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Abstract

The rebmix package for R provides functions for random univariate and multivari-
ate finite mixture generation, number of components, component weights and component
parameters estimation and plotting of the finite mixtures. It relies on the REBMIX al-
gorithm that requires preprocessing, information criterion and conditionally independent
normal, lognormal or Weibull component densities. The rest is accomplished by the algo-
rithm optimizing the component parameters, mixing weights and number of components
successively based on the boundary conditions, such as the maximum number of compo-
nents, total of positive relative deviations, number of classes or nearest neighbours. The
algorithm is robust and time efficient and is insensitive to the number of components and
random variables. It results in slightly worse estimates than the EM algorithm and can be
used either to assess the initial set of the unknown parameters and number of components
for the EM algorithm or as a standalone procedure that is a good compromise between
the nonparametric and parametric methods to the finite mixture estimation. The datasets
analysed are the galaxy, iris, wine, complex 1 and simulated 1.

Keywords: finite mixture, lognormal distribution, normal distribution, parameter estimation,
R software, REBMIX algorithm, Weibull distribution.

1. Introduction

Finite mixture models are used increasingly to model the distributions of a wide variety
of random phenomena. For the multivariate data of continuous nature, attention is paid
to the use of multivariate normal components because of their computational convenience
(McLachlan, Peel, Basford, and Adams 1999; Ingrassia and Rocci 2007; Frithwirth-Schnatter
2006). However, in fatigue and reliability analyses, lognormal and Weibull distributions are
preferred due to their flexibility and their definition for continuous positive random variables
only (Majeske 2003; Sultan, Ismail, and Al-Moisheer 2007; Touw 2009).

The finite mixture models have seen a real boost in popularity over the last decade due to
the tremendous increase in available computing power. These models can be applied to data
where observations originate from various groups and the group affiliations are not known,
and on the other hand to provide approximations for multimodal distributions Leisch (2004).
Some of the latest models can be found also in van Dijk, Hoogerheide, and Ardia (2009);
Benaglia, Chauveau, Hunter, and Young (2009); Griin and Leisch (2008); Fraley and Raftery
(2007); McLachlan and Peel (2000).

The REBMIX algorithm origins in Nagode and Fajdiga (1998). Later on it has evolved
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(Nagode and Fajdiga 2000; Nagode, Klemenc, and Fajdiga 2001; Nagode and Fajdiga 2006),
but its kernel has remained almost unchanged. Presently (Nagode and Fajdiga 2011b,a) it
stands for a robust, time efficient tool that can be used either to assess the initial set of
unknown parameters and the number of components for, e.g., the EM algorithm (Bucar,
Nagode, and Fajdiga 2004) or as a standalone procedure that is a good compromise between
the nonparametric and parametric methods to the finite mixture estimation.

The rebmix implementation of REBMIX extends the set of algorithms available for random
univariate and multivariate finite mixture generation, number of components, component
weights and component parameters estimation and plotting of the finite mixtures in the R
language and environment for statistical computing (R Development Core Team 2011).

The outline of the paper is as follows: Section 2 presents the algorithm. Section 3 analyses
the performance of the approach by studying the galaxy, iris, wine, complex 1 and simulated
1 datasets. Section 4 lists the conclusions and future work.

2. Algorithm

Let y1, ..., yn be an observed d dimensional dataset of size n of continuous vector observations
y;. Each observation is assumed to follow predictive mixture density

fyle,w, ©) => " wif(y|6)) (1)
=1

with conditionally independent component densities

d
F o) =TT f(wil6a) (2)
=1

indexed by vector parameter 6;. The objective of the analysis is the inference about the
unknowns: the number ¢ of components, component weights w; summing to 1 and component
parameters 6;.

2.1. Preprocessing of observations

The algorithm requires the preprocessing of observations. By the histogram approach, the
dataset is counted into a finite number of nonoverlapping, equally sized and regularly dis-

tributed bins. Assuming that bin means y; = (yij,. .. ,ydj)T are given by
Yij = yio + An arbitrary integer’ X h;j, i =1,...,d (3)
the fraction of observations k; for j = 1,...,k falling into volume Vj is counted out, where

yio stands for an arbitrary origin and k depicts the total number of bins. Similarly, if the
Parzen window is employed, the fraction of observations falling into V; centered on observation
y; is obtained. In both cases, the volume is taken to be a hypersquare with the sides of
length h;;. This yields V; = Hle hi;. Moreover, h;; = h; and V; = V. If the k-nearest
neighbour approach is used, the fraction of observations falling into normalized hypersphere
V; =¥ ZR? /T(14d/2) of radius R; centered on observation y; contains k; = k observations.
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The class widths for the histogram and Parzen window
vi — Yimi
hz — max k min
depend on the minimum ¥;ymin = min y;; and maximum y;max = maxy;; observations. For the

histogram preprocessing origin is preset to

hi
Yi0 = Yimin + &
2
The k — 1 nearest neighbours are searched around y; based on the normalized Euclidean

distance

d .. 2
R = max  Ruin, Z <ylkhyl]> for k 7& J, where h; = Yimax — Yimin
i=1 ¢

Minimum radius 0 < Ry, < 1. It is advisable to keep it very close to zero. The recommended
value is 0.001.

