
RoCoCo
An R Package Implementing a Robust Rank

Correlation Coefficient and a Corresponding Test

Ulrich Bodenhofer1 and Martin Krone2

1Institute of Bioinformatics, Johannes Kepler University
Altenberger Str. 69, 4040 Linz, Austria

2Department of Computer Science
Ostfalia University of Applied Sciences

Salzdahlumer Str. 46/48, 38302 Wolfenbüttel, Germany

rococo@bioinf.jku.at

Version 1.0.1, October 24, 2011

Institute of Bioinformatics, Johannes Kepler University Linz

Software Manual

Institute of Bioinformatics
Johannes Kepler University Linz
A-4040 Linz, Austria

Tel. +43 732 2468 8880
Fax +43 732 2468 9511

http://www.bioinf.jku.at

mailto:rococo@bioinf.jku.at

2 Contents

Scope and Purpose of this Document

This document is a user manual for the R package rococo. It is only meant as a gentle introduction
into how to use the basic functions implemented in this package. Not all features of the R package
are described in full detail. Such details can be obtained from the documentation enclosed in the
R package. Further note the following: (1) this is not an introduction to robust rank correlation;
(2) this is not an introduction to R. If you lack the background for understanding this manual, you
first have to read literature on these subjects.

Contents

1 Introduction 3

2 Installation 3
2.1 Installation via CRAN . 3
2.2 Manual installation . 3
2.3 Compatibility issues . 4

3 Getting Started 4

4 Adjusting Similarities and t-Norms 7
4.1 Background . 7
4.2 Choosing the Family of Similarities . 7
4.3 Parametrizing Similarities . 10
4.4 Choosing the t-Norm for Aggregation . 12

5 A Note on Permutation Testing 13

6 How to Cite This Package 16

1 Introduction 3

1 Introduction

Correlation measures are among the most basic tools in statistical data analysis and machine learn-
ing. They are applied to pairs of observations to measure to which extent the two observations
comply with a certain model. The most prominent representative is surely Pearson’s product
moment coefficient [1, 13], often nonchalantly called correlation coefficient for short. Pearson’s
product moment coefficient can be applied to numerical data and assumes a linear relationship as
the underlying model; therefore, it can be used to detect linear relationships, but no non-linear
ones.

Rank correlation measures [7, 10, 12] are intended to measure to which extent a monotonic
function is able to model the inherent relationship between the two observables. They neither
assume a specific parametric model nor specific distributions of the observables. They can be
applied to ordinal data and, if some ordering relation is given, to numerical data too. Therefore,
rank correlation measures are ideally suited for detecting monotonic relationships, in particular, if
more specific information about the data is not available. The two most common approaches are
Spearman’s rank correlation coefficient (short Spearman’s rho) [15, 16] and Kendall’s tau (rank
correlation coefficient) [2, 9, 10]. Another simple rank correlation measure is the gamma rank
correlation measure according to Goodman and Kruskal [7].

The rank correlation measures cited above are designed for ordinal data. However, as argued in
[5], they are not ideally suited for measuring rank correlation for numerical data that are perturbed
by noise. Consequently, [5] introduces a family of robust rank correlation measures. The idea
is to replace the classical ordering of real numbers used in Goodman’s and Kruskal’s gamma [7]
by some fuzzy ordering [8, 3, 4] with smooth transitions — thereby ensuring that the correlation
measure is continuous with respect to the data.

2 Installation

2.1 Installation via CRAN

The R package rococo (current version: 1.0.1) is part of the Comprehensive R Archive Network
(CRAN)1. The simplest way to install the package, therefore, is to enter the following command
into your R session:

> install.packages("rococo")

2.2 Manual installation

If, for what reason ever, you prefer to install the package manually, download the package file
suitable for your computer system and copy it to your harddisk. Open the package’s page at
CRAN2 and then proceed as follows.

