
ChemoSpec: An R Package for Chemometric

Analysis of Spectroscopic Data

and Chromatograms

(Package Version 1.50-1)

Bryan A. Hanson∗

e-mail: hanson@depauw.edu

with contributions from Matt J. Keinsley

DePauw University
Department of Chemistry & Biochemistry

Greencastle Indiana USA

github.com/bryanhanson/ChemoSpec
CRAN.R-project.org/package=ChemoSpec

December 30, 2011

Abstract

ChemoSpec[1] is a collection of functions for plotting spectra (NMR, IR etc, as well as chromatograms) and
carrying out various forms of top-down exploratory data analysis, such as hierarchical cluster analysis (HCA), principal
components analysis (PCA) and model-based clustering. Robust methods appropriate for this type of high-dimensional
data are employed. ChemoSpec is designed to facilitate comparison of samples from treatment and control groups.
It is designed to be user friendly and suitable for people with limited background in R. This vignette gives some
background on ChemoSpec and takes the reader through a typical workflow.

∗The development of ChemoSpec has been generously supported by DePauw University in the form of sabbatical funding and a Fisher
Fellowship. Thanks!

1

mailto:hanson@depauw.edu
http://github.com/bryanhanson/ChemoSpec
http://CRAN.R-project.org/package=ChemoSpec

CONTENTS 2

Contents

1 Introduction 2

2 A Sample Exploration 3
2.1 Getting Data into ChemoSpec . 3
2.2 Preliminary Inspection of Data . 6

2.2.1 Plotting the Spectra . 6
2.2.2 Identifying & Removing Problematic Samples . 9
2.2.3 Correcting Baseline Drift . 10
2.2.4 Identifying & Removing Regions of No Interest . 10

2.3 Data Pre-Processing Options . 16
2.4 Hierarchical Cluster Analysis . 18
2.5 Principal Components Analysis . 18
2.6 ANOVA-PCA . 32
2.7 Model-Based Clustering Using mclust . 33

3 Functions That Are Not Discussed Here 33

4 Technical Background 33

5 Acknowledgements 37

6 The Competition 38

References 38

1 Introduction

Chemometrics, as defined by Varmuza and Filzmoser[2], is

”. . . the extraction of relevant information from chemical data by mathematical and statistical tools.”

This is an appropriately broad definition, considering the wealth of questions and tasks that can be treated by chemometric
approaches. In our case, the focus is on spectral data sets, which typically have many variables (frequencies) and
relatively few samples. Such multivariate, high p, low n data sets present some algorithmic challenges, but these have
been addressed by knowledgeable folks. In particular, for both the practical and theoretical background to multivariate
chemometric analysis, I strongly recommend the Varmuza/Filzmoser book. Some of the functions described here are
not much more than wrappers for the functions they and others have made available to the R community in their
packages.

ChemoSpec was developed for the chemometric analysis of spectroscopic data, such as UV-Vis, NMR or IR data (it also
works with chromatographic data, see below). The approach is entirely exploratory and unsupervised, in other words,
”top-down”[3]. I developed it while beginning a new research focus on plant metabolomics, and I needed software
to analyze the data I was collecting. My research involves ecological experiments on plant stress, so ChemoSpec was
designed to accommodate samples that have different histories, i.e., they fall into different classes, categories or groups.
Examples would be treatment and control groups, or simply different specimens (red flowers vs. blue flowers). Since
my research is done with undergraduates, who are true novices with R, ChemoSpec is designed to be as user friendly as
possible, with plenty of error checking, helpful warnings and a consistent interface. It also produces graphics that are
consistent in style and annotation, and are suitable for use in publications and posters. Careful attention was given to
writing the documentation for the functions, but this vignette serves as the best starting point for learning data analysis
with ChemoSpec.

The centerpiece of ChemoSpec is the Spectra object. This is the place where your data is stored and made available
to R. Once your data in stored this way and checked, all analyses are easily carried out. ChemoSpec currently ships with
several built-in data sets; we’ll use one called SrE.IR for our demonstrations. You will see in just a moment how to
access it and inspect it.

2 A SAMPLE EXPLORATION 3

I assume you have at least a bare-bones knowledge of R as you begin to learn ChemoSpec, and have a good workflow set
up. For detailed help on any function discussed here, type ?function name at the console.

Finally, some conventions for this document: names of R ”objects” such as packages, functions, function arguments, and
data sets are in typewriter font. The commands you issue at the console and the output are shown with a light grey
background, and are colored according to use and purpose, courtesy of the excellent knitr package.[4]

By the way, if you try ChemoSpec and find it useful, have questions, have opinions, or have suggestions, please do let me
know. The current version has already been improved by users.

