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Abstract

In medical and epidemiology studies, odds ratio is a commonly applied measure to ap-
proximate relative risk. It is well known such an approximation is poor and can generate
misleading conclusions, if the incidence rate of a study outcome is not rare. In the litera-
ture, there are times that the incidence rate is not directly available, thus using odds ratio
as an approximation of relative risk can lead to potentially questionable conclusions. Mo-
tivated by real applications, this paper presents methods to convert odds ratio to relative
risk when published data offers some, but limited information. The implemented R pack-
age orsk can convert odds ratio to relative risk, if an odds ratio estimate and a confidence
interval as well as the total sample sizes of treatment and control group are available. The
objective is novelly mapped into a constrained nonlinear optimization problem, which is
solved with both nonlinear optimization and grid search algorithm. The package contains
R functions which interface underlying Fortran routines for efficiency. A couple of real
data applications illustrate the proposed methods and software.
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1. Introduction

Investigators of medical and epidemiology studies are often interested in comparing a risk of a
binary outcome between a treatment and control group, or between exposed and unexposed.
Such an outcome can be an onset of a disease or infection. The odds ratio is a commonly
reported measure in these applications. The odds ratio is a way of comparing whether the
probability of a study outcome is the same for two groups. An odds ratio of 1 indicates that
the interested outcome is similarly to occur in both groups. An odds ratio greater than 1
indicates that the outcome is more likely to occur in the treatment group. And an odds ratio
less than 1 indicates that the outcome is less likely to occur in the treatment group. In medical
and epidemiology studies, the relative risk is a more direct measure comparing the risks than
the odds ratio. The relative risk is the ratio of the probability of the outcome occurring
in the treatment group versus a control group. The relative risk is best estimated using a
population sample, but it can be easily shown that the odds ratio is a good approximation to
the relative risk when the incidence rate is low, for instance, in rare diseases. However, when
the outcome is common in the study population, the odds ratio can largely overestimate the
relative risk (Zhang and Yu 1998; Robbins, Chao, and Fonseca 2002). Although it is well-
known that they measure different quantities which are only close to each other in case of
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rare events, the odds ratio has been mis-interpreted as relative risk in some studies, thus led
to misleading conclusions when the outcome is not rare (Schulman, Berlin, Harless, Kerner,
Sistrunk, Gersh, Dube, Taleghani, Burke, Williams, Eisenberg, and Escarce 1999; Schwartz,
Woloshin, and Welch 1999; Holcomb, Chaiworapongsa, Luke, and Burgdorf 2001). There
are methods to adjust the odds ratio when the outcome is not rare. Zhang and Yu (1998)
proposed a method to estimate the relative risk from the odds ratio (also see McNutt, Wu,
Xue, and Hafner (2003) for controversial observation). The formula in Zhang and Yu (1998)
requires the proportion of control subjects who experience the outcome. A natural question
to ask is: can we estimate the relative risk when such information is not available? The
answer is practically important. For instance, due to lack of this information, Holcomb et al.
(2001) had to ignore some studies: “Articles in which this information was missing could
not be used for risk ratio estimates”. For clarity, a concrete example is presented below.
A study evaluates if children with nonperforated appendicitis should receive preoperative,
broad-spectrum antibiotics (Lee, Islam, Cassidy, Abdullah, and Arca 2010), and some of the
results are reproduced in Table 1.

Table 1: Summary of Cochran Database Review regarding use of antibiotics for nonruptured
appendicitis.

Odds ratio 95% confidence interval
Wound infection

Placebo (n=2707) Reference Reference
Antibiotics (n=2610) 0.37 0.30-0.46

Clearly, Table 1 suggests that preoperative antibiotics significantly reduced the risk of wound
infection compared to placebo. Since the paper provided no information regarding the inci-
dence rate of wound infection, one would wonder how close the odds ratio approximates the
relative risk. In this paper, we develop methods to address this question and implement the
methods in R (R Development Core Team 2011) package orsk.
The paper is organized as follows. Section 2 proposes a nonlinear objective function which
measures the closeness between the calculated odds ratio and the reported odds ratio. We
also provide two methods to solve the nonlinear objective function. Section 3 outlines the
implementations in the package orsk. Section 4 illustrates the capabilities of orsk with real
data reported in the literature. Finally, Section 5 concludes the paper.