1http://cran.r-project.org/
2http://cran.r-project.org/web/packages/rococo/index.html

http://cran.r-project.org/
http://cran.r-project.org/web/packages/rococo/index.html

4 3 Getting Started

Manual installation under Windows

1. Download rococo_1.0.1.zip and save it to your harddisk

2. Open the R GUI and select the menu entry

Packages | Install package(s) from local zip files...

(if you use R in a different language, search for the analogous menu entry). In the file dialog
that opens, go to the folder where you placed rococo_1.0.1.zip and select this file. The
package should be installed now.

Manual installation under Linux/UNIX/MacOS

1. Download rococo_1.0.1.tar.gz and save it to your harddisk.

2. Open a shell window and change to the directory where you put rococo_1.0.1.tar.gz.
Enter

R CMD INSTALL rococo_1.0.1.tar.gz

to install the package.

2.3 Compatibility issues

Both the Windows and the Linux/UNIX/MacOS version available from CRAN have been built
using the latest version, R 2.13.0. However, the package should work without severe problems on
R versions ≥2.12.0.

3 Getting Started

To load the package, enter the following in your R session:

> library(rococo)

You will probably see a message that package Rcpp has been loaded (in case it has not been loaded
previously in the current R session). Apart from this, you can be sure that the package has been
installed successfully if this command terminates without any further error message or warning.
If so, the package is ready for use now.

The package includes both a user manual (this document) and a reference manual (help pages
for each function). To view the user manual, enter

> vignette("rococo")

Help pages can be viewed using the help command. It is recommended to start with

> help(rococo)

3 Getting Started 5

For demonstration purposes, let us first create an artificial toy data set:

> x1 <- rnorm(15)

> y1 <- 2 * x1 + rnorm(length(x1), sd = 0.25)

> plot(x1, y1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2
3

x1

y1

Obviously, these are linearly correlated Gaussian data, so Pearson’s product moment correlation
coefficient [1, 13] would be the optimal choice. We use these data anyway, only for illustration
purposes. The function rococo() can be used to compute the robust rank correlation coefficient
as follows:

> rococo(x1, y1)

[1] 0.9167946

To perform a robust rank correlation test, use the function rococo.test:

> rococo.test(x1, y1, alternative = "two.sided")

Robust Gamma Rank Correlation:

data: x1 and y1 (length = 15)

similarity: linear

rx = 0.1357292 / ry = 0.2663235

t-norm: min

alternative hypothesis: true gamma is not equal to 0

sample gamma = 0.9167946

estimated p-value = 8.245524e-06 (0 of 1000 values)

6 3 Getting Started

The argument alternative works in the same way as for the standard function cor.test().

The function rococo.test() is a generic method that can be called on two numeric vectors
(as above) or, alternatively, using a formula to conveniently extract two columns from a data frame:

> data(iris)

> plot(~Sepal.Length + Petal.Length, iris)

> rococo.test(~Sepal.Length + Petal.Length, iris, alternative = "two.sided")

Robust Gamma Rank Correlation:

data: Sepal.Length and Petal.Length (length = 150)

similarity: linear

rx = 0.13 / ry = 0.35

t-norm: min

alternative hypothesis: true gamma is not equal to 0

sample gamma = 0.7940949

estimated p-value = < 2.2e-16 (0 of 1000 values)

●●●
● ●

●

● ●● ● ●●
●

● ●

●
●●

●
●

●
●

●

●
●

●● ●●
● ● ●● ●●

● ●●●
●

●●●

●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●

●

●●
●

●

● ●
●

●

●●

●
●

●

●

● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●
●

●
●

●

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

1
2

3
4

5
6

7

Sepal.Length

P
et

al
.L

en
gt

h

All examples above use default settings for the fuzzy orderings that are used to define the
rank correlation coefficient. In the following section, we introduce the concept behind the robust
gamma rank correlation coefficient in greater depth and describe how to adjust the corresponding
settings properly.

