LOD Score smaller than 3 will be printed.

The output shows sequences of four numbers, since ws = 5. They can be followed by an

OK, if there is no alternative orders with LOD Scores smaller than LOD = 3 in absolute

value, or by a list of alternative orders.

On the example, the six first sequences showed alternative orders with LOD smaller

than LOD=3. However, the best order was that obtained with the order.seq function

(LOD=0.00). If there was an alternative order most likely than the original, one should

check the difference between these orders and if necessary change it using, for example, the

function drop.marker (see Section 5.8) and seq.try, or simple typing the new order.Use

LG2.f2.final$seq.num to obtain the original order; then make the necessary changes (by

copying and paste) and use the function map (see Section 5.8) to reestimate the genetic

map for the new order.

9. The ripple.seq command showed that the final order obtained is indeed the best for

this linkage group. The map can then be printed using

> LG2.f2.final

Printing map:

Markers Position

41 M41 0.00

10 M10 8.53

2 M2 16.60

11 M11 19.27

43 M43 22.56
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32 M32 26.34

45 M45 32.28

54 M54 34.59

66 M66 41.60

61 M61 43.27

25 M25 48.97

5 M5 53.02

51 M51 57.37

33 M33 63.00

37 M37 67.32

8 M8 73.21

16 markers log-likelihood: -997.5836

5.6 Genetic mapping of linkage group 1

1. Let us analyze linkage group 1. Extract markers from object LGs:

> LG1.f2 <- make.seq(LGs.f2, 1)

2. Construct the linkage map, by automatic usage of try algorithm:

> LG1.f2.ord <- order.seq(input.seq=LG1.f2, n.init = 5,

+ subset.search = "twopt",

+ twopt.alg = "rcd", THRES = 3,

+ draw.try = TRUE, wait = 1,

+ touchdown=TRUE)

The second round of try.seq added markers M9, M44 and M48 (try it; results not shown).

3. Get the order with all markers:

> (LG1.f2.final <- make.seq(LG1.f2.ord,"force"))

Printing map:

Markers Position
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55 M55 0.00

27 M27 7.69

9 M9 10.16

3 M3 21.28

4 M4 23.59

42 M42 30.04

53 M53 31.59

46 M46 35.89

1 M1 44.82

30 M30 48.87

7 M7 55.66

6 M6 59.64

13 M13 64.45

35 M35 68.97

58 M58 76.39

12 M12 81.96

17 M17 85.07

31 M31 88.68

34 M34 97.81

63 M63 97.81

26 M26 106.02

40 M40 109.67

36 M36 116.65

44 M44 118.63

29 M29 125.99

60 M60 129.37

23 M23 137.46

27 markers log-likelihood: -1651.536

4. Check the final map (results not shown):

> ripple.seq(ws=5, LG1.f2.final)

No better order was observed (please, try it to see).
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5. Print it

> LG1.f2.final

Printing map:

Markers Position

55 M55 0.00

27 M27 7.69

9 M9 10.16

3 M3 21.28

4 M4 23.59

42 M42 30.04

53 M53 31.59

46 M46 35.89

1 M1 44.82

30 M30 48.87

7 M7 55.66

6 M6 59.64

13 M13 64.45

35 M35 68.97

58 M58 76.39

12 M12 81.96

17 M17 85.07

31 M31 88.68

34 M34 97.81

63 M63 97.81

26 M26 106.02

40 M40 109.67

36 M36 116.65

44 M44 118.63

29 M29 125.99

60 M60 129.37

23 M23 137.46
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27 markers log-likelihood: -1651.536

5.7 Genetic mapping of linkage group 3

1. Extract markers from object LGs.f2:

> LG3.f2 <- make.seq(LGs.f2, 3)

2. Construct the linkage map, by automatic usage of try algorithm and drawing some useful

graphics (not shown):

> LG3.f2.ord <- order.seq(input.seq=LG3.f2, n.init = 5,

+ subset.search = "twopt",

+ twopt.alg = "rcd", THRES = 3,

+ draw.try = TRUE, wait = 1,

+ touchdown=TRUE)

We can see that in the second round of try.seq marker M56 was added (please, try it).

A careful examination of the graphics can be a good source of information about how

markers where placed. For more details about how to interpret it, see Section 4.6

3. Now, get the order with all markers:

> (LG3.f2.final <- make.seq(LG3.f2.ord,"force"))

Printing map:

Markers Position

47 M47 0.00

19 M19 7.56

39 M39 8.94

38 M38 15.77

49 M49 24.07

59 M59 24.50

28 M28 31.07

14 M14 35.46
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16 M16 40.00

65 M65 45.54

62 M62 50.68

15 M15 54.67

21 M21 58.46

24 M24 61.83

20 M20 68.27

64 M64 68.27

52 M52 73.65

48 M48 79.05

57 M57 85.00

22 M22 88.25

18 M18 92.33

56 M56 102.05

50 M50 104.72

23 markers log-likelihood: -1462.506

4. Check the final map:

> ripple.seq(ws=5, LG3.f2.final)

No better alternative order was observed.