2. Methods

Table 2: Compute odds ratio.
Group Number of outcome Number of outcome free Total
Control n01 n00 x
Treatment n11 n10 y

In Table 2, the odds of outcome in the treatment group is n11/n10 and the odds of outcome
in the control group is n01/n00, then the odds ratio is

θ = n11n00/n10n01. (1)
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A confidence interval (CI) for the log odds ratio is log(θ) ± zα/2SE, where zα/2 is the α/2
upper critical value of the standard normal distribution and the standard error SE can be
estimated by SE =

√
1/n11 + 1/n10 + 1/n01 + 1/n00. The lower bound of odds ratio can be

thus mapped to θL = exp(log(θ)− zα/2SE). Therefore,

θL = θ exp
[
−zα/2

√
1/n11 + 1/n10 + 1/n01 + 1/n00

]
. (2)

Similarly, the upper bound of odds ratio is

θU = θ exp
[
zα/2

√
1/n11 + 1/n10 + 1/n01 + 1/n00

]
. (3)

Suppose x, y, θ, θL and α are fixed and known, as in Table 1, the objective is to estimate
(n01, n11) and subsequently estimate the relative risk. If it weren’t for rounding errors, the
task would be equivalent to solving two equations (1) and (2) for two unknowns given that
n01 + n00 = x and n11 + n10 = y. Alternatively, different sets of equations can be solved:
equation (1) and (3), or equation (2) and (3). Although the paper is attempting to recover
unpublished information, the problem can be interpreted from a sample size perspective as
well. Confidence interval-based sample size determination methods have been proposed in
which the upper and lower confidence limits are treated as random variables (Cornfield 1956;
Satten and Kupper 1990). Instead, we are seeking sample size requirements for requested odds
ratio with fixed confidence limits by solving equation (1) and (2). Because of rounding errors,
the equations do not solve exactly. The paper thus proposals a different approach by choosing
n01 and n11 through minimizing the sum of squared deviations between the estimates θ and
θL and the corresponding would-be-estimates based on assumed n01 and n11. Specifically,
consider a sum of squares SS:

SS(n01, n11) = {n11(y − n01)/(x− n01)n01 − θ}2

+
{

θ exp
[
−zα/2

√
1/n11 + 1/(y − n11) + 1/n01 + 1/(x− n01)

]
− θL

}2
,

(4)

and we aim to solve the following problem:

min
n01,n11

SS(n01, n11) for integer n01, n11, 1 ≤ n01 ≤ x− 1, 1 ≤ n11 ≤ y − 1. (5)

Alternatively, SS can be defined based on the upper bound θU . It is clear that SS will be
very close to 0 for the true value of (n01, n11) from which θ, θL are computed. In general,
a smaller SS implies a better solution of (n01, n11). Thus SS serves similar to the residual
sum of squares in the linear regression. To solve the constrained optimization problem, we
consider two approaches: the exhaustive grid search and a numerical optimization algorithm.
For the grid search method, the minimization can be conducted as a two-way grid search
over the choice of (n01, n11). In other words, we can evaluate all the values SS(n01, n11), for
n01 ∈ {1, 2, ..., x−1}, n11 ∈ {1, 2, ..., y−1}. This will result in total number of (x−1)(y−1) of
SS. Next, we filter out SS if SS > δ for a prespecified small threshold value δ. Apparently,
a smaller threshold value δ can lead to sparser solutions; if δ is too close to zero, however,
the algorithm may fail to obtain a solution. The relationship between the choice of δ and
the number of solutions will be investigated below, and it is found in an empirical study that
with a few choice of δ, the range of number of solutions can be explored. For each of the
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selected (n01, n11), the relative risk and its confidence interval are computed, along with the
odds ratio and its confidence interval. The results are rearranged by the order of SS. It is
worth emphasizing that the calculated odds ratios are for the scenarios created with different
numbers of events in both treatment and control group that lead to comparable results for
the reported odds ratio and confidence interval.
The problem can also be solved by applying numerical optimization techniques. Here we
consider a spectral projected gradient method implemented in R package BB (Varadhan R
2009). This package can solve for large scale optimization with simple constraints. It takes
a nonlinear objective function as an argument as well as basic constraints. In particular, the
package can find multiple roots if available, with user specified multiple starting values. To
this end, starting values for n01 are randomly generated from 1 to x − 1. Similarly, starting
values for n11 are randomly generated from 1 to y−1. We then form min(x−1, y−1) pairs of
random numbers and select 10% as the starting values to find multiple roots. The solutions
are round to integers and the odds ratios θ̂ are computed afterwards. Next, we adopt a
filtering procedure: the solutions are remained only if |θ̂ − θ|/θ ≤ δ.