4 Adjusting Similarities and t-Norms 7

4 Adjusting Similarities and t-Norms

4.1 Background

The robust gamma rank correlation coefficient requires the definition of two strict fuzzy orderings
[4], RX and RY . A strict fuzzy ordering is a two-place function that measures to which degree its
second argument is strictly larger than its first argument. Given a data set consisting of n pairs of
observations (where n ≥ 2)

(xi, yi)
n
i=1, (1)

RX is used for comparing x observations and RY is used for comparing y observations.

Given a data set as in Eq. (1), the strict fuzzy orderings RX and RY are used to compute two
important numbers, the number of concordant pairs C̃ and the number of discordant pairs D̃:

C̃ =
n∑
i=1

∑
j 6=i

T̄ (RX(xi, xj), RY (yi, yj))

D̃ =
n∑
i=1

∑
j 6=i

T̄ (RX(xi, xj), RY (yj , yi))

The function T̄ is a triangular (t-norm) [11] that is used to aggregate degrees of relationships
between pairs of x observations and the corresponding degrees for y observations (see below).
The final robust gamma rank correlation coefficient is then computed as

γ̃ =
C̃ − D̃
C̃ + D̃

in perfect analogy to Goodman’s and Kruskal’s gamma [7].

4.2 Choosing the Family of Similarities

It should be clear from the description above that the robust gamma rank correlation coefficient
requires the following ingredients:

1. A fuzzy ordering RX for the x observations

2. A fuzzy ordering RY for the y observations

3. A t-norm T̄ for aggregation.

For RX and RY , the rococo package provides five possible choices which are identified by the
similarity that is used to define the strict fuzzy ordering (for more details see [4, 5]). Table 1
provides an overview.

Obviously, in all five cases, the strict fuzzy ordering R is computed from the similarity E in
the following way:

R(x, x′) =

{
1− E(x, x′) if x′ > x

0 otherwise

8 4 Adjusting Similarities and t-Norms

Table 1: Overview of strict fuzzy orderings implemented in the rococo package:

Setting Similarity Strict fuzzy ordering

"linear" E(x, x′) = max(0, 1− 1
r |x− x

′|) R(x, x′) = max(0,min(1, 1r (x′ − x)))

"exp" E(x, x′) = exp(− 1
r |x− x

′|) R(x, x′) = max(0, 1− exp(− 1
r (x′ − x)))

"gauss" E(x, x′) = exp(− 1
2r2 (x− x′)2) R(x, x′) =

{
1− exp(− 1

2r2 (x− x′)2) if x ≤ x′

0 otherwise

"epstol" E(x, x′) =

{
1 if |x− x′| ≤ r
0 otherwise

R(x, x′) =

{
1 if x′ > x+ r

0 otherwise

"classical" E(x, x′) =

{
1 if x = x′

0 otherwise
R(x, x′) =

{
1 if x′ > x

0 otherwise

Further note that the choices "epstol" and "classical" are not continuous. The former is the
well-known ε-intolerant similarity that has been discussed widely in the context of the Poincaré
paradox (note that this similarity is not a transitive relation). The latter setting "classical"

corresponds to the classical Goodman and Kruskal gamma.

The functions rococo() and rococo.test() choose the first variant "linear" by default,
both for x and y observations. If one wants to choose a different setting or two different strict fuzzy
orderings for x and y observations, the similarity argument can be used. For demonstrating this,
we create a noisy data set from a function f that has a large flat area:

> x2 <- rnorm(15)

> f2 <- function(x) {

+ if (x > 0.8)

+ x - 0.8

+ else if (x < -0.8)

+ x + 0.8

+ else 0

+ }

> y2 <- sapply(x2, f2) + rnorm(length(x2), sd = 0.1)

> plot(x2, y2)

4 Adjusting Similarities and t-Norms 9

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

2
0.

0
0.

2
0.

4
0.