2.2. Global mode detection
The global mode coincides with y,,, where empirical density f;; takes on maximum value
m = argmax fi; = (Ym, fum) (4)

If observations are binned into the histogram, then
fljzii ]Zlvvk (5)

where frequencies k;; are all set to k; initially and total number of observations in class [ is

k
m=) ki
i=1

If the Parzen window or k-nearest neighbour approach is applied,

Frequencies kj; are all set to 1 initially, n; = Z?zl ki; and component weight w; = n;/n. More-

over, the [th component conditional empirical density at the global mode for the histogram

approach
klm 1 klm 1
fiﬁ.lm = Zk Ky Rim = k. . Rim (7)
-]:1’ y%j:y%n J Z‘Z‘ m

is required, where indexi = 1,...,i—1,i4+1,...,d. Ifd = 1, then kz’ﬁ.lm =n; and fiﬁ.lm = fim.
For the Parzen window and k-nearest neighbour approach

f-f _ klm km _ klm km
om0 kij him Ky Ttim

I=1 Y=Y,
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2.3. Clustering of observations

The clustering of observations is an iterative procedure of identifying the observations be-
longing to the Ith component. The deviations between kj; and the predictive component
frequencies for the histogram approach are given by

ey = ki — nuf(y;|00)V; (9)
However, for the Parzen window and k-nearest neighbour approach
eij = kij —nuf(y;|01)V;/k; (10)

To identify the most deviating observations, relative positive deviations e;; = ¢;;/k;; and
maximum positive relative deviation e, are calculated. Total of the positive and negative
deviations

k k
ep = g ey and ey, = E max{e;, —1;}
7j=1, elj>0 7=1, elj<0

where r; stand for the residual frequencies. If index k is replaced by n the equation can be
used with the Parzen window and k-nearest neighbour approach, too. Total of the positive
relative deviations of the Ith component is then

6lp
D, = p” (11)
where 0 < D; < 1. The observations that inequality €;; > €max(1 — ar) holds for are not
assumed to belong to the Ith component and therefore move to the residue. Number of
iterations I depends on acceleration rate 0 < a, < 1. It is best to keep a, close to zero. The
recommended value is 0.1. On the contrary, the observations where e;; < 0 are transferred
back to the Ith component. The clustering of observations continues with the renewed rough
parameter and component weight estimation until

Dmin
wy

D, < (12)

Constant 0 < Dpyin < 1 is optimized by the information criterion. The clustering of observa-

tions ends with the enhanced component parameter estimation.

2.4. Rough component parameter estimation

The clustering of observations depends on the rough component parameters. Proper extrac-
tion of observations belonging to the /th component is assured by the restraints that prevent
the component from its flowing away from the global mode, as at least one component is
supposed to be in the vicinity. The first restraint ensures the equivalence of the probability
densities at y,

Jom = f(y = yml|61) (13)
The second restraint makes the global mode of component density coincide with y,,
0 = (7]

oy
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Total number of unknown parameters 8; = (8y;,...,04)" is greater than the available number
of restraints (13) and (14). Therefore additional restraints are required. They are obtained
from the equivalence of component conditional empirical densities (Nagode and Fajdiga 2006)

Efiﬁ.lm = f(yl = ylm|07'l) = fiﬁ.lmax’ L= 1’ R d (15)

Allowing for the independence of components (2), the left hand side of restraint (13) can be
rewritten as

d
Jim = H€fi|g.lm
i1

where

S

. flm
e=min{ 1, | —/—— (16)
(ngl iﬁ.lm)

The left hand side of restraint (15) is thus multiplied by ¢ to satisfy restraint (13), where (14)
and (15) stand for the rigid restraints resulting in rough normal component parameters
d 1
il = Yim aNd 04 = —F=—="——
27T5f'i|%.lm

For lognormal and Weibull parametric families see Nagode and Fajdiga (2011b,a), where also
loose restraints are introduced. The rigid restraints become loose if y;, and fi\%.lm of (17) are
supposed to be bounded by

(17)

Yim — @him < Yim < Yim + ahim and fiﬁ.lmin < fz’ﬁ.lm < fiﬁ.lmax (18)

Constant a is one for the histogram approach, except for the distributions with y; > 0 and
Yim < Rim, where a = yip/him. For the Parzen window and k-nearest neighbour a = 1, /2him
for the distributions with y; > 0 and yim, < him /2, otherwise a = 1/2. The observations at
fi\%.lmin are supposed to follow a uniform distribution

1

fi idmin — . — A
| yi|i.lmax yi|i.lmin
where Yiliimax = DX Y2, and Yifi dmin = MU0 Y055, Optimal y;, and f, are obtained by

minimizing the maximum relative positive deviation

[2.lm
min max e1; = WYim, fip 1)
§=1,....k or n|e;;>0, 0.001< F(y;7]6;;)<0.999 J 7 ife.dm

as explained thoroughly by Nagode and Fajdiga (2011b,a). The loose restraints prevent
superfluous component occurrence if their modes collide considerably.