3. Implementation

The above methods have been implemented in R package orsk. To make the grid search
algorithm computational efficient, R package orsk calls Fortran subroutines. Several support-
ing R functions are available to extract or calculate useful statistics, such as the reported
odds ratio, estimated odds ratio and relative risk, with confidence intervals. The function
orsk returns object of class orsk, for which print and summary method are available. A
detailed description of these functions is available in the online help files. With argument
method equal to "grid", the grid search algorithm will be called. Otherwise, the constrained
nonlinear optimization algorithm will be employed with method="optim". The results can
be illustrated using summary function. The source version of orsk package is freely available
from the Comprehensive R Archive Network (http://CRAN.R-project.org). The reader can
install the package directly from the R prompt via

R> install.packages("orsk")

All analyses presented below are contained in a package vignette. The rendered output of the
analyses is available by the R-command

R> library("orsk")

R> vignette("orsk_demo", package = "orsk")

To reproduce the analyses, one can invoke the R code

R> edit(vignette("orsk_demo", package = "orsk"))

4. Examples

The data in Table 1 and in Berg-Lekas, Hogberg, and Winkvist (1998) are used to illustrate
the capabilities of orsk. These analyses were conducted using R version 2.10.1 (2009-12-14)
and the operating system i686-pc-cygwin.

http://CRAN.R-project.org
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We applied orsk with both optim and grid search methods to Table 1. As seen below, the
output includes (n01, n11), named as cont_yes and trt_yes, respectively. The results also
include the corresponding estimated odds ratio with confidence interval. The estimated num-
bers are very close to the reported value 0.37 and its confidence interval (0.30, 0.46). However,
the derived relative risks and confidence intervals can be dramatically different. The results
show that the estimated relative risks are clustered around 0.40 or 0.91 − 0.92. The confi-
dence intervals can also be roughly clustered into two modes. These two clusters correspond
to distinct assumptions: the former is low incidence of wound infection (n01/x and n11/y are
small), in which the odds ratio is expected to approximate the relative risk very well; the
latter is for common occurrence of wound infection (n01/x and n11/y are large), for which
the odds ratio poorly approximates the relative risk. In this context, the latter assumption
is not realistic. In general, the decision for an appropriate scenario can be easily made with
subject knowledge.

However, the analysis here does provide an example that the odd ratio itself can not provide
the complete risk assessment, unlike the relative risk.

R> library("orsk")

R> res1 <- orsk(x = 2707, y = 2610, a = 0.37, al = 0.3,

+ au = 0.46, method = "optim", d = 1.1e-05)

R> summary(res1)

Converting odds ratio to relative risk

Call:
orsk(x = 2707, y = 2610, a = 0.37, al = 0.3, au = 0.46, method = "optim",

d = 1.1e-05)

Method: optim
Threshold value: 1.1e-05
The reported odds ratio: 0.37, confidence interval 0.3, 0.46
The estimated results. The calculated odds ratios and relative risks are for
the scenarios created with different numbers of events in both control and
treatment group that lead to comparable results for the reported odds ratio
and confidence interval.
ctr_yes ctr_no trt_yes trt_no SS OR OR_lower OR_upper

1 2556 151 2249 361 7.30e-06 0.368 0.302 0.449
2 310 2397 119 2491 1.04e-05 0.369 0.297 0.460
3 389 2318 152 2458 1.09e-05 0.368 0.303 0.448

RR RR_lower RR_upper
1 0.913 0.896 0.929
2 0.398 0.325 0.488
3 0.405 0.339 0.485

R> res2 <- orsk(x = 2707, y = 2610, a = 0.37, al = 0.3,

+ au = 0.46, method = "grid", d = 1e-07)

R> summary(res2)



6 Converting Odds Ratio to Relative Risk

Converting odds ratio to relative risk

Call:
orsk(x = 2707, y = 2610, a = 0.37, al = 0.3, au = 0.46, method = "grid",

d = 1e-07)

