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1 Introduction

In this vignette, we recreate the simulation study of Koller and Stahel (2011).
This vignette is supposed to complement the results presented in the above
cited reference and render its results reproducible. Another goal is to provide
simulation functions, that, with small changes, could also be used for other
simulation studies.

Additionally, in Section 5, we calculate the maximum asymptotic bias curves
of the ψ-functions used in the simulation.

2 Setting

The simulation setting used here is similar to the one in Maronna and Yohai
(2010). We simulate N = 1000 repetitions. To repeat the simulation, we rec-
ommend using a small value of N here, since for large n and p, computing all
the replicates will take days.
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2.1 Methods

We compare the methods

• MM, SMD, SMDM as described in Koller and Stahel (2011). These meth-
ods are available in the package robustbase (lmrob).

• MM as implemented in the package robust (lmRob). This method will be
denoted as MMrobust later on.

• MM using S-scale correction by qT and qE as proposed by Maronna and
Yohai (2010).

qT and qE are defined as follows.

qE =
1

1− (1.29− 6.02/n)p/n
,

q̂T = 1 +
p

2n

â

b̂ĉ
,

where

â =
1

n

n∑
i=1

ψ

(
ri
σ̂S

)2

, b̂ =
1

n

n∑
i=1

ψ′
(
ri
σ̂S

)
, ĉ =

1

n

n∑
i=1

ψ

(
ri
σ̂S

)
ri
σ̂S
,

with ψ = ρ′, n the number of observations, p the number of predictor
variables, σ̂S is the S-scale estimate and ri is the residual of the i-th
observation.

When using qE it is necessary to adjust the tuning constants of χ to
account for the dependence of κ on p. For qT no change is required.

This method in implemented as lmrob.mar in the source file estimat-

ing.functions.R.

2.2 ψ-functions

We compare bisquare, optimal, lqq and Hampel ψ-functions. They are illustrated
in Fig. 1. The tuning constants used in the simulation are compiled in Table 1.
Note that the Hampel ψ-function is tuned to have a downward slope of −1/3
instead of the originally proposed −1/2. This was set to allow for a comparison
to an even slower descending ψ-function.

psi tuning.chi tuning.psi

optimal 0.405 1.06
bisquare 1.548 4.685

lqq −0.5, 1.5, NA, 0.5 −0.5, 1.5, 0.95, NA
hampel 0.318, 0.742, 1.695 1.352, 3.156, 7.213

Table 1: Tuning constants of ψ-functions used in the simulation.
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Figure 1: ψ-functions used in the simulation.

2.3 Designs

Two types of designs are used in the simulation: fixed and random designs. One
design with n = 20 observations, p = 1+3 predictors and strong leverage points.
This design also includes an intercept column. It is shown in Fig. 21. The other
designs are random, i.e., regenerated for every repetition, and the models are
fitted without an intercept. We use the same distribution to generate the designs
as for the errors. The number of observations simulated are n = 25, 50, 100, 400
and the ratio to the number of parameters are p/n = 1/20, 1/10, 1/5, 1/3, 1/2.
We round p to the nearest smaller integer if necessary.

The random datasets are generated using the following code.

> f.gen <- function(n, p, rep, err) {

+ ## get function name and parameters

+ lerrfun <- f.errname(err$err)

+ lerrpar <- err$args

+ ## generate random predictors

+ ret <- lapply(1:rep, function(...) {

+ data.frame(matrix(do.call(lerrfun, c(n = n*p, lerrpar)), n, p))

+ })

+ attr(ret[[1]], 'gen') <- f.gen

+ ret

+ }

> ratios <- c(1/20, 1/10, 1/5, 1/3, 1/2)

> lsit <- expand.grid(n = c(25, 50, 100, 400), p = ratios)

> lsit <- within(lsit, p <- as.integer(n*p))

> .errs.normal.1 <- list(err = 'normal',
+ args = list(mean = 0, sd = 1))
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Figure 2: Example random design.

> for (i in 1:NROW(lsit))

+ assign(paste('rand',lsit[i,1],lsit[i,2],sep='_'),
+ f.gen(lsit[i,1], lsit[i,2], 1, .errs.normal.1)[[1]])

An example design is shown in Fig. 2.

2.4 Error Distributions

We simulate the following error distributions

• standard normal distribution,

• t5, t3, t1,

• centered skewed t with df = ∞, 5 and γ = 2 (denoted by cskt(∞, 2) and
cskt(5, 2), respectively); as introduced by Fernández and Steel (1998) using
the R package skewt,

• contaminated normal, N (0, 1) contaminated with 10%N (0, 10) (symmet-
ric, cnorm(0.1, 0, 3.16)) or N (4, 1) (asymmetric, cnorm(0.1, 4, 1)).

