
Loading projection matrices into R

Chris Stubben

July 11, 2011

This guide describes how to load projection matrices into R using a number of examples
from published demographic studies. At least for small matrices, one option is to combine
matrix elements into a comma-separated list of values using c() and then use matrix to
reshape the vector into a square matrix.

R> A <- c(0, 0.3, 0, 1, 0, 0.5, 5, 0, 0)

R> A <- matrix(A, nrow = 3)

The following examples expand on this simple case by using two methods, either copying
and pasting a matrix using scan or reading a matrix into R using read.table and related
functions.

Loading matrices using scan

If a projection matrix is part of a larger PDF or HTML document, you can often copy and
paste the matrix elements directly into the R console after typing the scan command. In
this first example, the mean matrix for Centaurea corymbosa was copied from the first row
in Table 1 from Freville et al (2004) and pasted below.

R> ceco<-scan()

0 0 5.905 0.368 0.639 0.025 0.001 0.152 0.051

Be sure to enter a blank line to terminate the input on the screen. At the R terminal,
your screen should look something like this if done successfully.

R> ceco<-scan()

1: 0 0 5.905 0.368 0.639 0.025 0.001 0.152 0.051

10:

Read 9 items

Next, create a vector of stages to assign to the row and column names (i.e., the dimension
names) and then use the matrix function to reshape the vector by rows into a 3× 3 matrix.
By default, a matrix is filled by columns, but usually values are copied by rows, so the byrow

option should be set to TRUE.

1

R> stages <- c("seedling", "vegetative", "flowering")

R> matrix(ceco, nrow = 3, byrow = TRUE, dimnames = list(stages,

stages))

seedling vegetative flowering

seedling 0.000 0.000 5.905

vegetative 0.368 0.639 0.025

flowering 0.001 0.152 0.051

One of the nice features of R is the ability to create new functions. If the matrix

command above is too tedious, you can add your own function to simplify the creation of
square matrices. The matrix2 command is also included in the latest version of popbio

2.3.

R> matrix2 <- function(x, stages, byrow = TRUE) {

matrix(x, nrow = sqrt(length(x)), byrow = byrow,

dimnames = list(stages, stages))

}

R> ceco <- matrix2(ceco, stages)

One final step after copying and pasting a matrix into R is to save the matrix to a file
for future analyses (and to avoid copying and pasting again). One option is to save a binary
R data file using save and then use load to reload the matrix object in the future. Another
alternative is to write the matrix to a text file using write.table and then use read.table

to read the file back into R. Since this function always reads a file to a data.frame, use
as.matrix to convert to a matrix (matrix multiplication and a few other functions will not
work on data.frames). More details about read.table are found in the second section of
the guide.

R> write.table(ceco, file = "ceco.txt")

R> ceco <- as.matrix(read.table(file = "ceco.txt"))

Scanning matrices with characters

In most cases, a copy of a published matrix will include row names or additional values. In
the next example, the projection matrix for Sarracenia purpurea at Hawley Bog in Table 1
from Gotelli and Ellison (2006) is pasted below. By default, scan will read numeric data,
so use the what option to specify characters in order to read the stage class names (and
elasticities in parentheses).

R> x1<-scan(, what="")

Recruit 0.0000 (0) 0.0000 (0) 0.0000 (0) 4.0000 (0)

Juvenile 0.1000 (2) 0.9540 (61) 0.0900 (2) 0.0000 (0)

Non-flowering adult 0.0000 (0) 0.0360 (3) 0.7010 (18) 0.8375 (5)

Flowering adult 0.0000 (0) 0.0000 (0) 0.1802 (6) 0.1610 (1)

2

In R, you can use the grep function and a regular expression to list only elements with
digits or a decimal point. The matching elements are then converted to a numeric vector and
the results are reshaped into a square matrix. In addition, stages (in position 1, 10, 19, 29)
are assigned to the row and column names. It is usually a good idea to check the matrix by
calculating lambda, elasticities, or other values reported in the original paper. In this case,
the elasticities below match the copied values in parentheses above (except for the flowering
to recruit transition).