2.5. Enhanced component parameter estimation

Maximum likelihood is applied to get enhanced component parameters. When the histogram
is applied, enhanced normal component parameters are given by

k k
1 1
Wil = n—l Z kljyij and Uizl = TTI Z kljyizj — [,L?l (19)
=1 i=1
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Index k should be replaced by n if the Parzen window or k-nearest neighbour approach is
used.

2.6. Component mean and variance calculation

Component means and variances of the normal distribution are calculated to enable the
classification of the remaining observations

mi = py and Vi = o5 + p (20)

2.7. Bayes classification of the remaining observations

With the increase of the number of components, the number n; of the remaining observations
decreases. When the component weight attains the minimum weight

Wi < Wmin = 21 Dpin (21)

The classification of the remaining observations is accomplished by the Bayes decision rule
(Duda and Hart 1973)

| = argmaxw f(y;]6;)

ki kij(yi; — ma)

ki (3 — Vi)
wy = wy =%, mip = mi + and Vi = Vi + ——2—~

22
nw; nw; ( )

where k;; is added to the [th class and the component weight, the component mean as well
as the component variance are recalculated (Bishop 1995). Once all k£ bin means or all n
observations are processed, the mixture parameters are gained by inverting (20).

2.8. Algorithm flow

The REBMIX is an iterative numerical procedure listed in Algorithm 1. It requires nine
input parameters, whereby the last three should advisably be fixed. It consists of three main
loops: the inner 9 — 37, the middle 6 — 41 and the outer loop 4 — 47. The numbers are
line indices. In line 2 the observations are preprocessed, as described in Section 2.1. In line
3, constants Dy, information criterion I1C,p; and frequencies k;; are initiated. Next, the
outer loop begins. Line 5 presumes that the mixture consists of one component, then the
number r of observations to separate is set to n and n; to n. If ratio n;/n is greater than
the minimum weight introduced in Section 2.7, the middle loop enters. Otherwise, the finite
mixture parameter estimation for k € K is completed.

In lines 7 and 8, global mode argument m is detected as explained in Section 2.2, component
weight wj is calculated and frequencies r; are all set to zero. If iteration number I < Ij,x, the
inner loop enters, otherwise in line 38 the component mean and variance are calculated (in
Section 2.6). Next, number of components c is set to [, number of observations r is decreased
by ny, [ is incremented, number r of the remaining observations joins n;, residue frequencies
r; are all moved to k;j, and the Stop criterion is determined.

The inner loop is divided into three sections. In line 10 the component parameters are
estimated roughly (in Section 2.4). In the second section 11 — 23, total of positive relative
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deviations D; and maximum relative deviation ;. are calculated. The number of iterations
depends on acceleration rate a;. In the third section 24 — 35, the maximum and negative
deviations are transferred between frequencies k;; and residue r;. This way deviations e;; are
reduced gradually. The negative value of e;; can never be higher than residue value r;. If
this is not true, deviation e;; is corrected, as listed in line 19. When the condition in line 24
is not fulfilled, the enhanced component parameter estimation is carried out (in Section 2.5)
and the inner loop ends.

The enhanced component parameter estimation may fail. In this instance, the component
parameters are reset to the state just before the failure occurred. In line 42 the remaining
observations are classified by the Bayes decision rule, as depicted in Section 2.7. Further on,
the information criterion, e.g., Akaike (1974)

IC = —2log L(c,w,®) +2M (23)

is calculated, whereas the number of free parameters for the univariate normal, lognormal or
Weibull mixture can be written as

M=2c+c—-1 (24)

The log likelihood function for the binned observations is given by

k
log L(c,w,®) = Z kjlog f(yjlc,w, ®) (25)
j=1
Otherwise,
log L(c, w,®) = > log f(y;|c, w, ®) (26)
j=1

This way global optimum IC,; corresponding to the optimal number cypt of components,
weights wepe and parameters @,y can always be found. In line 46, Dy, is decreased in such
a way that total of positive relative deviations

D = eDg, = (e + 1) Digy
for ¢ and c+1 components is preserved. When line 47 is fulfilled, the procedure stops. If index

k in Algorithm 1 is replaced by n and line 15 is replaced by (10) the algorithm, presented for
the histogram approach, can also be used with the Parzen window and k-nearest neighbour.

3. Examples

To illustrate the use of the REBMIX algorithm, two univariate and three multivariate samples
are considered. The rebmix is loaded and the prompt before starting new page is set to TRUE.