2.5 Covariance Matrix Estimators

For the standard MM estimator, we compare Avar1 of Croux et al. (2003)
and the empirical weighted covariance matrix estimate corrected by Huber’s
small sample correction as described in Huber and Ronchetti (2009) (denoted
by Wssc). The latter is also used for the variation of the MM estimate proposed
by Maronna and Yohai (2010). For the SMD and SMDM variants we use the
covariance matrix estimate as described in Koller and Stahel (2011) (Wτ).
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The covariance matrix estimate consists of three parts:

cov(β̂) = σ2γV −1X .

The SMD and SMDM methods of lmrob use the following defaults.

γ̂ =

1
n

∑n
i=1 ψ

(
ri
τiσ̂

)2
1
n

∑n
i=1 ψ

′
(
ri
τiσ̂

)
where τi is the rescaling factor used for the D-scale estimate (see Koller and
Stahel (2011)).

V̂ X =
1

1
n

∑n
i=1 wii

XTWX

where W = diag
(
w
(
r1
σ̂

)
, . . . ,w

(
rn
σ̂

))
. The function w(r) = ψ(r)/r produces

the robustness weights.

3 Simulation

The main loop of the simulation is fairly simple. (This code is only run if there
are no aggregate results available.)

> aggrResultsFile <- file.path(robustDoc, "aggr_results.Rdata")

> ## set eval to TRUE for chunks simulation-run and simulation-aggr

> ## if you really want to run the simulations again.

> ## (better fail with an error than run for weeks)

> if (!file.exists(aggrResultsFile)) {

+ ## load packages required only for simulation

+ stopifnot(require(robust),

+ require(skewt),

+ require(foreach))

+ registerDoSEQ()

+ ## stopifnot(require(doMC)) ## uncomment to use multicore package

+ ## registerDoMC()

+ for (design in c("dd", ls(pattern = 'rand_\\d+_\\d+'))) {

+ print(design)

+ ## set design

+ estlist$design <- get(design)

+ estlist$use.intercept <- !grepl('^rand', design)

+ ## add design.predict: pc

+ estlist$design.predict <-

+ if (is.null(attr(estlist$design, 'gen')))
+ f.prediction.points(estlist$design) else

+ f.prediction.points(estlist$design, max.pc = 2)

+

+ filename <- file.path(robustDoc,

+ sprintf('r.test.final.%s.Rdata',design))
+ if (!file.exists(filename)) {

+ ## run
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+ print(system.time(r.test <- f.sim(estlist, silent = TRUE)))

+ ## save

+ save(r.test, file=filename)

+ ## delete output

+ rm(r.test)

+ ## run garbage collection

+ gc()

+ }

+ }

+ }

The variable estlist is a list containing all the necessary settings required to
run the simulation as outlined above. Most of its elements are self-explanatory.

> str(estlist, 1)

List of 8

$ design :'data.frame': 20 obs. of 3 variables:

$ nrep : num 1000

$ errs :List of 8

$ seed : num 13082010

$ procedures :List of 21

$ design.predict:'data.frame': 10 obs. of 3 variables:

..- attr(*, "npcs")= int 3

$ output :List of 6

$ use.intercept : logi TRUE

errs is a list containing all the error distributions to be simulated. The
entry for the standard normal looks as follows.

> estlist$errs[[1]]

$err

[1] "normal"

$args

$args$mean

[1] 0

$args$sd

[1] 1

err is translated internally to the corresponding random generation or quantile
function, e.g., in this case rnorm or qnorm. args is a list containing all the
required arguments to call the function. The errors are then generated internally
with the following call.

> set.seed(estlist$seed)

> errs <- c(sapply(1:nrep, function(x) do.call(fun, c(n = nobs, args))))

All required random numbers are generated at once instead of during the sim-
ulation. Like this, it is certain, that all the compared methods run on exactly
the same data.
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The entry procedures follows a similar convention. design.predict con-
tains the design used for the prediction of observations and calculation of con-
fidence or prediction intervals. The objects returned by the procedures are
processed by the functions contained in the estlist$output list.

> str(estlist$output[1:3], 2)

List of 3

$ sigma:List of 2

..$ names: chr "sigma"

..$ fun : language sigma(lrr)

$ beta :List of 2

..$ names: language paste("beta", 1:npar, sep = "_")

..$ fun : language coef(lrr)

$ se :List of 2

..$ names: language paste("se", 1:npar, sep = "_")

..$ fun : language sqrt(diag(covariance.matrix(lrr)))

The results are stored in a 4-dimensional array. The dimensions are: repetition
number, type of value, procedure id, error id. Using apply it is very easy and
fast to generate summary statistics. The raw results are stored on the hard
disk, because typically it takes much longer to execute all the procedures than
to calculate the summary statistics. The variables saved take up a lot of space
quite quickly, so only the necessary data is stored. These are σ, β as well as the
corresponding standard errors.