6

x2

y2

As said before, "linear" is the default choice:

> rococo.test(x2, y2, alternative = "greater")

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity: linear

rx = 0.1385442 / ry = 0.02385542

t-norm: min

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.7436693

estimated p-value = 0.0001191489 (0 of 1000 values)

This default setting makes sense in particular if no information about the data, their distribution,
or not even the noise distribution is known. Now let us try some different settings:

> rococo.test(x2, y2, similarity = "gauss", alternative = "greater")

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity: gauss

rx = 0.1385442 / ry = 0.02385542

t-norm: min

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.8037081

estimated p-value = 0.0001128236 (0 of 1000 values)

10 4 Adjusting Similarities and t-Norms

> rococo.test(x2, y2, similarity = c("classical", "gauss"),

+ alternative = "greater")

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity for x: classical

similarity for y: gauss (ry = 0.02385542)

t-norm: min

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.7216286

estimated p-value = 0.0001855216 (0 of 1000 values)

Particularly note the latter of the two examples: different settings for x and y observations can be
done by supplying a vector to the similarity argument, where the first element determines the
choice for x observations and the second element determines the choice for y observations.

4.3 Parametrizing Similarities

So far, we have neglected that four of the five similarities/fuzzy orderings listed in Table 1 require
an additional parameter r. In all four cases, r controls the importance of observations that are
close to each other. The smaller r, the more similar observations are taken into account when
computing the numbers of concordant and discordant pairs. This entails that, the smaller r, the
easier noise can corrupt the result. The larger r, the less similar observations are considered, i.e.
the more noise-tolerant the result will be. However, that does not mean that the largest possible r
is the best choice. An overly large r can result in unspecific and unsignificant results. The rococo
package allows for setting one r for both x and y observations:

> rococo.test(x2, y2, similarity = "gauss", r = 0.1, alternative = "greater")

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity: gauss

rx = 0.1 / ry = 0.1

t-norm: min

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.8799177

estimated p-value = 0.0002530797 (0 of 1000 values)

It is also possible to specify different values of r for x and y observations. Analogously to the
parameter similarity, this can be done by supplying a two-element vector to the parameter r:

> rococo.test(x2, y2, similarity = c("linear", "gauss"), r = c(0.05,

+ 0.1), alternative = "greater")

4 Adjusting Similarities and t-Norms 11

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity for x: linear (rx = 0.05)

similarity for y: gauss (ry = 0.1)

t-norm: min

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.852226

estimated p-value = 0.0001945368 (0 of 1000 values)

It should be clear from the formulas in Table 1 that r = 0 is either invalid or does not make sense.
The rococo package still admits choosing a zero value. In this case, rococo makes an automatic
adjustment of r to 10% of the interquartile range (the difference between the 75% and the 25%
quantile) of the observation under consideration:

> rococo.test(x2, y2, similarity = c("linear", "gauss"), r = 0,

+ alternative = "greater")

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity for x: linear (rx = 0.1385442)

similarity for y: gauss (ry = 0.02385542)

t-norm: min

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.7626111

estimated p-value = 0.0001024683 (0 of 1000 values)

> IQR(x2) * 0.1

[1] 0.1385442

> IQR(y2) * 0.1

[1] 0.02385542

In the results above, note the values rx and ry in the output of rococo.test(). These are the
values that have been specified or that have been determined automatically. The computations of
10% of the interquartile range should demonstrate that this is what takes place when r is set to 0.
Note that this is also done by default if the argument r is not specified.