2 A Sample Exploration

This sample exploration is designed to illustrate a typical ChemoSpec workflow. The point is to illustrate how to carry
out the commands, what options are available and typically used, and the order in which one might do the analysis. The
SrE.IR data set will be used for illustration only – we are not trying to analyze it to reach useful conclusions. You may
wish to put your versions of these commands into a script file that you can source as you go along. This way you can
easily make changes, and it will all be reproducible. To do this, open a blank R document, and type in your commands.
Save it as something like My First ChemoSpec.R. Then you can either cut and paste portions of it to the console for
execution, or you can source the entire thing:

source("My_First_ChemoSpec.R")

Alternatively, look through your computer after installing ChemoSpec for a file called ChemoSpec.Rnw. Point R to the
folder containing that file, then at the console issue > Stangle("ChemoSpec.Rnw"). R will extract all the code used in
this vignette into a file which you can then study and modify.

2.1 Getting Data into ChemoSpec

Currently, there is only one means of moving raw data sets into ChemoSpec, and that is the function getManyCsv (it
is relatively easy to write analogous functions for other formats). This function assumes that your raw data files are
formatted as .csv files, and contain only the data itself, in two columns.1 The first column should be the frequency
values, and this column must be the same for all files (as it will be if these are data sets from the same instrument and
experimental parameters). The second column should contain the intensity values. There should not be a header row. If
your data set contains treatment and control groups, or any analogous class/group information, this information should
be encoded in the file names. getManyCsv argument gr.crit will be the basis for a grep process on the file names,
and from there, each file, representing a sample, will be assigned to a group and be assigned a color as well. If your
samples don’t fall into groups, that’s fine too, but you still have to give gr.crit something to go on—just give it one
string that is common to all the file names. Obviously, this approach encourages one to name the files as they come off
the instrument with forethought as to how they will be analyzed, which in turn depends upon your experimental design.
Nothing wrong with having a plan! Remember that getManyCsv acts on all .csv files it finds in a directory, so don’t
have any extra .csv files hanging around. The output of getManyCsv is a Spectra object, which is R-speak for a file,
readable by R, that contains not only your data, but other information about the experiment, as provided by you via the
arguments to getManyCsv.

Here’s a typical example (we have to talk hypothetically because I don’t have your data). Let’s say you had a folder
containing 30 NMR files of flower essential oils. Imagine that 18 of these were from one hypothetical subspecies, and
12 from another. Further, let’s pretend that the question under investigation has something to do with the taxonomy of
these two supposed subspecies, in other words, an investigation into whether or not they should be considered subspecies
at all. If the files were named like this:

sspA1.csv . . . sspA18.csv and sspB1.csv . . . sspB12.csv

Then the following command should process the files and create the desired Spectra object:

1Users in the EU have different standards for a .csv file: they are delimited by semi-colons, and a comma is used where a decimal point is
used in the United States. For these files, use the argument format = "csv2" to read the files properly.

2 A SAMPLE EXPLORATION 4

getManyCsv(gr.crit = c("sspA", "sspB"), gr.cols = c("red3",

"dodgerblue4"), freq.unit = "ppm", int.unit = "peak intensity",

descrip = "Subspecies Study", out.file = "subspecies")

This causes getManyCsv to read the file names for the strings sspA and sspB and use these to assign the samples into
groups. Samples in sspA*.csv files will be assigned the color red3 and sspB*.csv will be assigned dodgerblue4 (see the
help file for some thinking-ahead about colors; ?colorSymbol at the console). After running this command, a new file
called subspecies.RData will be in your directory, and you can access the data set and give it whatever name you like as
follows:

SubspeciesNMR <- loadObject("subspecies.RData")

Now it is ready to use.

Working with Chromatograms

While all the language in this vignette and in the package are geared toward analysis of spectra, ChemoSpec can also work
with chromatograms as the raw data. In this case, time replaces frequency of course, but other than that the analysis is
virtually the same. So the only real difference is when you issue the command getManyCsv, you will give the frequency
unit along these lines: freq.unit = "time (minutes)".

