
FUSING R AND BUGS THROUGH WINE

Fusing R and BUGS through Wine
An Introduction to Package rbugs

by Jun Yan

Historical Review

BUGS (Spiegelhalter et al., 1996) has been a very success-
ful statistical software project. It is widely used by re-
searchers in many disciplines as a convenient tool for do-
ing Bayesian statistical analysis. The BUGS developers
have shifted developmental efforts to WinBUGS, and the
classic BUGS is not being developed further. The current
release WinBUGS 1.4 comes with a scripting facility which
permits batch running, and also therefore the ability to
run WinBUGS from other programs.

Fusing R and BUGS has been available from several
sources. On Windows systems, it dates back to Ken-
nith Rice’s package EmBedBUGS (Rice, 2002). EmBedBUGS
is available in an Windows self-extracting archive and is
not in the standard format of an R package. First ver-
sion adapted from EmBedBUGS, Andrew Gelman’s collec-
tion of functions bugs.R (Gelman, 2004) has evolved into
a comprehensive tool, which can run WinBUGS 1.4 from
R, collect the MCMC samples, and perform basic out-
put analysis. This collection was recently packaged by
Sturtz and Ligges (2004) as R2WinBUGS, with some tools
(including print and plot methods) for output analysis
slightly changed from Andrew Gelman’s original func-
tion.

On Linux/Unix systems, however, less work has ap-
peared since the pause of the support for classic BUGS.
Plummer (2003) reported experience and some known
problems of running WinBUGS under Wine, “an Open
Source implementation of the Windows API on top of X
and Unix” (Wine, 2004). With Wine, it is possible to pro-
vide a facility of fusing R and BUGS on a Linux system
similar to what’s available on a Windows system. This is
what package rbugs aims at.

Design

The powerfulness of BUGS (In the sequel, I use BUGS in-
stead of WinBUGS when there is no confusion in the con-
text, hoping some day classic BUGS will be supported.)
lies in that, with a straightforward syntax for model spec-
ification, it provides a universal MCMC sampler of poste-
rior distributions for rather complicated problems. Users
do not need to worry about how the MCMC samples are

actually drawn. The design philosophy of rbugs, there-
fore, is to take the advantage of the universal MCMC
sampler of BUGS through an interface as simple as pos-
sible, and return the MCMC samples in a format which
can be fed into other R packages specializing in Bayesian
output analysis, such as boa (Smith, 2004) and coda
(Plummer et al., 1996). In addition, users (particularly
those who are uncomfortable with point-and-click) enjoy
accesses to various files generated during the preparation
of running BUGS in batch-mode.

Compared to package R2WinBUGS, rbugs is different in
the following sense: 1) It does not provide Bayesian out-
put analysis and only serves as a fuse to connect R and
BUGS; 2) It provides access to automating the preparation
of script file, model file, data file, and initial value file,
which are needed by running BUGS in batch-mode; and
3) Its main target users are Linux users having access to
Wine.

Configuration

Package rbugs has been tested on both Linux and Win-
dows. After installation, it’s worth setting two environ-
ment variables in the ‘.Renviron’ file to save some typing:
BUGS and WINE. These two variables store the full name of
the executables of BUGS and Wine, respectively. They are
used as the default values in function rbugs. The follow-
ing is an example on my machine:

BUGS="c:/program files/winbugs14/winbugs14.exe"
WINE="/var/scratch/jyan/wine-20040408/wine"

The definition of WINE is only necessary if BUGS is to be
used via Wine. In that case, the wine configuration in
‘./wine/config’ in the home directory will be processed by
an internal function to create a map from the Windows
drives to the native directories. Further discussion about
the usage via wine is presented next.

Run BUGS in a Single Call

To run BUGS in batch-mode, a minimum of four files are
needed as input: a script file, a model file, a data file, and
an initial value file for each chain to be run. Except the
model file, other three types of files can be generated. The
model file would need to be written by a user outside of
R. The output from BUGS are saved in files specified in
the script file, and can be read into R and used for con-
vergence and output analysis. From sufficient informa-

1



FUSING R AND BUGS THROUGH WINE

tion collected from its arguments, such as the data list, pa-
rameters to be monitored, number of chains, etc., function
rbugs generates the data file, initial value files, and script
file that are needed, calls BUGS through an OS-specific
system call, and returns the MCMC output as a list of ma-
trix. The returned object can be further processed by pack-
ages boa and coda, taking the advantage of various native
analysis available in R. An example is provided with the
pumps data in the Example Volume I of BUGS:

> ? pumps

Experience with Wine

On a RedHat 3.0 workstation, I experimented running
WinBUGS via Wine 20040408. As reported by Plummer
(2003), buttons still don’t respond to clicks. One would
have to use the return key after pointing to a button. This
may not be a problem to people who doesn’t like using
mouse anyway. Fortunately, the batch-mode works fine
and the results from some examples I tried are the same
as those obtained from a Windows system.

Installation guide for Wine can be found from its web-
site. For people who don’t have root access, it’s sufficient
to just compile it and set WINE as the full name of the Wine
executable in the compiling directory. The compiling is
straightforward.