R> stages <- x1[c(1, 10, 19, 29)]

R> sapu <- matrix2(as.numeric(grep("^[0-9.]+$", x1, value = TRUE)),

stages)

R> sapu

Recruit Juvenile Non-flowering Flowering

Recruit 0.0 0.000 0.000 4.000

Juvenile 0.1 0.954 0.090 0.000

Non-flowering 0.0 0.036 0.701 0.838

Flowering 0.0 0.000 0.180 0.161

R> round(elasticity(sapu) * 100)

Recruit Juvenile Non-flowering Flowering

Recruit 0 0 0 2

Juvenile 2 61 2 0

Non-flowering 0 3 18 5

Flowering 0 0 6 1

Scanning matrices with only non-zero elements

In some cases, matrix elements from multiple sites or years will be listed in a table, and often
these tables will only include transitions with non-zero elements. There are a few ways to
create a projection matrix from these tables, but I’ll focus on using a expression of matrix
elements since this technique is useful in many other situations.

First copy the pod-specific matrix elements for killer whales from the appendix in Brault
and Caswell (1993).

R> x2<-scan(, what="")

pod n G1 G2 G3 P2 P3 P4 F2 F3

J01 22 0.9535 0.0802 0.0414 0.8827 0.9586 0.9752 0.0067 0.1632

K01 20 1.0000 0.0694 0.0418 0.9020 0.9582 0.9855 0.0062 0.1737

L01 63 0.9562 0.0722 0.0406 0.9030 0.9530 0.9798 0.0037 0.0988

A01 15 1.0000 0.0727 0.0485 0.9015 0.9515 0.9667 0.0043 0.1148

3

A04 12 0.8165 0.0774 0.0485 0.8903 0.9515 0.9810 0.0042 0.1054

A05 10 1.0000 0.0730 0.0485 0.9123 0.9515 0.9545 0.0027 0.0732

B01 8 1.0000 0.0746 0.0485 0.9254 0.9515 0.9810 0.0025 0.0651

C01 8 1.0000 0.0800 0.0294 0.9200 0.9706 0.9608 0.0047 0.1159

D01 12 1.0000 0.0759 0.0438 0.9241 0.9562 1.0000 0.0068 0.1761

G01 24 1.0000 0.0833 0.0714 0.9167 0.9286 1.0000 0.0061 0.1418

G12 11 1.0000 0.0784 0.0485 0.9216 0.9515 0.9810 0.0050 0.1251

H01 7 1.0000 0.0746 0.0485 0.9254 0.9515 0.9810 0.0021 0.0542

I01 7 1.0000 0.0714 0.0485 0.9286 0.9515 0.9810 0.0027 0.0732

I02 7 1.0000 0.0714 0.0485 0.9286 0.9515 1.0000 0.0045 0.1220

I11 15 1.0000 0.0714 0.0485 0.9286 0.9515 0.9810 0.0052 0.1428

I18 13 1.0000 0.0714 0.0485 0.9286 0.9515 0.9810 0.0037 0.0998

I31 7 1.0000 0.0714 0.0485 0.9286 0.9515 0.9810 0.0047 0.1273

R01 20 1.0000 0.0595 0.0485 0.8929 0.9515 1.0000 0.0024 0.0797

Second, format the scanned values into a matrix, select only the pod rates (by skipping
the first row and first two columns), and add row and column labels.

R> x2 <- matrix(x2, nrow = 19, byrow = TRUE)

R> pods <- matrix(as.numeric(x2[-1, -(1:2)]), nrow = 18)

R> dimnames(pods) <- list(x2[-1, 1], x2[1, -(1:2)])

R> head(pods)

G1 G2 G3 P2 P3 P4 F2 F3

J01 0.954 0.0802 0.0414 0.883 0.959 0.975 0.0067 0.1632

K01 1.000 0.0694 0.0418 0.902 0.958 0.986 0.0062 0.1737

L01 0.956 0.0722 0.0406 0.903 0.953 0.980 0.0037 0.0988

A01 1.000 0.0727 0.0485 0.901 0.952 0.967 0.0043 0.1148

A04 0.817 0.0774 0.0485 0.890 0.952 0.981 0.0042 0.1054

A05 1.000 0.0730 0.0485 0.912 0.952 0.955 0.0027 0.0732

Third, enter the projection matrix from Fig 1 in Brault and Caswell (1993) into an
expression and include the commands to convert the values into a square matrix with stage
class names. The symbols in this expression must match the column names in the matrix of
pod-specific rates above.