5. Print it

> LG3.f2.final

Printing map:

Markers Position

47 M47 0.00

19 M19 7.56

39 M39 8.94

38 M38 15.77

49 M49 24.07
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59 M59 24.50

28 M28 31.07

14 M14 35.46

16 M16 40.00

65 M65 45.54

62 M62 50.68

15 M15 54.67

21 M21 58.46

24 M24 61.83

20 M20 68.27

64 M64 68.27

52 M52 73.65

48 M48 79.05

57 M57 85.00

22 M22 88.25

18 M18 92.33

56 M56 102.05

50 M50 104.72

23 markers log-likelihood: -1462.506

5.8 Map estimation for an arbitrary order

1. If you have some information about the order of the markers, for example, from a previous

published paper, you can define a sequence of those markers (using the function make.seq)

and then use the function map to estimate the genetic map. For example, for markers

M47, M38, M59, M16, M62, M21, M20, M48 and M22, in this order, use:

> LG3seq.f2 <- make.seq(twopts.f2,c(47,38,59,16,62,21,20,48,22))

> (LG3seq.f2.map <- map(LG3seq.f2))

Printing map:

Markers Position
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47 M47 0.00

38 M38 14.49

59 M59 23.99

16 M16 40.13

62 M62 50.61

21 M21 57.84

20 M20 67.16

48 M48 75.76

22 M22 84.62

9 markers log-likelihood: -947.1187

To see relation between marker names and numbers, use

> marker.type(LG3seq.f2.map)

Marker 47 ( M47 ) --> AA : AB : BB (1:2:1)

Marker 38 ( M38 ) --> AA : AB : BB (1:2:1)

Marker 59 ( M59 ) --> Not AA : AA (3:1)

Marker 16 ( M16 ) --> AA : AB : BB (1:2:1)

Marker 62 ( M62 ) --> AA : AB : BB (1:2:1)

Marker 21 ( M21 ) --> AA : AB : BB (1:2:1)

Marker 20 ( M20 ) --> Not BB : BB (3:1)

Marker 48 ( M48 ) --> AA : AB : BB (1:2:1)

Marker 22 ( M22 ) --> AA : AB : BB (1:2:1)

2. If one needs to add or drop markers from a predefined sequence, functions add.marker

and drop.marker can be used. For example, to add markers M18, M56 and 50 in the end

of LG3seq.f2.map

> (LG3seq.f2.map <- add.marker(LG3seq.f2.map, c(18,56,50)))

Number of markers: 12

Markers in the sequence:

M47 M38 M59 M16 M62 M21 M20 M48 M22 M18

M56 M50
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Parameters not estimated.

Removing markers M59 and 21 from LG3seq.f2.map:

> (LG3seq.f2.map <- drop.marker(LG3seq.f2.map, c(59,21)))

Number of markers: 10

Markers in the sequence:

M47 M38 M16 M62 M20 M48 M22 M18 M56 M50

Parameters not estimated.

5.9 Plotting the recombination fraction matrix

It is possible to plot the recombination fraction matrix and LOD Scores based on a color scale

using the function rf.graph.table. This matrix can be useful to make some diagnostics about

the map.

1. Let us place M38 in the end of linkage group 3 (wrong position):

> temp.seq<-drop.marker(LG3.f2.final, 38)

> (temp.seq<-add.marker(temp.seq, 38))

Number of markers: 23

Markers in the sequence:

M47 M19 M39 M49 M59 M28 M14 M16 M65 M62

M15 M21 M24 M20 M64 M52 M48 M57 M22 M18

M56 M50 M38

Parameters not estimated.

> (LG3.f2.wrong<-map(temp.seq))

Printing map:

Markers Position
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47 M47 0.00

19 M19 7.38

39 M39 9.16

49 M49 23.18

59 M59 24.38

28 M28 30.44

14 M14 34.82

16 M16 39.36

65 M65 44.90

62 M62 50.04

15 M15 54.03

21 M21 57.82

24 M24 61.19

20 M20 67.63

64 M64 67.63

52 M52 73.02

48 M48 78.41

57 M57 84.36

22 M22 87.61

18 M18 91.68

56 M56 101.39

50 M50 103.97

38 M38 160.29

23 markers log-likelihood: -1589.563

Examining the results, we can see there is a big gap in the end of linkage group 3 (between

markers M50 and M38 as expected.

