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1 Introduction

Following are two examples of using randomLCA for latent class analysis.
Some aspects will certainly change but most code should still work. Two
things that will change are the use of accessor functions and better labelling
of results.

2 Latent Class

2.1 Model

The basis of latent class analysis is that each subject belongs to one of a
finite number of classes, with each class described by a set of parameters
that define the distribution of outcomes or manifest variables for a subject, a
form of finite mixture model. For binary outcomes, the model for each class
is

P (yi1, yi2, ..., yik| c) =
k∏

j=1

π
yij
cj (1− πcj)1−yij

where

yij = jth binary outcome for subject i

πcj = probability of jth outcome equal to 1 for subject in class c

k = number of outcomes.

An additional parameter that is required to be estimated is ηc, the prob-
ability of a subjects in class c.
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A requirement for the estimates of the probabilities πcj is that they be
restricted to the interval zero to one, and ηc sum to one. This can be ob-
tained using the following relations πcj = eacj

1+eacj
and ηc = eθc∑C

`=1
eθ`

. Hence we

estimate the πcj and θc.

2.2 Example 1

This example demonstrates the fitting of data from Rindskopf and Rindskopf
(1986), where latent class analysis is used to determine diagnostic classifica-
tions based on medical tests. Although this example is for medical data, the
model is simply standard latent class so the methods can be applied to data
from other areas.

A series of latent class models for 1 to 4 classes can be fitted using the
commands

> myocardial.lca1 <- randomLCA(myocardial[, 1:4],

+ freq = myocardial$freq, nclass = 1)

> myocardial.lca2 <- randomLCA(myocardial[, 1:4],

+ freq = myocardial$freq, nclass = 2, calcSE = TRUE)

> myocardial.lca3 <- randomLCA(myocardial[, 1:4],

+ freq = myocardial$freq, nclass = 3)

The BIC values may be extracted from the fitted objects and are shown
in Table 1.

> bic.data <- data.frame(classes = 1:3, bic = c(BIC(myocardial.lca1),

+ BIC(myocardial.lca2), BIC(myocardial.lca3)))

classes bic
1 524.7
2 402.3
3 421.1

Table 1: BIC by class.

Using BIC as a selection method, this selects the 2 class model, indicating
a nice beakdown into diseased and nondiseased, which it is assumed represent
those with and without myocardial infarction. The true nature of classes is
always debateable.

Summary may be used to display the fitted results
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> summary(myocardial.lca2)

Classes AIC BIC logLik penlogLik

2 379.3958 402.2855 -180.6979 -180.7002

Class probabilities

Class 1 Class 2

0.4578 0.5422

Outcome probabilities

Q.wave History LDH CPK

Class 1 0.7668 0.7914 0.8279 1.0000

Class 2 0.0000 0.1951 0.0269 0.1955

Individual results may be obtained from summary, for example the out-
come probabilities shown in Table 2.

> outcomep.data <- summary(myocardial.lca2)$outcomep

Q.wave History LDH CPK
Class 1 0.767 0.791 0.828 1.000
Class 2 0.000 0.195 0.027 0.196

Table 2: Outcome Probabilities.

This gives some interesting information. In Class 2, those without my-
ocardial infarction, will have abscence of Q.wave but in those with myocar-
dial infarction it will only be present in 76.7%. The class probabilities can
be obtained as myocardial.lca2$classp of 0.46 and 0.54 for Class 1 and 2
respectively.

One aspect of latent class is that no subject is uniquely allocated to a
given class, although in some cases a subject may have an extremely high
probability.

The class probs can be obtained as

> classprobs <- cbind(myocardial.lca2$patterns,

+ myocardial.lca2$classprob)

> colnames(classprobs) <- c(names(myocardial)[1:4],

+ "Class 1", "Class 2")

with results shown in Table 3. This shows subjects with 3 or 4 positive
tests to be strongly classified as having myocardial infarction, and even some
with 2, depending on which to to be well classified. Having only one positive
test makes it unlikely that it is myocardial infarction.

Outcome probabilities are shown in Figure 1.
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> trellis.par.set(col.whitebg())

> print(plot(myocardial.lca2, type = "l", xlab = "Test",

+ ylab = "Outcome Probability", scales = list(x = list(at = 1:4,

+ labels = names(myocardial)[1:4]))))
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Figure 1: Outcome probabilities for 2 Class Latent Class model.
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Q.wave History LDH CPK Class 1 Class 2
1 1 1 1 1.000 0.000
0 1 1 1 0.992 0.008
1 0 1 1 1.000 0.000
0 0 1 1 0.889 0.111
1 1 0 1 1.000 0.000
0 1 0 1 0.419 0.581
1 0 0 1 1.000 0.000
0 0 0 1 0.044 0.956
0 0 1 0 0.000 1.000
0 1 0 0 0.000 1.000
0 0 0 0 0.000 1.000

Table 3: Class Probabilities.