12 4 Adjusting Similarities and t-Norms

Table 2: Overview of strict fuzzy orderings implemented in the rococo package:

Setting t-Norm

"min" (default) TM(x, y) = min(x, y)

"prod" TP(x, y) = x · y

"lukasiewicz" TL(x, y) = max(0, x+ y − 1)

4.4 Choosing the t-Norm for Aggregation

As mentioned above, the robust gamma rank correlation coefficient further requires to specify a
t-norm T̄ that is used for aggregation of the ordering measures from x and y observations. The
rococo package offers three built-in t-norms that can be selected by specifying the tnorm argu-
ment when calling the functions rococo() and rococo.test(). Table 2 provides an overview.
Here is an example that uses the product t-norm for aggregation:

> rococo.test(x2, y2, similarity = c("linear", "gauss"), tnorm = "prod",

+ alternative = "greater")

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity for x: linear (rx = 0.1385442)

similarity for y: gauss (ry = 0.02385542)

t-norm: prod

alternative hypothesis: true gamma is greater than 0

sample gamma = 0.7621023

estimated p-value = 0.0002170714 (1 of 1000 values)

The choice of the t-norm T̄ is not particularly critical and should not have a strong influence
on the significance of results. Most users will suffice with the default setting "min". The choice
"prod" produces similar, but slightly smoother results which may be suitable in combination with
the only differentiable fuzzy ordering (similarity="gauss").

Even though the choice is not critical, the rococo package also offers the choice of user-
defined t-norms by supplying a two-place function as tnorm argument. Here is an example with
some Yager t-norm [11, 17]:

> DrastictNorm <- function(x, y) {

+ if (x == 1)

+ y

+ else if (y == 1)

+ x

5 A Note on Permutation Testing 13

+ else 0

+ }

> YagertNorm <- function(lambda) {

+ fun <- function(x, y) {

+ if (lambda == 0)

+ DrastictNorm(x, y)

+ else if (is.infinite(lambda))

+ min(x, y)

+ else max(0, 1 - ((1 - x)^lambda + (1 - y)^lambda)^(1/lambda))

+ }

+ attr(fun, "name") <- paste("Yager t-norm with lambda =",

+ lambda)

+ fun

+ }

> rococo(x2, y2, tnorm = YagertNorm(0.5))

[1] 0.7419704

> rococo.test(x2, y2, tnorm = YagertNorm(0.2))

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity: linear

rx = 0.1385442 / ry = 0.02385542

t-norm: Yager t-norm with lambda = 0.2

alternative hypothesis: true gamma is not equal to 0

sample gamma = 0.7417189

estimated p-value = 0.0002896577 (0 of 1000 values)

Note that the rococo package performs only a few basic checks on a user-defined t-norm. It
remains the duty of the user to ensure that the function is actually a valid t-norm.

The three built-in t-norms (see Table 2) are efficiently implemented in C++ and called with
the help of the Rcpp package [6] while user-defined t-norms have to be evaluated in R loops. Even
though we use the compiler package (if available) to pre-compile the user-defined t-norm, this
may still result in a drastic slowdown of computations, particularly for larger data sets or when
using rococo.test() with exact=TRUE (see end of next section).

5 A Note on Permutation Testing

Classical rank correlation measures only depend on the sorting of x and y observations. Thus,
for a given number of samples n, one can deduce the distribution of the test statistic under the
H0 hypothesis as a simple function of the number of samples n. We neither want to make any
prior assumption about the distribution of data nor does the complex inner structure of the robust

14 5 A Note on Permutation Testing

gamma rank correlation coefficient and the variety of possible parameter settings allow for an
analytic deduction of the test statitistic’s distribution. However, as extensive experiments have
shown, we can assume that the test statistic is approximately normally distributed around 0, where
only the standard deviation depends on the data distribution and the parameter settings of the rank
correlation measures. Therefore, we use permutation testing for estimating the standard deviation
of the test statistic under the assumption of independence. This is done in the following way: For a
given data set (xi, yi)

n
i=1, we first compute the robust rank correlation coefficient according to the

specified parameters. Then we create K random shuffles of (y′i)
n
i=1 and compute the robust rank

correlation coefficient for (xi, y
′
i)
n
i=1 according to the specified parameters. Due to the shuffling,

(xi)
n
i=1 and (y′i)

n
i=1 are independent, where (y′i)

n
i=1 has the same marginal distribution as (yi)

n
i=1.