R> podA<-expression(

matrix2(c(

0, F2, F3, 0,

G1, P2, 0, 0,

0, G2, P3, 0,

0, 0, G3, P4),

c("yearling", "juvenile", "mature", "postreprod")))

4

Fourth, evaluate the the R expression using a list of matrix elements in the first row to
get a projection matrix from a single pod.

R> J01 <- eval(podA, as.list(pods[1,]))

R> J01

yearling juvenile mature postreprod

yearling 0.000 0.0067 0.1632 0.000

juvenile 0.954 0.8827 0.0000 0.000

mature 0.000 0.0802 0.9586 0.000

postreprod 0.000 0.0000 0.0414 0.975

Finally, you can include the previous step in a loop and create projection matrices for all
18 pods. The dotplot in Figure 1 displays the pod-specific population growth rates.

R> whales <- vector("list", 18)

R> names(whales) <- rownames(pods)

R> for (i in 1:18) {

whales[[i]] <- eval(podA, as.list(pods[i,]))

}

R> print(dotplot(sort(sapply(whales, lambda)), xlab = "Growth rate"))

Loading matrices using read.table

Perhaps the most common way to load a projection matrix is to read the matrix from a file
using read.table. In this case, the file may be stored locally or on the web and these files
may include one or more projection matrices. The formats of the files will also vary, so it is
often necessary to check and modify some of the default read.table options.

In the next example, projection matrices for Silene acaulis are stored in the ESA Archives
(Morris and Doak 2005, see http://www.esapubs.org/archive/mono/M075/004/default.

htm for details). To download the comma-separated matrix from Campion Crest in 1995,
use read.table and change the default separator to a comma.

R> CC95 <- read.table("http://www.esapubs.org/archive/mono/M075/004/CC95.txt",

sep = ",")

It is important to note again that read.table loads the values into a data.frame, so you
will need to convert this to a matrix, and you will often need to add dimension names as
well. Finally, you can print or even plot the projection matrix using image2 to check the
results (Figure 2).

5

http://www.esapubs.org/archive/mono/M075/004/default.htm
http://www.esapubs.org/archive/mono/M075/004/default.htm

Growth rate

R01
H01
A05
A04
B01
I01

L01
A01
I18

G01
I02
I31

G12
J01
I11

K01
C01
D01

1.00 1.01 1.02 1.03 1.04 1.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Growth rates for killer whale pods.

R> CC95 <- as.matrix(CC95)

R> stages <- c("seed", "sdling", "1R", "5R", "10R", "20R",

"12cm", "25cm", "50cm", "100cm", "200cm", "200+cm")

R> dimnames(CC95) <- list(stages, stages)

R> image2(CC95, cex = 0.5, log = FALSE)

Using a loop, you can also load multiple projection matrices into a list of matrices (there
are 25 total matrices from 5 sites, but this example just includes 2 sites below, CC and
GU. Additional sites are PA, RG, and RI, but loading PA98.txt will cause an error since
the second row has two different field separators). The last command applies the lambda

function to all matrices in the list and returns the growth rates as a vector.