2.3 Example 2

This example shows the fitting of the dentistry data from Qu et al. (1996).
The data consists of the results of five dentists evaluating x-rays for presence
or absence of caries. As there is no gold standard, the latent class method is
to assume two classes, diseased and non-diseased which are identified from
the data.

A series of latent class models for 1 to 4 classes can be fitted using the
commands

> dentistry.lca1 <- randomLCA(dentistry[, 1:5],

+ freq = dentistry$freq, nclass = 1)

> dentistry.lca2 <- randomLCA(dentistry[, 1:5],

+ freq = dentistry$freq, nclass = 2, calcSE = TRUE)

> dentistry.lca3 <- randomLCA(dentistry[, 1:5],

+ freq = dentistry$freq, nclass = 3)

> dentistry.lca4 <- randomLCA(dentistry[, 1:5],

+ freq = dentistry$freq, nclass = 4)

The BIC values may be extracted from the fitted objects and are shown
in Table 4. This indicates the presence of 3 classes. A possible interpretation
is that there is a class of subjects with moderate disease, or the alternative
of heterogeneous disease which will be covered in the next section. Outcome
probabilities are shown in Figure 2 and for the 2 class model in Figure 3.

> bic.data <- data.frame(classes = 1:4, bic = c(BIC(dentistry.lca1),

+ BIC(dentistry.lca2), BIC(dentistry.lca3),
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> trellis.par.set(col.whitebg())

> print(plot(dentistry.lca3, type = "l", xlab = "Dentist",

+ ylab = "Outcome Probability"))
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Figure 2: Outcome probabilities for 3 Class Latent Class model.

+ BIC(dentistry.lca4)))

classes bic
1 17531.1
2 15021.6
3 14962.9
4 15000.0

Table 4: BIC by class.

The 2 Class results can be interpreted as a diagnostic test. Important
results for diagnostic testing are the sensitivity and specificity for each test.
The sensitivity is the probability of the test correctly identifying the subject
as diseased given that the subject is diseased. In classical diagnostic test-
ing the ”true” status of a subject is known through use of a ”gold standard”
which is assumed to, sometiems optimistically, correctly classify the subject.
The latent class method constructs a hypothetical standard, which has the
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> trellis.par.set(col.whitebg())

> print(plot(dentistry.lca2, type = "l", xlab = "Dentist",

+ ylab = "Outcome Probability"))
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Figure 3: Outcome probabilities for 2 Class Latent Class model.
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disadvantage that this is not known with certainty but it allows correctly
for any uncertainty in the underlying disease state. The other measure is
specificity which is the probability of correctly identifying a subject as not
diseased. The sensitivities are then simply the outcome probabilities for the
diseased class, Class 1 and the specificity one minus the outcome probabil-
ities for the non-diseased class, Class 2. These can be obtained with 95%
confidence intervals (provided the model is fitted with calcSE=TRUE) using
the outcome.probs function.

> outcome.probs(dentistry.lca2)

Class 1

Outcome p 2.5 % 97.5 %

V1 0.4033507 0.3616410 0.4465062

V2 0.7128814 0.6691321 0.7529813

V3 0.5981282 0.5494259 0.6449680

V4 0.4888447 0.4468916 0.5309555

V5 0.9154706 0.8856534 0.9380564

Class 2

Outcome p 2.5 % 97.5 %

V1 0.01061848 0.006938914 0.01621740

V2 0.10198787 0.089733673 0.11570281

V3 0.01359122 0.008592987 0.02143391

V4 0.03156300 0.024211229 0.04105323

V5 0.30527871 0.287118949 0.32406491

The sensitivity and specificity are shown in Table 5. A reasonable con-
clusion is that the dentists are fairly good at identifying teeth that are not
diseased (except for dentist 5), but not too good at identifying teeth that are
diseased.