To speed up the simulation routine f.sim, the simulations are carried out
in parallel, as long as this is possible. This is accomplished with the help of
the R-package foreach. This is most easily done on a machine with multiple
processors or cores. The multicore package provides the methods to do so
easily. The worker processes are just forked from the main R process.

After all the methods have been simulated, the simulation output is pro-
cessed. The code is quite lengthy and thus not displayed here (check the Sweave
source file lmrob_simulation.Rnw). The residuals, robustness weights, lever-
ages and τ values have to be recalculated. Using vectorized operations and some
specialized C code, this is quite cheap. The summary statistics generated are
discussed in the next section.

4 Simulation Results

4.1 Criteria

The simulated methods are compared using the following criteria.
Scale estimates. The criteria for scale estimates are all calculated on the

log-scale. The bias of the estimators is measured by the 10% trimmed mean.
To recover a meaningful scale, the results are exponentiated before plotting. It
is easy to see that this is equivalent to calculating geometric means. Since the
methods are all tuned at the central model, N (0, 1), a meaningful comparison
of biases can only be made for N (0, 1) distributed errors.

The variability of the estimators, on the other hand, can be compared over
all simulated error distributions. It is measured by the 10% trimmed standard
deviation, rescaled by the square root of the number of observations.
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For completeness, the statistics used to compare scale estimates in Maronna
and Yohai (2010) are also calculated. They are defined as

q = median

(
S(e)

σ̂S

)
, M = mad

(
S(e)

σ̂S

)
, (1)

where S(e) stands for the S-scale estimate evaluated for the actual errors e.
For the D-scale estimate, the definition is analogue. Since there is no design to
correct for, we set τi = 1 ∀i.

Coefficients. The efficiency of estimated regression coefficients β̂ is char-
acterized by their mean squared error (MSE ). Since we simulate under H0 :

β = 0, this is determined by the covariance matrix of β̂. We use E
[
‖β̂‖22

]
=∑p

j=1 var(β̂j) as a summary. When comparing to the MSE of the ordinary least
squares estimate (OLS ), this gives the efficiency, which, by the choice of tuning
constants of ψ, should yield

MSE(β̂OLS)

MSE(β̂)
≈ 0.95

for standard normally distributed errors. The simulation mean of
∑p
j=1 var(β̂j)

is calculated with 10% trimming. For other error distributions, this ratio should
be larger than 1, since by using robust procedures we expect to gain efficiency
at other error distributions (relative to the least squares estimate).
γ. We compare the behavior of the various estimators of γ by calculating

the trimmed mean and the trimmed standard deviation for standard normal
distributed errors.

Covariance matrix estimate. The covariance matrix estimates are com-
pared indirectly over the performance of the resulting test statistics. We com-
pare the empirical level of the hypothesis tests H0 : βj = 0 for some j ∈
{1, . . . , p}. The power of the tests is compared by testing for H0 : βj = b for
several values of b > 0. The formal power of a more liberal test is generally
higher. Therefore, in order for this comparison to be meaningful, the critical
value for each test statistic was corrected such that all tests have the same
simulated level of 5%.

The simple hypothesis tests give only limited insights. To investigate the
effects of other error distributions, e.g., asymmetric error distributions, we com-
pare the confidence intervals for the prediction of some fixed points. Since it
was not clear how to assess the quality prediction intervals, either at the central
or the simulated model, we do not calculate them here.

A small number of prediction points is already enough, if they are chosen
properly. We chose to use seven points lying on the first two principal compo-
nents, spaced evenly from the center of the design used to the extended range of
the design. The principal components were calculated robustly (using covMcd

of the robustbase package) and the range was extended by a fraction of 0.5.
An example is shown in Figure 21.

4.2 Results

The results are given here as plots (Fig. 3 to Fig. 22). For a complete discussion
of the results, we refer to Koller and Stahel (2011).
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Figure 3: Mean of scale estimates for normal errors. The mean is calculated
with 10% trimming. The lines connect the median values for each simulated
ratio p/n. Results for random designs only.