Built-in Data Sets

ChemoSpec ships with several built-in data sets. SrE.IR is the set used for this vignette. It is composed of a collection
of 14 IR spectra of essential oil extracted from the palm Serenoa repens or Saw Palmetto, which is commonly used to
treat BPH in men. The 14 spectra are of different retail samples, and are divided into two categories based upon the
label description: adSrE, adulterated extract, and pSrE, pure extract. The adulterated samples typically have olive oil
added to them, which is inactive towards BPH. There are two additional spectra included as references/outliers: evening
primrose oil, labeled EPO in the data set, and olive oil, labeled OO. These latter two oils are mixtures of triglycerides
for the most part, while the SrE samples are largely fatty acids. As a result, the spectra of these two groups differ: the
glycerides have ester carbonyl stretches and no O–H stretch, while the fatty acids have acid carbonyl stretches and an
O–H stretch consistent with a carboxylic acid OH.

Also included is SrE.NMR which is a corresponding set of NMR spectra, and CuticleIR. The latter is a series of IR
spectra of the cuticle (leaf surface) of the plant Portulaca oleracea. The data were taken by gently pinning the leaf
against an ATR sampling device. The plants were grown at two different temperatures, and two different genotypes
(varieties) were used (a classic G x E, genotype by environment, experiment).

The SrE.IR data set is used as the example in this vignette as the sample spectra are fairly different and give good
separation by most chemometric methods. The CuticleIR spectra differ in much more subtle ways and as as result are
more of a challenge to analyze. For more details about these data sets, type > ?data set name at the console.

Color and Symbol Options

In ChemoSpec, the user may use any color name/format known to R. For ease of comparison, it would be nice to plan
ahead and use the same color scheme for all your plots. However, if you are just doing preliminary work, ChemoSpec will
choose colors for you automatically.

In addition to colors, "Spectra" objects also contain a list of symbols, and alternative symbols. These are useful for
plotting in black and white, or when color-blind individuals will be viewing the plots. The alternative symbols are simply
lower-case letters, as these are needed for plotScoresRGL, and other rgl-graphics driven functions which cannot plot
traditional symbols.

An issue to keep in mind is that R plots are generally on a white background, so pale colors should be avoided, while
GGobi, which is used by function plotScoresG, plots on a black background (interactively), so dark colors should be
avoided. Hence some compromise is necessary.

2 A SAMPLE EXPLORATION 5

Set1 (qualitative)

ChemoSpec Primary Scheme

ChemoSpec Pastel Scheme

Figure 1: Recommended Color Sets in ChemoSpec

Two recommended color schemes are shown in Figure 1. By name, these are:

primary scheme: c(”red3”, ”dodgerblue4”, ”forestgreen”, ”purple4”, ”orangered”, ”yellow”, ”orangered4”,
”violetred2”)

pastel scheme: c(”seagreen”, ”brown2”, ”skyblue2”, ”hotpink3”, ”chartreuse3”, ”darkgoldenrod2”, ”light-
salmon3”, ”gray48”)

Finally, the current color scheme of a Spectra object may be determined using sumSpectra or changed using conColScheme.

NOTE about the next section: as of December 2010 GGobi is on ”life support” and the communication of color
information between ChemoSpec and GGobi is not working perfectly. You are on your own!

If you plan to use rggobi and GGobi to view the data later, keep in mind that GGobi only uses certain color schemes (al-
though there are many options), and in interactive operation plots on a black background. In the case of ChemoSpec, two
particular options have been hard-coded into the function plotScoresG for simplicity. If you plan to use plotScoresG,
you may wish to choose from one of these two color schemes before you begin if you want all your graphics to use the
same scheme. Keep in mind that these colors must be used in order (though you can use the order of argument gr.crit
to associate a particular group with a particular color:

primary scheme: c(”red3”, ”dodgerblue4”, ”forestgreen”, ”purple4”, ”orangered”, ”yellow”, ”orangered4”,
”violetred2”)

pastel scheme: c(”seagreen”, ”brown2”, ”skyblue2”, ”hotpink3”, ”chartreuse3”, ”darkgoldenrod2”, ”light-
salmon3”, ”gray48”)

2 A SAMPLE EXPLORATION 6

2.2 Preliminary Inspection of Data

One of the first things you should do, and this is very important, is to make sure your data are in good shape. First, you
can summarize the data set you created, and verify that the data ranges etc look like you expect them to:

data(SrE.IR) # makes the data available

sumSpectra(SrE.IR)

No gaps were found by check4Gaps

No plot will be made

##

Serenoa repens IR quality study

##

There are 16 spectra in this set.

The y-axis unit is absorbance.

##

The frequency scale runs from 399.2 to 4002 wavenumber

There are 1869 frequency (x-axis) data points.

The frequency resolution is 1.929 wavenumber/point.