> probs <- outcome.probs(dentistry.lca2)

> order <- ifelse(dentistry.lca2$classp[2] > dentistry.lca2$classp[1],

+ 1, 2)

> spec <- NULL

> sens <- NULL

> for (i in 1:5) {

+ sens <- c(sens, sprintf("%3.2f (%3.2f,%3.2f)",

+ probs[[order]]$Outcome[i], probs[[order]]$"2.5 %"[i],

+ probs[[order]]$"97.5 %"[i]))

+ spec <- c(spec, sprintf("%3.2f (%3.2f,%3.2f)",
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+ 1 - probs[[3 - order]]$Outcome[i], 1 -

+ probs[[3 - order]]$"97.5 %"[i], 1 -

+ probs[[3 - order]]$"2.5 %"[i]))

+ }

> stable <- data.frame(sens, spec)

> names(stable) <- c("Sensitivity", "Specificity")

> row.names(stable) <- paste("V", 1:5, sep = "")

> print(xtable(stable, digits = c(0, 2, 2), caption = "Sensitivity and Specificity",

+ label = "tab:outcomeconfint"), include.rownames = TRUE)

Sensitivity Specificity
V1 0.40 (0.36,0.45) 0.99 (0.98,0.99)
V2 0.71 (0.67,0.75) 0.90 (0.88,0.91)
V3 0.60 (0.55,0.64) 0.99 (0.98,0.99)
V4 0.49 (0.45,0.53) 0.97 (0.96,0.98)
V5 0.92 (0.89,0.94) 0.69 (0.68,0.71)

Table 5: Sensitivity and Specificity

The confidence intervals for the outcome probabilities can be calculated
using the parametric bootstrap.

>dentistry.lca2.outcomes.boot

<- outcome.probs(dentistry.lca2,boot=TRUE)

These are shown in Table 6 and are in agreement with those from the
standard errors.

Sensitivity Specificity
V1 0.40 (0.36,0.44) 0.99 (0.98,0.99)
V2 0.71 (0.68,0.75) 0.90 (0.88,0.91)
V3 0.60 (0.56,0.64) 0.99 (0.98,0.99)
V4 0.49 (0.45,0.53) 0.97 (0.96,0.97)
V5 0.92 (0.89,0.94) 0.69 (0.68,0.71)

Table 6: Sensitivity and Specificity

The true and false positive rates can be plotted for each dentist, and are
shown in Figure 4. This gives a better explanation of what is happening. It
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> trellis.par.set(col.whitebg())

> print(plot(tpr ~ fpr, type = "p", xlab = "False Positive Rate\n(1-Specificity)",

+ ylab = "True Positive Rate (Sensitivity)",

+ data = probs))
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Figure 4: True and False Positive Rates by Dentist.

appears that the difference between dentists is mainly related to the threshold
for what they classify as diseased. Dentist 5 is more likely to correctly identify
teeth as diseased but at the expense of being more likely to identify non-
diseased teeth as diseased.

> itpr <- ifelse(dentistry.lca2$classp[2] > dentistry.lca2$classp[1],

+ 1, 2)

> ifpr <- 3 - itpr

> probs <- outcome.probs(dentistry.lca2)

> probs <- data.frame(tpr = probs[[itpr]][, 1],

+ fpr = probs[[ifpr]][, 1])
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3 Latent Class with Random Effects

3.1 Model

The method used in Qu et al. (1996) is to introduce a random effect to model
heterogeneity within classes. In their model the probabilities are transformed
to the probit scale and then a normal random effect introduced. In practice
it usually makes little difference if a probit or logit transform is used.

The probability for each observation remains the same, except that it is
now conditional on both class c and random effect λ.

P (yi1, yi2, ..., yik|c, u) =
k∏

j=1

π
yij
cj (1− πcj)1−yj

Where

πcj =
eacj+bju

1 + eacj+bju
, u ∼ N(0, 1)

bj scales the random effect - models may have either a common or indepen-
dent scale for each outcome, these are the lambdacoef. They may also be
chosen to be different for each class, the default is for them to be the same
for each class.

One way of visualising the model is that each class is now an Item Re-
sponse Theory (IRT) model when the scaling is independent. When the
scaling is common, the loadings are the same for each outcome and each
class is then a Rasch model.

3.2 Example 2 Continued

We now continue the analysis of the dentistry data, allowing for random
effects. This has a simple interpretation. For each subject there will be a
different level of disease, and as a result a dentist will be more or less likely
to classify the subject as having disease.

> dentistry.lca2random <- randomLCA(dentistry[,

+ 1:5], freq = dentistry$freq, initmodel = dentistry.lca2,

+ nclass = 2, random = TRUE, quadpoints = 31,

+ probit = TRUE)
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The BIC is reduced to 14944.7 showing an improvement over any of the
latent class models. An alternative model is to allow the variance of the
random effect to vary by outcome (dentist). This can be performed using
the blocksize parameter. This allows the structure of the data to be set as
a series of blocks, and within each block each outcome has a different loading.