2. Now let us plot the recombination fraction matrix:

> rf.graph.table(LG3.f2.wrong)
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LOD (above diag.) and Recombination Fraction Matrix

47 19 39 49 59 28 14 16 65 62 15 21 24 20 64 52 48 57 22 18 56 50 38

47
19
39
49
59
28
14
16
65
62
15
21
24
20
64
52
48
57
22
18
56
50
38

The recombination fractions are plotted under the diagonal and the LOD Scores are

plotted upper the diagonal. The color scale varies from red (small distances big LODs) to

dark blue. Clicking on the cell corresponding to two markers, you can see some information

about them. For example, clicking on the cell corresponding to markers M47 and M19 you

can see their names, types (co-dominant and dominant), recombination fraction (rf =

0.07323) and LOD Score (LOD = 23). Clicking in a cell on the diagonal, some information

about the corresponding marker is shown, including percentage of missing data.

We clearly see a different pattern for marker M38. The blue cell, corresponding to markers

M50 and M38, indicates a big recombination fraction between these markers as seen before

(by clicking, rf = 0.4049). Moreover, we can see a group of red cells corresponding to

marker M38 and markers M59, M49, M39 and M19. This pattern indicates small recombina-

tion fractions between marker M38 and other markers. Thus M38 is suppose to be close to

them on the map.
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3. Since we have enough evidence that marker M38 is misplaced, let us drop this marker and

try to position it using the function try.seq:

> temp.seq <- drop.marker(LG3.f2.wrong,38)

> temp.map <- map(temp.seq)

> temp.try <- try.seq(temp.map, 38, draw.try=TRUE)

38 --> M38 : .......................
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We can see that the most likely position for marker M38 is between markers M39 and M49

(position 4). The patterns on the color matrix are better now. Therefore:

> (LG3.f2.final<-make.seq(temp.try, 4))

86



Printing map:

Markers Position

47 M47 0.00

19 M19 7.38

39 M39 9.14

38 M38 15.83

49 M49 23.84

59 M59 25.01

28 M28 31.17

14 M14 35.57

16 M16 40.10

65 M65 45.65

62 M62 50.78

15 M15 54.78

21 M21 58.57

24 M24 61.93

20 M20 68.37

64 M64 68.47

52 M52 73.86

48 M48 79.25

57 M57 85.21

22 M22 88.46

18 M18 92.53

56 M56 102.25

50 M50 104.93

23 markers log-likelihood: -1462.577

4. For another example of using function rf.graph.table, see Section 4.9.
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5.10 Drawing the genetic map

1. We can draw a genetic map for all linkage groups using the function draw.map. First we

have to create a list of ordered linkage groups:

> maps.list<-list(LG1.f2.final, LG2.f2.final, LG3.f2.final)

Then use it in function draw.map:

> draw.map(maps.list, names= TRUE, grid=TRUE, cex.mrk=0.7)
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2. We also can draw a map for a specific linkage group:

> draw.map(LG1.f2.final, names= TRUE, grid=TRUE, cex.mrk=0.7)
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Function draw.map draws a very simple graphic representation of the genetic map. But,

once the distances and the linkage phases are estimated, better map figures can be drawn

by the user using any appropriate software. Also, there are several free softwares that can

be used, such as MapChart (Voorrips, 2002).

5.11 Exporting data to R/qtl and QTL Cartographer

Possibly one of the most important applications for a genetic map is its use in QTL mapping

studies. In populations such as RILs, F2 and backcrosses, there are a lot of softwares for doing

this analysis. Here, we illustrate how to export the genetic map from OneMap to the widely

used and excellent packages R/qtl (Broman et al., 2008) and to QTL Cartographer (Wang et

al., 2010).

1. Using the function write.map, let us export the list maps.list, defined in previous
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section, to a file named "fake.f2.onemap.map":

> write.map(maps.list, "fake.f2.onemap.map")

Notice that the file will be written on the working directory, unless specified by the second

argument. To set a working directory, see Section 2.5.