##

##

The spectra are divided into 4 groups:

##

group no. color symbol alt.sym

1 adSrE 10 #984EA3 15 d

2 EPO 1 #377EB8 2 b

3 OO 1 #4DAF4A 3 c

4 pSrE 4 #E41A1C 1 a

##

*** Note: this data is an S3 object of class ’Spectra’

sumSpectra provides several pieces of information, and we’ll discuss some of them as we go along.

2.2.1 Plotting the Spectra

Assuming that everything looks good so far, it’s time to plot the spectra and inspect them. Good practice would be to
check every spectrum for artifacts and other potential problems, which might take a while; hopefully you looked at them
when you originally recorded them.2 A basic plot is shown in Figure 2. In this case we have chosen to plot one spectrum
from each category. Note that the carbonyl and Csp2−H regions are clearly different in these samples.

Depending upon the intensity range of your data set, and the number of spectra to be plotted, you have to manually
adjust the arguments yrange, offset and amplify, but this usually only takes a few iterations. Keep in mind that
offset, and amplify are multiplied in the function, so if you increase one, you may need to decrease the other. Suppose
that you wanted to focus just on the carbonyl region of these spectra; you can add an argument called xlim. To
demonstrate, let’s look at fewer spectra, and at higher amplitude, so we can see details, as shown in Figure 3.

These sample plots display the IR spectra in two ways that may be upsetting to some readers: First, the x-axis is
”backwards”, because the underlying spectra were originally saved with an ascending frequency axis (which is not always
the case). This is readily fixed by supplying the xlim argument in the desired order, e.g. xlim = c(1800, 1650) in the
previous example. Second, the vertical scale in these examples is absorbance. When using IR for structural elucidation,
the vertical axis is typically %T, with the peaks pointing downward. You don’t have that choice in ChemoSpec because
the absorbance mode is the appropriate one for chemometrics. Record your original spectra that way and get used to
it.

The argument which in plotSpectra takes a numerical list of the spectra you wish to plot— you can think of this as
the row number if you imagine each spectra to be a row in a matrix, with intensities in the columns (with each column
corresponding to a particular frequency value). You may be wondering how to determine which particular sample is in

2As of v. 1.50, there is a new function LoopThruSpectra which will take some of the pain out of inspecting quite a few spectra.

2 A SAMPLE EXPLORATION 7

We’ll make a fancy proper title just this once!

myt <- expression(paste(italic(S.), phantom(0),

italic(repens), " Extract IR Spectra"))

plotSpectra(SrE.IR, title = myt, which = c(1,

2, 14, 16), yrange = c(0, 1.6), offset = 0.4, lab.pos = 2200)

1000 2000 3000 4000

0.
0

0.
5

1.
0

1.
5

S. repens Extract IR Spectra

wavenumber

ab
so

rb
an

ce

CVS_adSrE

ET_pSrE

SV_EPO

TJ_OO

Figure 2: Plotting Spectra

2 A SAMPLE EXPLORATION 8

plotSpectra(SrE.IR, title = "S. repens IR Spectra: Detail of Carbonyl Region",

which = c(1, 2, 14, 16), xlim = c(1650, 1800), yrange = c(0,

0.6), offset = 0.1, lab.pos = 1775)

1650 1700 1750 1800

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

S. repens IR Spectra: Detail of Carbonyl Region

wavenumber

ab
so

rb
an

ce

CVS_adSrE

ET_pSrE

SV_EPO

TJ_OO

Figure 3: Zooming in on a Spectral Region

2 A SAMPLE EXPLORATION 9

each row. This is best accomplished with a grep command. For instance, if you wanted to know what row/sample the
olive oil was in, the following methods would locate it for you:

SrE.IR$names # suitable if there are not many spectra

[1] "CVS_adSrE" "ET_pSrE" "GNC_adSrE" "LF_adSrE" "MDB_pSrE"

[6] "NA_pSrE" "Nat_adSrE" "NP_adSrE" "NR_pSrE" "NSI_adSrE"

[11] "NW_adSrE" "SN_adSrE" "Sol_adSrE" "SV_EPO" "TD_adSrE"

[16] "TJ_OO"

grep("OO", SrE.IR$names) # use if there are more spectra

[1] 16

See the discussion in the next section for more details on using grep effectively.