Thus, the robust rank correlation coefficients obtained for a sufficiently large number of shuffles
allows for estimating the distribution of the test statistics under the H0 hypothesis with given
marginal distributions and we can estimate the test’s p-value by the resulting normal distribution.
Assume that γ̃ is the observed gamma rank and that σ̃ is the estimated standard deviation from
0 computed from the observed test statistics on the random shuffles. Then the p-values can be
computed as (Pµ,σ denotes the cummulative distribution function of the normal distribution with
mean µ and variance σ2)

2 · (1− P0,σ̃(|γ̃|)) in case we perform a two-sided test,

1 − P0,σ̃(γ̃) in case we perform a one-sided test with alternative hypothesis that there is a
positive correlation, and

P0,σ̃(γ̃) in case we perform a one-sided test with alternative hypothesis that there is a nega-
tive correlation.

This p-value is stored in the slot p.value of the resulting output object of rococo.test(). As
usual in R, < 2.2e− 16 is displayed if the p-value is lower than machine precision. Moreover, the
output object also contains a slot count which corresponds to the number of times

the test statistics’ absolute value exceeded the absolute value of the test statistic for the
unshuffled data in case we perform a two-sided test,

the test statistic was greater than the test statistic for the unshuffled data in case we perform
a one-sided test with alternative hypothesis that there is a positive correlation, and

the test statistic was less than the test statistic for the unshuffled data in case we perform a
one-sided test with alternative hypothesis that there is a negative correlation.

This count allows for an alternative method of determining a p-value as a relative frequency. Users
who want to use this method can compute the p-value as the quotient of the above count (slot
count) over the number of trials (slot numtests).

The number of shuffles performed by rococo.test() is controlled by the parameter numtests
(the default is 1000). It is clear that, the smaller the number of shuffles, the less exact the estima-
tion is. We concur that 1000 samples are sufficient (at least with high probability) if one wants
to test whether the association is significant with a significance threshold of 95% or 99%. If the
user, however, is interested in much more exact estimates of the p-value or if he/she wants to test
against much more stringest significance thresholds, it may be necessary to perform much higher

5 A Note on Permutation Testing 15

numbers of shuffles. Needless to mention, this will also result in an increase of computation times,
where the computation time grows linearly with the number of shuffles.

Here is an example with 100,000 shuffles, where we use the option storeValue=TRUE to get
access to the rank correlation values for all random shuffles:

> res <- rococo.test(x2, y2, numtests = 1e+05, storeValues = TRUE)

> res

Robust Gamma Rank Correlation:

data: x2 and y2 (length = 15)

similarity: linear

rx = 0.1385442 / ry = 0.02385542

t-norm: min

alternative hypothesis: true gamma is not equal to 0

sample gamma = 0.7436693

estimated p-value = 0.0002180539 (9 of 100000 values)

> hist(res@perm.gamma, breaks = 100, probability = TRUE, xlab = "gamma",

+ main = "Distribution of gamma for random shuffles")

> plot(function(x) dnorm(x, mean = 0, sd = res@H0gamma.sd),

+ min(res@perm.gamma), max(res@perm.gamma), col = "red",

+ lwd = 3, add = TRUE)

Distribution of gamma for random shuffles

gamma

D
en

si
ty

−0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

The histogram and the density of the corresponding normal distribution (red curve) match almost
perfectly.