R> years <- 95:99

R> site <- c("CC", "GU")

R> pop <- paste(rep(site, each = 5), years, sep = "")

R> n <- length(pop)

R> silene <- vector("list", n)

R> names(silene) <- pop

R> for (i in 1:n) {

6

0

0

0

0

0

0

0

0

0

0

0.134

0.147

0

0

0

0

0

0

0

0

0

0.632

0

0

0

0

0

0

0

0

0

0

0.1

0.8

0

0

0

0

0

0

0

0

0

0.165

0.825

0

0

0

0

0

0

0

0

0

0.09

0.855

0.045

0

0

0

0

0

0

0

0

0.165

0.701

0.124

0

0

0

0

0

0

0

0

0.215

0.775

0

0

0

0

0

0

0

0

0

0.198

0.713

0.079

0

0

0

0

0

0

0

0

0.043

0.904

0

0.043

0

0

0

0

0

0

0

0.165

0.825

0

0

0

0

0

0

0

0.001

0.002

0.055

0.77

0.165

0

0

0

0

0

0

0

0.003

0.003

0.891

0.099

0

0

0

0

0

0

0

0

0.004

0.005

200+cm

200cm

100cm

50cm

25cm

12cm

20R

10R

5R

1R

sdling

seed

seed

sdling

1R 5R

10R

20R

12cm

25cm

50cm

100cm

200cm

200+
cm

Figure 2: Projection matrix for Silene acaulis at Campion Crest in 1995.

x <- paste("http://www.esapubs.org/archive/mono/M075/004/",

pop[i], ".txt", sep = "")

y <- as.matrix(read.table(x, sep = ","))

dimnames(y) <- list(stages, stages)

silene[[i]] <- y

}

R> sapply(silene, lambda)

CC95 CC96 CC97 CC98 CC99 GU95 GU96 GU97 GU98 GU99

0.991 1.006 1.000 1.006 0.999 1.000 0.996 0.998 1.000 1.004

Loading matrices with HTML markup

Many population matrices that are stored in web archives include HTML formatting. In
these cases, you can often use readLines to download the web page and then use a com-
bination of grep to find matrix elements and gsub to remove html tags. For example, the
projection matrices from Ardisia elliptica are also stored in the ESA archives (Koop and
Horvitz 2005, see http://www.esapubs.org/archive/ecol/E086/142/appendix-E.htm).

7

http://www.esapubs.org/archive/ecol/E086/142/appendix-E.htm

0

0

0

0

0

0

0.099

0

0

0

0

0

0

0.341

0.364

0

0

0

0

0

0.09

0.759

0.038

0

0

0

0.014

0.096

0.685

0.082

0.027

0

0

0

0.121

0.707

0.052

0.069

0

0

0

0.136

0.727

0.114

0

0.023

0

2.777

0.028

0.875

0

0.056

0

0

0

22.543

0.978

0.017

0

0

0

0

0

170

LA

SA

PR

LJ

MJ

SJ

SG

SD

S
D

S
G S
J

M
J LJ

P
R

S
A LA

Figure 3: Projection matrix for Ardisia elliptica at Forest Edge in 1999.

Use readLines to download the entire page including the HTML markup. Next, use the
grep function to find 832 lines with a matrix element between the html tags (since there are
13 matrices with 64 elements each).

R> arel <- readLines("http://www.esapubs.org/archive/ecol/E086/142/appendix-E.htm")

R> y <- grep(">[0-9.]+<", arel)

R> length(y)

[1] 832

Use gsub to return just the second parenthesized subexpression (the number between
the tags) for those 832 lines and convert the output to a numeric matrix with 13 rows, one
row for each projection matrix. To create a single projection matrix, just select a row and
reshape it as an 8× 8 matrix (Figure 3).

R> x <- gsub("(.*>)([0-9.]+)(<.*)", "\\2", arel[y])

R> x <- matrix(as.numeric(x), nrow = 13, byrow = TRUE)

R> stages = c("SD", "SG", "SJ", "MJ", "LJ", "PR", "SA",

"LA")

R> FE99 <- matrix2(x[1,], stages)

R> image2(FE99, cex = 0.5)

You can also split the 13 matrices and format them into a single list using split. The
final steps below are use to add the population and year to the list names and to display a
vector of growth rates.