2.2.2 Identifying & Removing Problematic Samples

In the process of plotting and inspecting your spectra, you may find some spectra/samples that have problems. Perhaps
they have instrumental artifacts. Or maybe you have decided to eliminate one subgroup of samples from your data
set to see how the results differ. To remove a particular sample, or samples meeting a certain criteria, you use the
removeSample function. This function uses a grepping process based on its rem.sam argument, so you must be careful
due to the greediness of grep. Let’s imagine that sample TD adSrE has artifacts and needs to be removed. The command
would be:

noTD <- removeSample(SrE.IR, rem.sam = c("TD_adSrE"))

sumSpectra(noTD)

No gaps were found by check4Gaps

No plot will be made

##

Serenoa repens IR quality study

##

There are 15 spectra in this set.

The y-axis unit is absorbance.

##

The frequency scale runs from 399.2 to 4002 wavenumber

There are 1869 frequency (x-axis) data points.

The frequency resolution is 1.929 wavenumber/point.

##

##

The spectra are divided into 4 groups:

##

group no. color symbol alt.sym

1 adSrE 9 #984EA3 15 d

2 EPO 1 #377EB8 2 b

3 OO 1 #4DAF4A 3 c

4 pSrE 4 #E41A1C 1 a

##

*** Note: this data is an S3 object of class ’Spectra’

grep("TD_adSrE", noTD$names)

integer(0)

The sumSpectra command confirms that there are now one fewer spectra in the set. As shown, you could also re-grep
for the sample name to verify that it is not found. The first argument in grep is the pattern you are searching for; if
that pattern matches more than one name they will all be ”caught.” For example if you used ”SrE” as your pattern you
would remove all the samples except the two reference samples, since ”SrE” occurs in ”adSrE” and ”pSrE”. You can
check this in advance with the grep function itself:

2 A SAMPLE EXPLORATION 10

SrE <- grep("SrE", SrE.IR$names)

SrE.IR$names[SrE] # gives the name(s) that contain ’SrE’

[1] "CVS_adSrE" "ET_pSrE" "GNC_adSrE" "LF_adSrE" "MDB_pSrE"

[6] "NA_pSrE" "Nat_adSrE" "NP_adSrE" "NR_pSrE" "NSI_adSrE"

[11] "NW_adSrE" "SN_adSrE" "Sol_adSrE" "TD_adSrE"

SrE # gives the corresponding indicies

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15

This is what is meant by ”grep is greedy”. In this situation, you have three choices:

1. You could manually remove the problem samples (> str(SrE.IR) would give you an idea of how to do that; see
also below under Hierarchical Cluster Analysis).

2. removeSample also accepts indices of samples, so you could grep as above, note the index of the sample you
actually want to remove, and use that in rem.sam.

3. If you know a bit about grep, you can pass a more sophisticated search pattern to rem.sam.

2.2.3 Correcting Baseline Drift

As of version 1.50, ChemoSpec contains a function to correct wandering baselines. The function, baselineSpec, can
operate interactively or not. Figure 4 shows a typical usage. Method rfbaseline works well for IR spectra; retC =

TRUE puts the corrected spectra into the new Spectra object so we can use it going forward (and we will).

2.2.4 Identifying & Removing Regions of No Interest

Many spectra will have regions that should be removed. It may be an uninformative, interfering peak like the water peak
in 1HNMR, or the CO2 peak in IR. Or, there may be regions of the spectra that simply don’t have much information –

they contribute a noisy baseline and not much else. An example would be the region from about 1,800 or 1,900 cm–1 to
about 2,500 cm–1 in IR, a region where there are typically no peaks except for the CO2 stretch, and rarely (be careful!)
alkyne stretches.

Finding these regions might be pretty simple, a matter of inspection coupled with your knowledge of spectroscopy.
Another approach is to use the function specSurvey to examine the entire set of spectra. This function computes a
summary statistic (your choice) of the intensities at a particular frequency across the data set, and plots this against
frequency. Regions where there is not much variation in the intensity will show up as unvarying baseline, and these
regions are candidates for removal. Figure 5 demonstrates the process.

In Figure 5 we kept all the groups together by using argument by.gr = FALSE. We also looked at the entire spectral
range. In Figure 6 we can look just at the carbonyl region. The black line is the median value of intensity across the
entire set of spectra. The red lines are the upper and lower interquartile ranges which makes it pretty clear that the
carbonyl region of this data set varies a lot.

Finally, specSurvey allows us to view the data set by group, which is really more useful. Let’s look at the carbonyl
region by group (Figure 7). Note that we get warnings because two of the groups have too few members to compute
the interquartile range, and these are not shown. As a result, some panels are empty.

For reasons that will become evident in a moment, let’s look at the region between 1800 and 2500 cm–1 (Figure 8).