When using rbugs, one needs to pay attention to
the difference in two of its arguments: workingDir and
bugsWorkingDir. On a Windows system, they should
be the same. But on a Linux system, workingDir refers
to the directory that’s recognizable by native operations,
while bugsWorkingDir refers to the same directory as
workingDir but translated to a Windows directory recog-
nizable by WinBUGS via Wine. For example, on my sys-
tem, drive C is defined in the Wine configuration:

[Drive C]
"Path" = "/var/scratch/jyan/c"

If I would like to use

bugsWorkingDir="c:/tmp",

then I would need to have

workingDir="/var/scratch/jyan/c/tmp".

With these straightened out, the pumps example can be
run on a Linux system. Same as on a Windows system,
rbugs will launch BUGS. In the current release of rbugs,
the debug information from Wine is redirected to a tem-
porary file and deleted on exit.

The configuration information of wine is usually
stored in ‘.wine/config’ in the home directory. An inter-
nal function processes this config file and stores the drive

mapping between Windows and the native Linux system
in a internal data frame .DriveTable. When using rbugs,
if workingDir is the default, NULL, then bugsWorkingDir
is translated using the drive mapping table.

Preparing Files for BUGS Batch-mode

Often times, one would like to use a call of rbugs to do
some exploration, checking if the model and the data com-
pile fine in BUGS. It would be useful to have the generated
script file, data file, and initial value files available for us-
ing BUGS directly in other circumstances. There is no dif-
ficulty in generating the script files. But for the data file
and the initial value files, the format of the data becomes
an important issue. In the WinBUGS 1.4 manual, under
the section of Model Specification, formatting of data is
discussed. It reads that BUGS can take read files created
from the S-Plus dput function. Unfortunately, this is not
(or no longer) true for both the most recent versions of S-
Plus and R. Let’s look at R-1.9.0 only:

> a <- matrix(c(314159265358979, 0.0001,
-0.0001, 0.05), 2, 2)

> dput(list(a = a), "tmp")
> file.show("tmp")
structure(list(a = structure(c(314159265358979,
1e-04, -1e-04, 0.05), .Dim =
as.integer(c(2, 2)))), .Names = "a")

A BUGS user immediately sees that BUGS will com-
plain when it reads this! Besides the extra characters of
“as.integer” and “.Names”, there are less documented
subtle issues: 1) “e” should be “E”; 2) “1e” should be
“1.0E”; and 3) the first number exceeded 14 digits.

In a not necessarily the most efficient way, function
format4Bugs converts the data to characters with formatC
and then uses a format data function by Kennith Rice
with modification to return the hopefully right format for
BUGS.

Using format4Bugs, functions genDataFile and
genInitsFile prepare data file and initial value files.
Function genBugsScript generate a script file. All these
files are accessible by users and hence ease the usage of
BUGS in other circumstances.

Remarks

Since Wine is built upon X windows, WinBUGS would
not run from an ssh terminal without X windows sup-
port. Many people had wished the classic BUGS were

2



BIBLIOGRAPHY BIBLIOGRAPHY

supported. That not happening soon, it would be desir-
able to have a better supported command line interface of
WinBUGS, so that launching the GUI becomes an options.

As an infrequent Windows user, I am more oriented
to experimenting and supporting fusing R and BUGS
through Wine on Linux systems. Windows users are re-
ferred to package R2WinBUGS. A forthcoming paper by the
package authors will provide detailed demonstration and
become a standard reference.

Plummer (2004) just released 0.50 of JAGS. Quote from
Martyn Plummer: “JAGS is Just Another Gibbs Sampler -
an alternative engine for the BUGS language that aims for
the same functionality as classic BUGS. JAGS is written in
C++ and licensed under the GNU GPL. It was developed
on Linux and also runs on Windows.” The functions in
package rbugs can also be used to prepare files for JAGS.
I am looking forward to seeing the growth of JAGS.

I also tried using R for Windows through Wine. It
worked last winter with Wine 20031016, but is not work-
ing with Wine 20040408 now. Unfortunately, since my
Wine 20040408 was compiled after my system has been
recently upgraded to Red Hat Workstation 3.0, I cannot
tell which change has caused it.

Bibliography

Gelman, A. (2004), “bugs.R: func-
tions for running WinBugs from R,”
http://www.stat.columbia.edu/∼gelman/bugsR/.

Plummer, M. (2003), “Using WinBUGS under Wine,”
http://calvin.iarc.fr/bugs/wine/.

— (2004), “JAGS version 0.50 manual,” http://www-
fis.iarc.fr/∼martyn/software/jags/.

Plummer, M., Best, N., Cowles, K., and Vines, K. (1996),
“coda: Output analysis and diagnostics for MCMC,”
http://www-fis.iarc.fr/coda/.

Rice, K. (2002), “EmBedBUGS: An R pack-
age and S library,” http://www.mrc-
bsu.cam.ac.uk/personal/ken/embed.html.

Smith, B. (2004), “boa: Bayesian Output Anal-
ysis Program for MCMC,” http://www.public-
health.uiowa.edu/boa.

Spiegelhalter, D. J., Thomas, A., Best, N. G., and
Gilks, W. (1996), BUGS: Bayesian inference Using Gibbs
Sampling, Version 0.5, (version ii) http://www.mrc-
bsu.cam.ac.uk/bugs.

Sturtz, S. and Ligges, U. (2004), “R2WinBUGS:
Running WinBUGS from R,” http://cran.r-
project.org/src/contrib/Descriptions/R2WinBUGS.html.

Wine (2004), “Wine,” http://www.winehq.org.

Jun Yan
University of Iowa, U.S.A.
jyan@stat.uiowa.edu

3