R> library("rebmix")
R> devAskNewPage (ask = TRUE)
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Algorithm 1 REBMIX

Require: Preprocessing, D, cmax, Information criterion, Parametric family, K, Rmin, ar and Restraints.

Ensure: Preprocessing is one of histogram, Parzen window or k-nearest neighbour, 0 < D < 1, ¢max € N,
Information criterion is one of AIC, AIC3, AIC4, AICc, BIC, CAIC, HQC, MDL2, MDL5, AWE, CLC,
ICL, PC or ICL-BIC, Parametric family is one of normal, lognormal or Weibull, K C N, Rnin = 0.001,
ar = 0.1 and Restraints are loose.

1: for all k£ such that k € K do
2: Preprocessing of observations
3: Diin +— 0.025, ICop¢ <— 00, kij <— kj for j =1to k
4: repeat
5: l<1,r<n,n<+n
6: while n;/n > 2{Dpin do
7 Global mode detection
8: I+ 1, w<+n/nrj<0forj=1tok
9: while I < I,.x do
10: Rough component parameter estimation
11: €lp 0, em < 0, €imax <+ 0
12: for j =1to k do
13: ey < 0,e5 40
14: if k;; > 0 or r; > 0 then
15: ey < kij — nuf(y;100)V;
16: if e;; > 0 then
17: e1j e /kij, Eimax < Max{E€imax, €15}, €1p < €ip + €1
18: else
19: el < max{ey, —r;}, em < €m — €y
20: end if
21: end if
22: end for
23: Dy + elp/m, Elmax < 5lmax(1 — ar)
24: if D; > Dmm/wl then
25: for all j such that 1 < j <k and €15 > €imax do
26: /ﬂj < /Clj — €1, Tj < Tj+ ey, g ng— ey
27: end for
28: eip < eip/Di —ny, f < ep/em if el > erp otherwise f + 1
29: for all j such that 1 < j <k and ¢;; <0 do
30: ey f@lj7 k‘lj — k‘lj —€lj, Tj < Tj + €lj, N < N — €5
31: end for
32: wy +— ny/n
33: else
34: Enhanced component parameter estimation, break
35: end if
36: I+ T1T+1
37: end while
38: Component mean and variance calculation
39: c—lLre—r—n,ll+1l,n+r kjrjforj=1tok
40: Stop <~ ¢ > k or ¢ > Cmax Or ¢Dpin < D, break if Stop = true
41: end while
42: Bayes classification of the remaining observations as well as log likelihood and information criterion
calculation
43: if IC < ICyp¢ then
44: 10gL — log Lopt, IC — ICopt, C — Copty, W — Wopt, e — Gopt
45: end if
46: Diin < CDmin/(C + 1)

47: until Stop = true
48: end for
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3.1. Galaxy dataset

The dataset analysed in Roeder (1990) contains the measurements of the velocities of 82
galaxies diverging away from our own galaxy. The multimodality of the velocities may indicate
the presence of super clusters of galaxies surrounded by large voids, each mode representing a
cluster as it moves away at its own speed (Roeder 1990, gives more background). Richardson
and Green (1997) concluded from their approach that the number of components ranged from
5 to 7, while McLachlan and Peel (1997) provided the support for six components. Stephens
(2000) reported that three components were optimal for the mixture of normal and four for
the mixture of ¢ distributions.

The galaxy dataset is loaded and written as tab delimited ASCII file in galaxy.txt.

R> data("galaxy")
R> write.table(galaxy, file = "galaxy.txt", sep = "\t",
+ eol = "\n", row.names = FALSE, col.names = FALSE)

The REBMIX object and Table are initialized.

R> REBMIX <- array(list(NULL), c(3, 3, 3))
R> Table <- NULL

Total of positive relative deviations D is set to 0.0025, maximum number of components cmax
to 12. The influence of the Akaike (Akaike 1974) information criterion AIC, the Bayesian
(Schwarz 1978) information criterion BIC and the classification likelihood criterion CLC (see
Biernacki and Govaert 1997) for normal, lognormal and Weibull parametric families and the
three preprocessing types on predictive number of components c is studied. The optimal
number of classes and nearest neighbours are searched within broad utmost limits K.

R> Preprocessing <- c("histogram", "Parzen window", "k-nearest neighbour")
R> InformationCriterion <- c("AIC", "BIC", "CLC")

R> pdf <- c("normal", "lognormal", "Weibull")

R> K <- 1ist(7:20, 7:20, 2:10)

See help("REBMIX") in rebmix for details about specifying arguments for the REBMIX al-
gorithm. For Table 1 to be filled in function REBMIX is called 3 x 3 x 3 = 27 times.