From a theoretical perspective, we expect this region to be devoid of interesting peaks. In fact, even when pooling the
groups the signal in this region is very weak, and the only peak present is due to CO2. We can remove this region, since
it is primarily noise and artifact, with the function removeFreq as follows. Note that there are fewer frequency points
now.

SrE3.IR <- removeFreq(SrE2.IR, rem.freq = SrE2.IR$freq >

1800 & SrE2.IR$freq < 2500)

sumSpectra(SrE3.IR)

2 A SAMPLE EXPLORATION 11

SrE2.IR <- baselineSpec(SrE.IR, int = FALSE, method = "rfbaseline",

retC = TRUE)

0 500 1000 1500

0.
00

0.
10

0.
20

0.
30

Original spectrum

0 500 1000 1500

0.
00

0.
10

0.
20

0.
30

Baseline corrected spectrum

Figure 4: Correcting baseline drift

2 A SAMPLE EXPLORATION 12

specSurvey(SrE2.IR, method = "iqr", title = "S. repens Extract IR Spectra",

by.gr = FALSE)

S. repens Extract IR Spectra

wavenumber

F
ul

l D
at

a
S

et
, m

ed
ia

n
+

/−
 iq

r

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1000 2000 3000 4000

Figure 5: Checking for Regions of No Interest

##

Serenoa repens IR quality study

##

There are 16 spectra in this set.

The y-axis unit is absorbance.

##

The frequency scale runs from 399.2 to 4002 wavenumber

There are 1506 frequency (x-axis) data points.

The frequency resolution is 1.929 wavenumber/point.

##

This data set is not continuous along the frequency axis.

Here are the data chunks:

##

beg.freq end.freq size beg.indx end.indx

1 399.2 1799 1400 1 727

2 2501.3 4002 1500 728 1506

##

The spectra are divided into 4 groups:

##

group no. color symbol alt.sym

1 adSrE 10 #984EA3 15 d

2 EPO 1 #377EB8 2 b

3 OO 1 #4DAF4A 3 c

4 pSrE 4 #E41A1C 1 a

##

*** Note: this data is an S3 object of class ’Spectra’

Notice that sumSpectra has identified a gap in the data set. You can see this gap in the data as shown in Figure 9

2 A SAMPLE EXPLORATION 13

specSurvey(SrE2.IR, method = "iqr", title = "S. repens Detail of Carbonyl Region",

by.gr = FALSE, xlim = c(1650, 1800))

S. repens Detail of Carbonyl Region

wavenumber

F
ul

l D
at

a
S

et
, m

ed
ia

n
+

/−
 iq

r

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1700 1750

Figure 6: Detail of Carbonyl Region

2 A SAMPLE EXPLORATION 14

specSurvey(SrE2.IR, method = "iqr", title = "S. repens Detail of Carbonyl Region",

by.gr = TRUE, xlim = c(1650, 1800))

Warning message:

Group EPO has 3 or fewer members

so your stats are not very useful...

This group has been dropped for display purposes!

Warning message:

Group OO has 3 or fewer members

so your stats are not very useful...

This group has been dropped for display purposes!

Warning message: Invalid or ambiguous component names:

S. repens Detail of Carbonyl Region

wavenumber

m
ed

ia
n

+
/−

 iq
r

1700 1750

ad
S

rE
E

P
O

O
O

pS
rE

Figure 7: Detail of Carbonyl Region by Group

2 A SAMPLE EXPLORATION 15

specSurvey(SrE2.IR, method = "iqr", title = "S. repens Detail of Empty Region",

by.gr = FALSE, xlim = c(1800, 2500))

S. repens Detail of Empty Region

wavenumber

F
ul

l D
at

a
S

et
, m

ed
ia

n
+

/−
 iq

r

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1900 2000 2100 2200 2300 2400

Figure 8: Detail of Carbonyl Region by Group

2 A SAMPLE EXPLORATION 16

(sumSpectra checks for gaps, but doesn’t produce the plot); both the numerical results and a figure are provided.