Method: grid
Threshold value: 1e-07
The reported odds ratio: 0.37, confidence interval 0.3, 0.46
The estimated results. The calculated odds ratios and relative risks are for
the scenarios created with different numbers of events in both control and
treatment group that lead to comparable results for the reported odds ratio
and confidence interval.
ctr_yes ctr_no trt_yes trt_no SS OR OR_lower OR_upper RR

1 2573 134 2288 322 4.15e-08 0.37 0.3 0.456 0.922
2 336 2371 130 2480 5.09e-08 0.37 0.3 0.456 0.401
RR_lower RR_upper

1 0.907 0.938
2 0.330 0.488

We now compare the computing speed between the two estimating methods. With optim and
grid search method in the above specifications, it took 1.8 seconds, and 3.2 seconds, respec-
tively, on an ordinary desktop PC (Intel Core 2 CPU, 1.86 GHz). Although the optimization
method has some computation advantage, the grid search method can generate more accurate
results since the ratio of SS is less than 0.6% from the corresponding best estimation results
for the two methods.

To study the relationship between the threshold value δ and the number of solution, we use
the same data with varying δ. Figure 1 demonstrates that the number of solution converges
to zero very quickly for the optim and grid search method. This implies that one can explore
the whole scope of solutions with only a few varying δ. Notice that the horizontal axis has
different ranges between the optim and grid search method since the former method can fail
with the comparable precision of the latter.

Next, we consider an example in which the numbers of events (n01, n11) have been published,
which allows a direct comparison between the estimated results with the reported values. In
a study of the familial occurrence of dystocia (see Table 3), the authors conclude that “the
risk is increased more than 20-fold (odds ratio 24.0, 95% interval 1.5 to 794.5) if one twin
sister had dystocia...” (Berg-Lekas et al. 1998; Holcomb et al. 2001).

Table 3: Dysfunctional labor in primiparous women among 40 female twin couples.
Odds ratio 95% confidence interval

Women whose twin sisters had Reference Reference
a normal delivery (n=36, n01 = 4)

Women whose twin sisters had 24 1.99-289.6
dystocia (n=4, n11 = 3)

Here we used the odds ratio confidence interval (1.99, 289.6) since (1.5, 794.5) is possibly
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Figure 1: Threshold value and number of solution in optim and grid search method.

due to an error. The results below suggest that the proposed two methods correctly identify
(n01, n11) = (3, 4), and the odds ratio overestimate the relative risk 6.75 since the rate of
dystocia was high (75%) in women whose twin sisters had dystocia, as correctly pointed out
by Holcomb et al. (2001).

R> res5 <- orsk(x = 36, y = 4, a = 24, al = 1.99, au = 289.6,

+ method = "optim")

R> summary(res5)

Converting odds ratio to relative risk

Call:
orsk(x = 36, y = 4, a = 24, al = 1.99, au = 289.6, method = "optim")

Method: optim
Threshold value: 1e-04
The reported odds ratio: 24, confidence interval 1.99, 289.6
The estimated results. The calculated odds ratios and relative risks are for
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the scenarios created with different numbers of events in both control and
treatment group that lead to comparable results for the reported odds ratio
and confidence interval.
ctr_yes ctr_no trt_yes trt_no SS OR OR_lower OR_upper RR

1 4 32 3 1 1.13e-06 24 1.99 290 6.75
RR_lower RR_upper

1 2.28 19.9

R> res6 <- orsk(x = 36, y = 4, a = 24, al = 1.99, au = 289.6,

+ method = "grid")

R> summary(res6)

Converting odds ratio to relative risk

Call:
orsk(x = 36, y = 4, a = 24, al = 1.99, au = 289.6, method = "grid")

Method: grid
Threshold value: 1e-04
The reported odds ratio: 24, confidence interval 1.99, 289.6
The estimated results. The calculated odds ratios and relative risks are for
the scenarios created with different numbers of events in both control and
treatment group that lead to comparable results for the reported odds ratio
and confidence interval.
ctr_yes ctr_no trt_yes trt_no SS OR OR_lower OR_upper RR

1 4 32 3 1 1.13e-06 24 1.99 290 6.75
RR_lower RR_upper

1 2.28 19.9

5. Conclusion

In this article we have outlined the methods and algorithms for converting the odds ratio to
the relative risk when only partial data information is available. As an exploratory tool, R
package orsk can be utilized for this purpose.
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