R> for (i in 1:3) {
for (j in 1:3) {
for (k in 1:3) {

REBMIX[[i, j, k]] <- REBMIX(Dataset = "galaxy.txt",
Preprocessing = Preprocessingl[k], D = 0.0025,
cmax = 12, InformationCriterion = InformationCriterion[j],
pdf = pdf[il, K = K[[k]])

if (is.null(Table))

Table <- REBMIX[[i, j, k]]$summary

else Table <- merge(Table, REBMIX[[i, j,

k]]$summary, all = TRUE, sort = FALSE)

+ + + + 4+ + + + + + + + o+
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It returns an object of class REBMIX. Data frame w contains ¢ component weights w; summing
to 1, Theta stands for a 3 X d X ¢ data frame. The first, fourth, etc. rows contain ¢ parametric
family types pdfi, one of normal, lognormal or Weibull. The second, fifth, etc. rows contain
¢ component parameters thetal.i, one of u; for normal and lognormal distributions or
0;; for Weibull distribution. The third, sixth, etc. rows contain ¢ component parameters
theta2.i. One of ¢y for normal and lognormal distributions or 3;; for Weibull distribution.
In the summary data frame additional information about dataset, preprocessing, D, cmax,
information criterion type, Rmax, Gy, restraints type, optimal ¢, optimal k, y;0, optimal h;,
calculation time t. in ms, information criterion IC and log likelihood log L is stored.

10 15 20 25 30 35
I I o lo I I I

0.20
I

0.10
I

y1—f(y1)
Dataset = galaxy, Preprocessing = Parzen window, Restraints = loose, D = 0.0025, Cnax
=12,a,=0.1,c =6, k=16, t. = 920, AIC =425, log L = -196.

Figure 1: Galaxy dataset. Empirical densities (circles) and predictive lognormal mixture
density (solid line).

The plot method delivers a fitted finite mixture with the legend in Figure 1. For the details
about specifying arguments for the plot method see help("plot.REBMIX"). The maximum
log likelihood resulting in 6 components is obtained for the lognormal parametric family,
the Parzen window preprocessing and the AIC (see Figure 1), whereas most frequently four
components appear in Table 1. Thus the rebmix leads to the number of components similar to
Stephens (2000). The two spurious components reported about by McLachlan and Peel (1997)
can be identified by the algorithm, too. For the particular dataset only the AIC is appropriate.
It gives 3 to 6 components. The BIC and CLC have turned out to be inappropriate.

Preprocessing Information Normal Lognormal Weibull
criterion c k 1IC logL ¢ k IC logL ¢ k IC logL
histogram 5 20 430 -201 3 15 427 -206 4 19 428 -203
Parzen window AIC 4 15 435 -206 6 16 425 -196 3 20 456 -220
k-nearest neighbour 4 7 451 -215 4 7 451 -214 4 10 457 -217
histogram 3 15 455 -210 2 19 443 -210 4 19 455 -203
Parzen window BIC 4 15 461 -206 4 16 459 -205 3 20 476 -220
k-nearest neighbour 4 7 478 215 4 7 477 -214 2 10 482 -230
histogram 2 19 434 -217 2 19 421 -210 4 19 440 -203
Parzen window CLC 7T 15 422 -197 6 16 416 -196 1 7 482 -241
k-nearest neighbour 1 6 481 -240 1 8 510 -256 1 6 483 -241

Table 1: Number of component classes and nearest neighbours for galaxy dataset.
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3.2. Iris dataset

The well known set of iris data, as collected originally by Anderson (1935) and first analysed
by Fisher (1936), is considered here. It is available at Asuncion and Newman (2007) consisting
of the measurements of the length and width of both sepals and petals of 50 plants for each
of the three types of iris species setosa, versicolor and virginica.

The iris dataset is loaded, split into three subsets for the three species and written as tab
delimited ASCII files without the Species column in iris.txt, irisl.txt, iris2.txt and
iris3.txt.

R> data("iris")
R> iriscolnames <- !(colnames(iris) Jinj, "Species")

R> irisl <- iris[iris$Species == "setosa", iriscolnames]

R> iris2 <- iris[iris$Species == "versicolor", iriscolnames]

R> iris3 <- iris[iris$Species == "virginica", iriscolnames]

R> iris <- iris[, iriscolnames]

R> write.table(iris, file = "iris.txt", sep = "\t", eol = "\n",

+ row.names = FALSE, col.names = FALSE)

R> write.table(irisl, file = "irisl.txt", sep = "\t", eol = "\n",
+ row.names = FALSE, col.names = FALSE)

R> write.table(iris2, file = "iris2.txt", sep = "\t", eol = "\n",
+ row.names = FALSE, col.names = FALSE)

R> write.table(iris3, file = "iris3.txt", sep = "\t", eol = "\n",
+ row.names = FALSE, col.names = FALSE)

The REBMIX object and Table are reinitialized.

R> REBMIX <- array(list(NULL), c(6, 3))
R> Table <- NULL

The three preprocessing types and six selection criteria AIC, AWE (Banfield and Raftery
1993), BIC, CLC, integrated classification likelihood criterion ICL as proposed by Biernacki,
Celeux, and Govaert (1998) implemented with o = 0.5 and its approximation ICL-BIC for
the normal parametric family are compared. The optimal number of classes and nearest
neighbours are searched within broad utmost limits X.