2.3 Data Pre-Processing Options

There are a number of data pre-processing options available for your consideration. The main choices are whether to
normalize the data, whether to bin the data, and whether to scale the data. Data scaling is handled by the PCA routines,
see Section 2.5. Normalization is handled by the normSpectra function. Usually one normalizes data in which the sample
preparation procedure may lead to differences in concentration, such as body fluids that might have been diluted during
handling, or that vary due to the physiological state of the organism studied. The SrE.IR data set is taken by placing
the oil extract directly on an ATR device and no dilution is possible, so normalization probably isn’t really appropriate.
Currently, there is only one means of normalizing, and that is to divide each point (frequency) in a spectrum by the sum
of all points in that spectrum. Other means of normalizing can be readily added if they affect all points in the same way.
Normalization is accomplished by the following code (which is not run):

SrE3.IR <- normSpectra(SrE3.IR)

But remember, this doesn’t make sense for this data set. The literature contains a number of useful discussions about
normalization issues.[2, 5–8]

Another type of pre-processing that you may wish to consider is binning or bucketing, in which groups of frequencies are
collapsed into one frequency value, and the corresponding intensities are summed. There are two reasons for doing this.
One is to compact the data, but the algorithms in R are quite fast, and data sets of the size of SrE.IR don’t slow it
down much. The other reason is to compensate for shifts in very narrow peaks from sample to sample. This is typically
done in 1H NMR because changes in dilution, ionic strength, or pH can cause slight shifts. Spectra with broad, rolling
peaks won’t have this problem (UV-Vis for example). The function binBuck is your friend:

tmp <- binBuck(SrE3.IR, bin.ratio = 4)

To preserve the requested bin.ratio, 3 data point(s)

has(have) been removed from the beginning of the data chunk 1

##

To preserve the requested bin.ratio, 3 data point(s)

has(have) been removed from the beginning of the data chunk 2

##

A total of 6 data points were removed to preserve the requested bin.ratio

sumSpectra(tmp)

##

Serenoa repens IR quality study

##

There are 16 spectra in this set.

The y-axis unit is absorbance.

##

The frequency scale runs from 407.9 to 3999 wavenumber

There are 375 frequency (x-axis) data points.

The frequency resolution is 7.714 wavenumber/point.

##

This data set is not continuous along the frequency axis.

Here are the data chunks:

##

beg.freq end.freq size beg.indx end.indx

1 407.9 1796 1389 1 181

2 2510.0 3999 1489 182 375

##

The spectra are divided into 4 groups:

##

group no. color symbol alt.sym

1 adSrE 10 #984EA3 15 d

2 A SAMPLE EXPLORATION 17

check4Gaps(SrE3.IR$freq, SrE3.IR$data[1,], plot = TRUE)

1000 2000 3000 4000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Gaps in Frequency Data

marked regions are skipped in data set

beg.freq end.freq size beg.indx end.indx

1 399.2 1799 1400 1 727

2 2501.3 4002 1500 728 1506

Figure 9: Procedure to Find Gaps in a Data Set

2 A SAMPLE EXPLORATION 18

2 EPO 1 #377EB8 2 b

3 OO 1 #4DAF4A 3 c

4 pSrE 4 #E41A1C 1 a

##

*** Note: this data is an S3 object of class ’Spectra’

Compare the results here with the sumSpectra of the full data set (Section 2.2). In particular note that the frequency
resolution has gone down due to the binning process. ChemoSpec uses the simplest of binning algorithms: after perhaps
dropping a few points (with a warning) to make your data set divisible by the specified bin.ratio, data points are replaced
by the average frequency and the sum of the grouped intensities. Depending upon the fine structure in your data and the
bin.ratio this might cause important peaks to be split between different bins. There are more sophisticated binning
algorithms in the literature that try to address this, but none are currently implemented in ChemoSpec.[9, 10]

2.4 Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA from now on) is a clustering method (no surprise!) in which ”distances” between
samples are calculated and displayed in a dendrogram (a tree-like structure; these are also used in evolution and systematics
where they are called cladograms). The details behind HCA can be readily found elsewhere (Chapter 6 of [2] is a good
choice). With ChemoSpec you have access to any of the methods available for computing distances between samples and
any of the methods for identifying clusters. A typical example is shown in Figure 10.

The result is a dendrogram. The vertical scale represents the numerical distance between samples. Not unexpectedly,
the two reference samples which are known to be chemically different cluster together separately from all other sam-
ples. Perhaps surprisingly, the various pure and adulterated oil extracts do not group together precisely. The function
hcaScores does the same kind of analysis using the results of PCA, rather than the raw spectra. It is discussed in the
next section.