The different ψ-functions are each plotted in a different facet, except for
Fig. 8, Fig. 9 and Fig. 15, where the facets show the results for various error dis-
tributions. The plots are augmented with auxiliary lines to ease the comparison
of the methods. The lines connect the median values over the values of n for
each simulated ratio p/n. In many plots the y-axis has been truncated. Points
in the grey shaded area represent truncated values using a different scale.
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Figure 4: Variability of the scale estimates for normal errors. The standard
deviation is calculated with 10% trimming.

p/n

sd
(lo

g(
σ̂)

)
n

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

optimal

lqq

0.1 0.2 0.3 0.4 0.5

bisquare

Hampel

0.1 0.2 0.3 0.4 0.5

Error

● N(0,1)

t5

t3

t1

cnorm(0.1,0,3.16)

cnorm(0.1,4,1)

cskt(∞,2)

● cskt(5,2)

Scale Est.

●● σ̂S

●● σ̂D

●● qTσ̂S

●● qEσ̂S

●● σ̂robust

●● σ̂OLS

Figure 5: Variability of the scale estimates for all simulated error distributions.

10



p/n

q

1

1.2

1

1.2

optimal

lqq

0.1 0.2 0.3 0.4 0.5

bisquare

Hampel

0.1 0.2 0.3 0.4 0.5

n

● 25

50

100

Scale Est.

● σ̂D

● qEσ̂S

Figure 6: q statistic for normal errors. q is defined in (1).

p/n

M
q

0.02

0.03

0.05
0.07

0.1
0.14

0.2

0.4

0.02

0.03

0.05
0.07

0.1
0.14

0.2

0.4

optimal

lqq

0.1 0.2 0.3 0.4 0.5

bisquare

Hampel

0.1 0.2 0.3 0.4 0.5

n

● 25

50

100

Scale Est.

● σ̂D

● qEσ̂S

Figure 7: M/q statistic for normal errors. M and q are defined in (1).

11



p/n

q

0.7

0.8

0.9
1

1.2

0.7

0.8

0.9
1

1.2

0.7

0.8

0.9
1

1.2

N(0,1)

t1

cskt(∞,2)

0.1 0.2 0.3 0.4 0.5

t5

cnorm(0.1,0,3.16)

cskt(5,2)

0.1 0.2 0.3 0.4 0.5

t3

cnorm(0.1,4,1)

0.1 0.2 0.3 0.4 0.5

n

● 25

50

100

Scale Est.

● σ̂D

● qEσ̂S
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Figure 9: M/q statistic for bisquare ψ.
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Figure 11: Efficiency for all simulated error distributions except t1.
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corrected estimate, dotted the τ corrected estimate and dashed Huber’s small
sample correction.
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Figure 13: Comparing the estimates of γ. The solid line connects the un-
corrected estimate, dotted the τ corrected estimate and dashed Huber’s small
sample correction.
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Figure 14: Empirical levels of test H0 : β1 = 0 for normal errors. The y-values
are truncated at 0.02 and 0.14.
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Figure 15: Empirical levels of test H0 : β1 = 0 for lqq ψ-function and different
error distributions.
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Figure 16: Empirical power of test H0 : β1 = 0.2 for different ψ-functions.
Results for n = 25 and normal errors only.
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Figure 17: Empirical power of test H0 : β1 = 0.4 for different ψ-functions.
Results for n = 25 and normal errors only.
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Figure 18: Empirical power of test H0 : β1 = 0.6 for different ψ-functions.
Results for n = 25 and normal errors only.
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Figure 19: Empirical power of test H0 : β1 = 0.8 for different ψ-functions.
Results for n = 25 and normal errors only.

17



p/n

em
pi

ric
al

 p
ow

er
 (

H
0:

 β
1=

1)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

optimal

lqq

0.1 0.2 0.3 0.4 0.5

bisquare

Hampel

0.1 0.2 0.3 0.4 0.5

Error

● N(0,1)

t5

t3

t1

cnorm(0.1,0,3.16)

cnorm(0.1,4,1)

cskt(∞,2)

● cskt(5,2)

Estimator (Cov. Est.)

●● MMrobust.Wssc

●● MM.Avar1

●● MM.Wssc

●● SMD.Wτ
●● SMDM.Wτ
●● MMqT.Wssc

●● MMqE.Wssc

●● OLS

Figure 20: Empirical power of test H0 : β1 = 1 for different ψ-functions. Results
for n = 25 and normal errors only.
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Figure 21: Prediction points for fixed design. The black points are the points
of the original design. The red digits indicate the numbers and locations of the
points where predictions are taken.
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Figure 22: Empirical coverage probabilities. Results for fixed design. The y-
values are truncated at 0.14.
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simulation. Solid line: lower bound. Dashed line: upper bound.

5 Maximum Asymptotic Bias

The slower redescending ψ-functions come with higher asymptotic bias as il-
lustrated in Fig. 23. We calculate the asymptotic bias as in Berrendero et al.
(2007).
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