16 6 How to Cite This Package

For small data sets (not more than 10 samples), the package further provides computations of
exact p-values. This can be enforced by passing the argument exact=TRUE to rococo.test(). In
this case, all possible permutations are considered (using the Steinhaus-Johnson-Trotter algorithm;
see, e.g., [14]) and the exact p-value is computed as the quotient of the above count (slot count)
over the number of trials (the factorial of the length of x and y):

> rococo.test(x2[1:8], y2[1:8], exact = TRUE)

Robust Gamma Rank Correlation:

data: x2[1:8] and y2[1:8] (length = 8)

similarity: linear

rx = 0.1201968 / ry = 0.03707752

t-norm: min

alternative hypothesis: true gamma is not equal to 0

sample gamma = 0.9239921

exact p-value = 0.0003968254 (16 of 40320 values)

Using the exact test for 10 samples results in 10! = 3628800 permutations that have to be
considered. For the built-in t-norms, such a computation should finish within a few seconds.
However, in conjunction with a user-defined t-norm, computations may be significantly longer, in
the range of several minutes.

6 How to Cite This Package

If you use this package for research that is published later, you are kindly asked to cite it as follows:

U. Bodenhofer and F. Klawonn (2008). Robust rank correlation coefficients on the
basis of fuzzy orderings: initial steps. Mathware Soft Comput. 15(1):5–20.

To obtain a BibTEX entry of the reference, you can enter the following into your R session:

> toBibtex(citation("rococo"))

Acknowledgment

The core of this package was implemented during a short-term scientific mission of Martin Krone
at the Institute of Bioinformatics, Johannes Kepler University, within the framework of COST
Action IC0702 “SoftStat — Combining Soft Computing Techniques and Statistical Methods to Im-
prove Data Analysis Solutions”. Therefore, the support of this project is gratefully acknowledged.

References 17

References

[1] H. Abdi. Coefficients of correlation, alienation and determination. In N. J. Salkind, editor,
Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA, 2007.

[2] H. Abdi. The Kendall rank correlation coefficient. In N. J. Salkind, editor, Encyclopedia of
Measurement and Statistics. Sage, Thousand Oaks, CA, 2007.

[3] U. Bodenhofer. A similarity-based generalization of fuzzy orderings preserving the classical
axioms. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 8(5):593–610, 2000.

[4] U. Bodenhofer and M. Demirci. Strict fuzzy orderings with a given context of similarity.
Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 16(2):147–178, 2008.

[5] U. Bodenhofer and F. Klawonn. Robust rank correlation coefficients on the basis of fuzzy
orderings: initial steps. Mathware Soft Comput., 15(1):5–20, 2008.

[6] D. Eddelbuettel and R. François. Rcpp: seamless R and C++ integration. J. Stat. Softw.,
40(8):1–18, 2011.

[7] L. A. Goodman and W. H. Kruskal. Measures of association for cross classifications. J.
Amer. Statist. Assoc., 49(268):732–764, 1954.

[8] U. Höhle and N. Blanchard. Partial ordering in L-underdeterminate sets. Inform. Sci.,
35:133–144, 1985.

[9] M. G. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.

[10] M. G. Kendall. Rank Correlation Methods. Charles Griffin & Co., London, third edition,
1962.

[11] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms, volume 8 of Trends in Logic.
Kluwer Academic Publishers, Dordrecht, 2000.

[12] W. H. Kruskal. Ordinal measures of association. J. Amer. Statist. Assoc., 53(284):814–861,
1958.

[13] K. Pearson. Notes on the history of correlation. Biometrika, 13:25–45, 1920.

[14] R. Sedgewick. Permutation generation methods. ACM Comput. Surv., 9(2):137–164, 1977.

[15] C. Spearman. The proof and measurement of association between two things. Am. J. Psy-
chol., 15(1):72–101, 1904.

[16] C. Spearman. Demonstration of formulae for true measurement of correlation. Am. J. Psy-
chol., 18(2):161–169, 1907.

[17] R. R. Yager. On a general class of fuzzy connectives. Fuzzy Sets and Systems, 4:235–242,
1980.

	Introduction
	Installation
	Installation via CRAN
	Manual installation
	Compatibility issues

	Getting Started
	Adjusting Similarities and t-Norms
	Background
	Choosing the Family of Similarities
	Parametrizing Similarities
	Choosing the t-Norm for Aggregation

	A Note on Permutation Testing
	How to Cite This Package