8

R> arel <- split(x, 1:13)

R> arel <- lapply(arel, matrix2, stages)

R> years <- c("99", "00", "01")

R> sites <- c("FE", "TF", "HF", "AT")

R> pop <- c(paste(rep(sites, each = 3), years, sep = ""),

"ST99")

R> names(arel) <- pop

R> sapply(arel, lambda)

FE99 FE00 FE01 TF99 TF00 TF01 HF99 HF00 HF01 AT99 AT00

1.039 0.993 1.002 1.296 1.060 1.133 1.071 1.033 1.098 1.053 1.088

AT01 ST99

0.999 1.304

Loading matrices expressed as vital rates

In this final example, a table of vital rates (with html markup) is used to construct matrix
models of six Orchis purpurea populations from Jacquemyn et al. (2010). The following
code downloads and formats the vital rate table.

R> url <- "http://www.esapubs.org/archive/ecol/E091/011/appendix-B.htm"

R> vrx <- readLines(url)

R> y <- grep(">[0-9.]+<", vrx, perl = TRUE)

R> y <- gsub("(.*>)([0-9.]+)(<.*)", "\\2", vrx[y], perl = TRUE)

R> vr <- matrix(as.numeric(y), ncol = 15, byrow = TRUE)

R> n <- substr(vrx[seq(35, 665, 18)], 55, 64)

R> rownames(vr) <- gsub(" ", "_", gsub("'", "", n))

R> colnames(vr) <- c("psi", "up", "pi", "ep", "d1", "d2",

"d3", "d4", "d5", "d6", "g53", "g54", "g64", "g65",

"g56")

R> vr[1:5, 1:5]

psi up pi ep d1

S1_02-03 32.4 0.019 6000 0.023 0.012

S1_03-04 34.5 0.033 6000 0.023 0.027

S1_04-05 32.2 0.019 6000 0.023 0.011

S1_05-06 28.2 0.012 6000 0.023 0.000

S1_06-07 33.0 0.030 6000 0.023 0.000

Next, format the matrix of vital rates listed in equation 1 into an expression. Finally, evaluate
the R expression using a list of vital rates from a single site to return a projection matrix.
You can also create a list of all 30 matrices following the code in the earlier killer whale
example.

9

R> orpu<-expression(matrix2(c(

0, 0, 0, 0, 0, psi*up*pi*ep,

d1, 0, 0, 0, 0, 0,

0, d2, 0, 0, 0, 0,

0, 0, d3*(1-g53), d4*(1-g54-g64), 0, 0,

0, 0, d3*g53, d4*g54, d5*(1-g65), d6*g56,

0, 0, 0, d4*g64, d5*g65, d6*(1-g56)

), c("pcorm", "tuber", "sdlng", "juv", "nonfl", "flwer"))

)

R> s1<-eval(orpu, as.list(vr[1,]))

R> s1

pcorm tuber sdlng juv nonfl flwer

pcorm 0.000 0.000 0 0.00 0.000 84.887

tuber 0.012 0.000 0 0.00 0.000 0.000

sdlng 0.000 0.041 0 0.00 0.000 0.000

juv 0.000 0.000 1 0.75 0.000 0.000

nonfl 0.000 0.000 0 0.25 0.615 0.625

flwer 0.000 0.000 0 0.00 0.385 0.375

References

Brault, S., and H. Caswell. 1993. Pod-Specific Demography of Killer Whales (Orcinus Orca).
Ecology 74:1444-1454.

Freville, H., B. Colas, M. Riba, H. Caswell, A. Mignot, E. Imbert, I. Olivieri. 2004. Spa-
tial and temporal demographic variability in the endemic plant species Centaurea corymbosa
(Asteraceae). Ecology 85: 694-703.

Gotelli, N.J. and A.M. Ellison. 2006. Forecasting extinction risk with nonstationary
matrix models. Ecological Applications 16:51-61.

Jacquemyn, H., R. Brys, E. Jongejans 2010. Seed limitation restricts population growth
in shaded populations of a perennial woodland orchid. Ecology. 91:119-129.

Koop, A.L. and C.C. Horvitz. 2005. Projection matrix analysis of the demography of an
invasive, nonnative shrub (Ardisia elliptica). Ecology 86:2661-2672.

Morris, W.F. and D.F. Doak. 2005. How general are the determinants of the stochastic
population growth rate across nearby sites? Ecological Monographs 75:119-137.

10