2. Now, let us install the R/qtl package:

> install.packages("qtl")

Choose the nearest server location and proceed with the installation. Then, load R/qtl:

> library("qtl")

3. To read the data in R/qtl we will use the MAPMAKER/EXP format. Two files are

needed: the first one is the map file ("fake.f2.onemap.map" in our case); the second

one is the raw file written in MAPMAKER/EXP style, which was used in the beginning

of this example. This file must contain phenotypic information. The simulated data

fake.f2.onemap contains that information. The location of the raw file can be obtained

using:

> raw.file<-paste(system.file("example",package="onemap"),

+ "fake.f2.onemap.raw", sep="/")

4. Now we can read the data using the R/qtl function read.cross:

> fake.f2.qtl <- read.cross("mm", file=raw.file, mapfile="fake.f2.onemap.map")

--Read the following data:

Type of cross: f2

Number of individuals: 200

Number of markers: 66

Number of phenotypes: 1

--Cross type: f2

The first argument specifies the format of the data. In our case we used “mm” which

stands for MAPMAKER. The second argument (file) indicates the raw file in MAP-

MAKER/EXP style and the third argument mapfile indicates the map file produced by

OneMap
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5. Then we can proceed with the analysis. R/qtl has several function to check the map. For

example, re-estimating the genetic map within R/qtl:

> newmap <- est.map(fake.f2.qtl, tol=1e-6, map.function="kosambi")

A comparison of the output of both software can be done with:

> plot.map(fake.f2.qtl, newmap)
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Comparison of genetic maps

For each one of the three chromosomes, the left vertical line represents the map estimated

by OneMap and the right vertical line represents the map estimated by R/qtl. The lines

linking these two maps indicates the position of the markers. Thus, we can see that the

two maps are almost identical.

6. Finally, we can run an interval mapping analysis for these data using the R/qtl function

called scanone (for details, see R/qtl tutorial):
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> fake.f2.qtl <- calc.genoprob(fake.f2.qtl, step=2)

> out.em <- scanone(fake.f2.qtl, method="em")

> out.hk <- scanone(fake.f2.qtl, method="hk")

> plot(out.em, out.hk, col=c("blue","red"))
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Here we performed an interval mapping using two methods: mixture models with EM

algorithm and Haley-Knott regression. The blue lines indicate the first one and the red

lines indicate the second.

7. We can use R/qtl to generate QTL Cartographer input files.

> write.cross(fake.f2.qtl, format="qtlcart", filestem="fake.f2.onemap")

Again, the file will be written on the working directory, unless you specify differently in
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argument filestem. The files produced this way are ready to be used in QTL Cartogra-

pher.

6 Final comments

At this point it should be clear that any potential OneMap user must have some knowledge

about genetic mapping and also the R language, since the analysis is not done with only one

mouse click. In the future, perhaps a graphical interface will be made available to make this

software a lot easier to use.

We do hope that OneMap should be useful to any researcher interested in genetic mapping

in outcrossing or inbred-based populations. Any suggestions and critics are welcome.
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Apendix

8 DEFUNCT - Checking the map with three-point anal-

ysis

For historical reasons, three-point analysis are maintained in OneMap, but the same (and a lot

more) can be done using the multipoint approach.

1. The function def.rf.3pts is used as follows:

> def.rf.3pts(example, "M18", "M8", "M13")

The first argument is the object with the input data, of class outcross. Then, three

ordered markers are specified.

In this case, the assignments “A11”, “A12”, . . ., have similar meanings to those of the

two-point analysis: 1 means coupling/coupling, 2 is for coupling/repulsion, 3 is for re-

pulsion/coupling and 4 is for repulsion/repulsion. The first number is the linkage phase

between markers Mi and Mi+1, while the second number is the linkage phase between

markers Mi+1 and Mi+2.

2. Take a look at the default criteria used by this function: LOD = 5, maximum recombi-

nation fraction between adjacent markers = 0.35 and maximum recombination fraction

between markers on the two ends = 0.55. Considering, for example, three markers A

- B - C, in that order, the last criterion indicates the maximum recombination fraction

acceptable between markers A and C. These values are used by the software to decide the

most probable assignment and can be changed by the user:

> def.rf.3pts(example, "M18", "M8", "M13", LOD=10, max.rf=0.4)

> def.rf.3pts(example, "M18", "M8", "M13", max.rf=0.4, max.nolink=0.60)

The arguments max.rf and max.nolink correspond to the maximum recombination frac-

tion between adjacent markers and the maximum recombination fraction between markers

on the two ends, respectively.

3. Do this step for all triplets of markers in linkage group 1:
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> def.rf.3pts(example, "M18", "M8", "M13")

> def.rf.3pts(example, "M8", "M13", "M7")

> def.rf.3pts(example, "M13", "M7", "M22")

This last command line shows that the order M13 - M7 - M22 is possibly incorrect, and

a warning message is displayed. However, the HMM-based analysis use information from

every marker in the sequence and, therefore, the order obtained through compare is likely

to be the best order. Anyway, we had noticed that changing the positions of markers M7

and M22 resulted in an order with LOD Score -0.02, which is very close to zero. This

probably happens because M7 is of type D2 and M22 is of type D1.

These three-point analysis were formerly used to check the final linkage map. In this new

version, the best way to do this is using the new function ripple.seq.
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