> dentistry.lca2random1 <- randomLCA(dentistry[,

+ 1:5], freq = dentistry$freq, initmodel = dentistry.lca2random,

+ nclass = 2, random = TRUE, probit = TRUE,

+ quadpoints = 31, blocksize = 5)

This increases the BIC to 14949.4, and is the 2LCR model obtained by
Qu et al. (1996). It appears that the simpler model is more appropriate.

A further extension is to allow the loading or random effect variance to
vary by class.

> dentistry.lca2random2 <- randomLCA(dentistry[,

+ 1:5], freq = dentistry$freq, initmodel = dentistry.lca2random1,

+ nclass = 2, random = TRUE, probit = TRUE,

+ blocksize = 5, byclass = TRUE, quadpoints = 41)

The BIC increases to 14987.6. It is not surprising that this model isn’t
an improvement, there are now 21 parameters fitted to 32 observations. This
also may give problems with the fitting algorithm so the number of quadra-
ture points is increase to 41.

The marginal outcome probabilities, obtained by integrating over the ran-
dom effect can be plotted, as in Figure 5.

Outcome probabilities with confidence intervals may be calculated for
models with random effects only using the parametric bootstrap.

dentistry.lca2random.outcomes.boot

<- outcome.probs(dentistry.lca2random,boot=TRUE)

These are shown in Table 7.

> print(xtable(stable, digits = c(0, 2, 2), caption = "Sensitivity and Specificity",

+ label = "tab:outcomeconfintboot2"), include.rownames = TRUE)

The observed and fitted values can be obtained and are shown in Table 8.
Differences from the Qu et al paper result from different approximation meth-
ods.
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> trellis.par.set(col.whitebg())

> print(plot(dentistry.lca2random1, graphtype = "marginal",

+ type = "l", xlab = "Dentist", ylab = "Marginal Outcome Probability"))
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Figure 5: Marginal Outcome Probabilities for 2 Class Latent Class with
Random Effect (2LCR) model.
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Sensitivity Specificity
V1 0.40 (0.33,0.47) 0.98 (0.97,0.99)
V2 0.65 (0.56,0.73) 0.87 (0.85,0.89)
V3 0.62 (0.53,0.77) 0.98 (0.96,1.00)
V4 0.42 (0.35,0.49) 0.94 (0.93,0.96)
V5 0.86 (0.79,0.92) 0.67 (0.64,0.69)

Table 7: Sensitivity and Specificity

> obs.data <- data.frame(dentistry.lca2random1$patterns,

+ dentistry.lca2random1$observed, dentistry.lca2$fitted,

+ dentistry.lca2random1$fitted)

> names(obs.data) <- c("V1", "V2", "V3", "V4", "V5",

+ "Obs", "Exp 2LC", "Exp 2LCR")
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V1 V2 V3 V4 V5 Obs Exp 2LC Exp 2LCR
0 0 0 0 0 1880 1836.3 1882.6
0 0 0 0 1 789 830.4 784.7
0 0 0 1 0 43 61.9 38.2
0 0 0 1 1 75 49.6 79.7
0 0 1 0 0 23 28.6 24.2
0 0 1 0 1 63 47.5 63.8
0 0 1 1 0 8 4.0 6.8
0 0 1 1 1 22 35.1 25.8
0 1 0 0 0 188 213.9 184.7
0 1 0 0 1 191 152.2 192.5
0 1 0 1 0 17 12.1 23.1
0 1 0 1 1 67 61.0 67.2
0 1 1 0 0 15 11.2 12.5
0 1 1 0 1 85 91.6 87.4
0 1 1 1 0 8 8.1 7.1
0 1 1 1 1 56 86.4 50.8
1 0 0 0 0 22 21.2 18.5
1 0 0 0 1 26 25.2 27.9
1 0 0 1 0 6 2.1 4.8
1 0 0 1 1 14 16.1 16.0
1 0 1 0 0 1 2.5 2.3
1 0 1 0 1 20 24.7 19.7
1 0 1 1 0 2 2.2 1.8
1 0 1 1 1 17 23.5 14.5
1 1 0 0 0 2 6.0 7.3
1 1 0 0 1 20 42.0 19.8
1 1 0 1 0 6 3.7 4.7
1 1 0 1 1 27 39.3 22.4
1 1 1 0 0 3 5.7 2.7
1 1 1 0 1 72 61.1 69.6
1 1 1 1 0 1 5.4 3.2
1 1 1 1 1 100 58.4 103.0

Table 8: Observed and expected frequencies
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