R> Preprocessing <- c("histogram", "Parzen window", "k-nearest neighbour")
R> InformationCriterion <- c("AIC", "AWE", "BIC", "CLC",

+ "ICL", "ICL-BIC")

R> K <- list(6:25, 6:25, 3:13)

Argument Dataset points to the ASCII files. The REBMIX function is called 6 x 3 = 18 times.
The number of components is assessed for the set as well as for the three subsets. The results
of the analysis are listed in Table 2.

R> for (i in 1:6) {
+ for (j in 1:3) {
+ REBMIX[[i, jl] <- REBMIX(Dataset = c("iris.txt",

11
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+ "irisl.txt", "iris2.txt", "iris3.txt"), Preprocessing = Preprocessinglj],
+ InformationCriterion = InformationCriterion[i],
+ pdf = rep("normal", 4), K = K[[j1])
+ if (is.null(Table))
+ Table <- REBMIX[[i, j]]$summary
+ else Table <- merge(Table, REBMIX[[i, j]]$summary,
+ all = TRUE, sort = FALSE)
+ }
+ }
. Information c for species
Preprocessing .. c k IC log L . L
criterion setosa  versicolor virginica
histogram 11 25 508 -156 13 5 10
Parzen window AIC 14 25 545 -147 8 5 13
k-nearest neighbour 4 7 653  -292 2 2 2
histogram 3 17 993 -323 1 1 1
Parzen window AWE 2 12 1004 -391 1 1 1
k-nearest neighbour 4 7 1074  -292 1 1 1
histogram 5 18 745 -262 2 3 2
Parzen window BIC 4 12 741 -283 1 3 4
k-nearest neighbour 4 7 759  -292 2 2 2
histogram 15 25 294 -127 13 14 13
Parzen window CLC 15 25 330 -142 14 13 13
k-nearest neighbour 4 7 618  -292 5 2 3
histogram 5 18 779 -262 1 3 2
Parzen window ICL 4 12 778 -283 1 3 4
k-nearest neighbour 4 7 792 -292 1 2 2
histogram 5 18 781 -262 1 3 2
Parzen window ICL-BIC 4 12 779 -283 1 3 4
k-nearest neighbour 4 7 793 -292 1 2 2

Table 2: Number of component classes and nearest neighbours for iris dataset.

It can be concluded that AIC and CLC overestimate the number of components for the set
(left part of the table) and for the three subsets significantly. Only the AWE for the histogram
preprocessing recognizes three components for the set and one component for each subset.
The BIC recognizes too many components for the subsets.

However, according to the log likelihood, ICL and ICL-BIC provide the best results for the
histogram preprocessing. Interestingly, the number of components of the set equals 5 for the
histogram, which is in accordance with Wilson (1982), who suggested that both, the versicolor
and virginica species should be split into two subspecies although the analysis by McLachlan
and Peel (2000) using maximum likelihood methods suggests that this is not justified for
the virginica subset. Also, Stephens (2000) reported that the superfluous components might
appear to model the lack of normality in the subset, rather than interpretable groups. The
subset results show that the setosa subset is represented by a single component. The numbers
of predictive components for versicolor and virginica are 3 and 2, respectively. The plot
method delivers Figure 2.

3.3. Wine dataset

Next, the results of a wine recognition problem are considered. The set consists of 178
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Dataset = iris, Preprocessing = histogram, Restraints = loose, D = 0.025, €. = 15, &, =
0.1,c=3,k=17,1t.=1264, AWE =993, log L = -323.

Figure 2: Iris dataset. Empirical densities (circles) and predictive multivariate marginal
normal mixture densities (contour lines).

13 dimensional exemplars that are a set of chemical analysis of three types of wine (Asuncion
and Newman 2007).

The standalone replication script rebmix.R delivers the R sample code. The results of the
analysis are plotted in Figure 3 and listed in Table 3. The AIC and CLC overestimate the
number of components for the set (left part of the table) and for the subsets and are thus
not applicable. The AWE, BIC, ICL and ICL-BIC recognize three components for the set
and one component for each subset for the histogram and Parzen window preprocessing. In
a classification context, this is a well posed problem with well behaved class structures (see
also Roberts, Everson, and Rezek 2000).

3.4. Complex 1 dataset

Next, 15 component univariate normal mixture is generated and the probability density is
estimated.

R> n <- c(998, 263, 1086, 487, 213, 1076, 232, 784, 840,

+ 461, 773, 24, 811, 1091, 861)

R> Theta <- rbind(pdf = "normal", thetal = c(688.4, 265.1,
+ 30.8, 934, 561.6, 854.9, 883.7, 758.3, 189.3, 919.3,
+ 98, 143, 202.5, 628, 977), theta2 = c(12.4, 14.6,

+ 14.8, 8.4, 11.7, 9.2, 6.3, 10.2, 9.5, 8.1, 14.7,

13
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> - 20 s o D |
© Yi0~Y1 ¥ 13 - Yoyu-vis Y Y-vis
Dataset = wine, Preprocessing = Parzen window, Restraints = loose, D = 0.025, Cax =
15,a,=0.1,¢c =3, k=14, t. = 3447, ICL-BIC = 7514, log L = -3532.

Figure 3: Wine dataset. Empirical densities (circles) and predictive multivariate marginal
normal mixture densities (contour lines).
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. Information ¢ for cultivar
Preprocessing criterion c k IC log L 1 9 3
histogram 12 11 6815 -3084 14 15 13
Parzen window AIC 10 12 6826 -3144 14 15 12
k-nearest neighbour 7 11 7074 -3349 1 1 1
histogram 3 15 8078 -3487 1 1 1
Parzen window AWE 3 14 8169 -3532 1 1 1
k-nearest neighbour 1 8 8374 -4013 1 1 1
histogram 3 15 7388 -3487 1 1 1
Parzen window BIC 3 14 7478 -3532 1 1 1
k-nearest neighbour 4 6 7631 -3538 1 1 1
histogram 15 8 6076 -3017 14 15 13
Parzen window CLC 15 16 6214 -3071 14 15 13
k-nearest neighbour 8 11 6691 -3326 3 11 7
histogram 3 15 7423 -3487 1 1 1
Parzen window ICL 3 14 7514 -3532 1 1 1
k-nearest neighbour 4 6 7673 -3538 1 1 1
histogram 3 15 7423 -3487 1 1 1
Parzen window ICL-BIC 3 14 7514 -3532 1 1 1
k-nearest neighbour 4 6 7674 -3538 1 1 1

Table 3: Number of component classes and nearest neighbours for wine dataset.

+ 11.7, 7.4, 10.1, 14.6))
R> RNGMIX <- RNGMIX(Dataset = '"complexl.txt", n = n, Theta = Theta)

RNGMIX Version 2.2.1
Dataset = complexl.txt

R> REBMIX <- REBMIX(Dataset = "complexl.txt", Preprocessing = "histogram",
+ D = 0.0025, cmax = 30, InformationCriterion = "BIC",
+ pdf = "normal", K = seq(14, 200, 4))

REBMIX Version 2.2.1
Dataset = complexl.txt

R> REBMIX$w([[1]]

compl comp2 comp3 comp4  compb comp6 comp? comp8
w 0.13861 0.09292 0.10889 0.10028 0.07798 0.10169 0.09841 0.08014
comp9 complO0 compll compl2 compl3 compl4 compld compl6
w 0.07841 0.02560 0.00342 0.01806 0.01547 0.01024 0.00518 0.02143
compl7
w 0.02327

R> REBMIX$Thetal[[1]]

compl comp2 comp3 comp4 comp5 comp6 comp7 comp8 comp9
pdf normal normal normal normal normal normal normal normal normal
thetal 193.6 856.9 628.2 688.9 758.9 0927.7 32.2 979.0 100.0
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Dataset = complex1, Preprocessing = histogram, Restraints = loose, D = 0.0025, Cpax =
30,a,=0.1,c =17, k=178, t. = 22869, BIC = 124451, log L = -61995.

Figure 4: Complex 1 dataset. Empirical densities (circles) and predictive normal mixture
density (solid line).

theta2 9.48 10.56 9.99 13.17 10.23 12.94 14.65 12.85 14.33
compl0 compll compl2 compl3 compl4 complb compl6 compl?

pdf normal normal normal normal normal normal normal normal

thetal 209.1 883.9 850.6 883.6 18.8 220.7 562.1 264.4

theta2 6.43 30.94 5.92 5.27 12.23 68.68 13.26 13.62

R> REBMIX$summary

Dataset Preprocessing D cmax InformationCriterion ar
1 complexl histogram 0.0025 30 BIC 0.1
Restraints ¢ k yO h tc IC logL
1 loose 17 178 -9.95 5.84 22869 124451 -61995

Random seed 7geq = —1, the number of classes ranges from 14 (Sturges 1926) to 200 cor-
responding to the RootN rule, the maximum number of components is set to 30 and the
information criterion to BIC. Total number of observations n = 10000. Consequently, the his-
togram preprocessing is applied. See help ("RNGMIX") in rebmix for details about specifying
arguments for the random univariate or multivariate finite mixture generation.

From Figure 4 it can be noted that it is possible to restore the mixture of 15 well separated
components. Total of positive relative deviations D = 0.025 is mostly appropriate. However,
if the components with a low probability of occurrence are expected, it should decrease. The
complex 1 dataset requires D = 0.0025 to get at the minimum BIC. The calculation time
increases if D decreases. The optimal BIC is observed by a larger number of iterations.

3.5. Simulated 1 dataset

Set 1 consists of n = 625 four dimensional observations obtained by generating samples
separately from each of five normal distributions. The component sample sizes, means and
covariance matrices, which are those adopted in Bozdogan (1993) and Celeux and Soromenho
(1996), are displayed below
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w1 = (10,12,10,12)7 >=I, n =7

p2 = (8.5,10.5,8.5,10.5)7 Xy =1, np =100
ps = (12,14,12,14)7 S3=1I, n3=125
e = (13,15,7,9)7 ¥y =4I, ng4=150
ps = (7,9,13,15) " Y5 =9I, ns=175

The optimal ¢ = 5 component normal mixture model with diagonal component covariance
matrices is fitted (McLachlan and Ng 2000; McLachlan and Peel 2000) by using the EMMIX
algorithm McLachlan et al. (1999). It results in BIC = 11479.

The EMMIX algorithm recognizes five components as optimal regardless of the selection
criterion. Ten random starts are performed to initialize the EM algorithm. The solution
corresponding to the largest local maximum of the log likelihood located is taken as the MLE
after the elimination of local maximizers considered to be spurious on the basis of the relevant
sizes of the fitted generalized component variances.

Next, 100 samples are generated with random seeds rgeeq ranging from —1 to —100.

R> n <- c¢(75, 100, 125, 150, 175)
R> Theta <- rbind(rep("normal", 5), c(10, 8.5, 12, 13, 7),

+ c(1, 1, 1, 2, 3), rep("normal", 5), c(12, 10.5, 14,
+ 15, 9), c(1, 1, 1, 2, 3), rep("normal", 5), c(10,
+ 8.5, 12, 7, 13), c(1, 1, 1, 2, 3), rep("normal",
+ 5), c(12, 10.5, 14, 9, 15), c(1, 1, 1, 2, 3))

R> RNGMIX <- RNGMIX(Dataset = paste("Simulated1_", 1:100,

+ ".txt", sep = ""), n = n, Theta = Theta)

In total, 100 finite mixture estimations are performed for the histogram preprocessing and
BIC.

R> REBMIX <- REBMIX(paste("Simulatedl_", 1:100, ".txt",

+ sep = ""), Preprocessing = "histogram", InformationCriterion = "BIC",
+ pdf = rep("normal", 4), K = seq(10, 28, 2))

The results are as follows:

R> ¢ <- REBMIX$summary$c

R> IC <- REBMIX$summary$IC
R> summary(c)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 5.00 6.00 6.04 7.00 13.00

R> summary(IC, digits = 5)

Min. 1st Qu. Median Mean 3rd Qu. Max.
11474 11722 11879 11895 12062 12292
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I

Y2—Ys3 Y2—Ya Y3—Ya
Dataset = Simulated1_70, Preprocessing = histogram, Restraints = loose, D = 0.025,
Cmax = 15,a,=0.1,c =5, k=28, t, = 1404, BIC = 11474, log L = -5595.

Figure 5: Simulated 1 dataset. Empirical densities (circles) and predictive multivariate
marginal normal mixture densities (contour lines).

The minimum BIC = 11474 corresponds to the 70th sample in Figure 5. The BIC predicts 6.04
components on average, where probability P of identifying exactly ¢ = 5 components equals
0.3. The fastest histogram preprocessing results in the highest probability of identifying the
true number of components and in the most suitable average number of components ¢ for the
simulated 1 dataset. The Parzen window and k-nearest neighbour are therefore left out here.
The REBMIX approaches the EMMIX regarding the information criterion only at the lower
limit. However, it is insensitive to spurious local maximizers, robust and fast especially if the
optimal number of classes or the nearest neighbours can be guessed at least approximately.

4. Conclusions and future work

The article presents the REBMIX algorithm and the rebmix package. The galaxy, iris, wine,
complex 1 and simulated 1 datasets are studied on the x64 architecture. By applying the
tikzDevice package (Sharpsteen and Bracken 2010), IATEX plots with legends can be obtained.
The REBMIX algorithm leads to slightly worse estimates than the EM algorithm and can be
used to assess the initial set of the unknown parameters and number of components for the EM
algorithm or as a standalone procedure that is a good compromise between the nonparametric
and parametric methods to the finite mixture estimation.

Its major superiorities are robustness and time efficiency especially with the histogram and
Parzen window preprocessing for all sample sizes. The k-nearest neighbour is more suitable
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for smaller samples. Its advantages are more stressed for complex mixtures composed of
numerous components.

There are several possibilities to further decrease the calculation time, which have been left
for the future. The number of components affects the computational time, but it does not
contribute to the numerical instability of the algorithm. The REBMIX is being extended
to mixed categorical variables. The binomial parametric family is already available in the
attached C source code and is to be validated. The pseudo code in Nagode and Fajdiga
(2011b) differs slightly from Algorithm 1. The effect of the differences on the predictive
finite mixtures is negligible and improve the calculation speed considerably. Potentially, the
REBMIX can be used for pattern recognition and as a neural network.
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