2.5 Principal Components Analysis

Principal components analysis (PCA from now on) is the real workhorse of exploratory data analysis. It makes no
assumptions about group membership, but clustering (possibly in high dimensions) of the resulting sample scores can be
very helpful in understanding your data. The theory and practice of PCA is covered well elsewhere (Chapter 3 of [2] is
an excellent choice). Here, we’ll concentrate on using the PCA methods in ChemoSpec. Briefly however, you can think
of PCA as determining the minimum number of components necessary to describe a data set, in effect, removing noise.
Think of a typical spectrum: some regions are clearly just noise. Further, a typical spectroscopic peak spans quite a few
frequency units as the peak goes up, tops out, and then returns to baseline. Any one of the points in a particular peak
describe much the same thing, namely the intensity of the peak. Plus, each frequency within a given peak envelope is
correlated to every other frequency in the envelope (they rise and fall in unison as the peak changes size from sample to
sample). PCA can look ”past” all the noise and underlying correlation in the data set, and boil the entire data set down
to essentials. Unfortunately, the principal components that are uncovered in the process don’t correspond to anything
concrete, usually. Again, you may wish to consult a more detailed treatment!

Table 1 gives an overview of the options available in ChemoSpec, and the relevant functions.

There’s quite a bit of choice here; let’s work through an example and illustrate, or at least mention, the options as we
go. Keep in mind that it’s up to you to decide how to analyze your data. Most people try various options, and follow
the ones that lead to the most insight. But the decision is yours!

The first step is to carry out the PCA. You have two main options, either classical methods, or robust methods. Classical
methods use all the data you provide to compute the scores and loadings. Robust methods focus on the core or heart of
the data, which means that some samples may be downweighted. This difference is important, and the results from the
two methods may be quite different, depending upon your the nature of your data. The differences arise because PCA
methods (both classical and robust) attempt to find the components that explain as much of the variance in the data set
as possible. If you have a sample that is genuinely corrupted, for instance due to sample handling, its spectral profile may
be very different from all other samples, and it can legitimately be called an outlier. In classical PCA, this one sample
will contribute strongly to the variance of the entire data set, and the PCA scores will reflect that (it is sometimes said

2 A SAMPLE EXPLORATION 19

hcaSpectra(SrE3.IR, title = "S. repens IR Spectra")

0.
0

0.
5

1.
0

1.
5

S. repens IR Spectra: HCA Analysis

clustering method: complete distance method: euclidean

S
V

_E
P

O

T
J_

O
O

N
P

_a
dS

rE

N
R

_p
S

rE

N
W

_a
dS

rE

N
at

_a
dS

rE

G
N

C
_a

dS
rE

N
A

_p
S

rE

E
T

_p
S

rE

M
D

B
_p

S
rE

C
V

S
_a

dS
rE

LF
_a

dS
rE

N
S

I_
ad

S
rE

T
D

_a
dS

rE

S
N

_a
dS

rE

S
ol

_a
dS

rE

Key
adSrE
EPO
OO
pSrE

Figure 10: Hierarchical Cluster Analysis

2 A SAMPLE EXPLORATION 20

Table 1: Principal Components Analysis Options & Functions

PCA options scaling options function
classical PCA no scaling, autoscaling, Pareto scaling classPCA

robust PCA no scaling, median absolute deviation robPCA

Diagnostics
OD plots pcaDiag

SD plots pcaDiag

Choosing the correct no. of PCs
scree plot plotScree

bootstrap analysis (classical PCA only) pcaBoot

Score plots plotting options
2D plots robust or classical confidence ellipses plotScores

3D plots
—static 3D plots plotScores3D

—interactive 3D plots plotScoresRGL

—interactive multivariate plots plotScoresG

Loading plots
loadings vs frequencies plotLoadings

loadings vs other loadings plot2Loadings

s-plot (correlation vs covariance) sPlotSpectra

Other
HCA of PCA scores hcaScores

ANOVA-PCA aovPCA

2 A SAMPLE EXPLORATION 21

that scores and loadings follow the outliers). With robust PCA, samples with rather different characteristics do not have
as great an influence, because robust measures of variance, such as the median absolute deviation, are used.

Note that as of ChemoSpec 1.46, neither classPCA nor robPCA carry out any normalization by samples. You need to
decide if you want to normalize the samples, and if so, use normSpectra.

Besides choosing to use classical or robust methods, you also need to choose a scaling method. For classical PCA,
your choices are no scaling, autoscaling, or Pareto scaling. In classical analysis, if you don’t scale the data, large peaks
contribute more strongly to the results. If you autoscale, then each peak contributes equally to the results (including noise
”peaks”). Pareto scaling is a compromise between these two. For robust PCA, you can choose not to scale, or you can
scale according to the median absolute deviation. Median absolute deviation is a means of downweighting more extreme
peaks. The literature has plenty of recommendations about scaling options appropriate for the type of measurement
(instrument) as well as the nature of the biological data set.[2, 5–8, 11]

There is not enough space here to illustrate all possible combinations of options; Figure 11 and FIgure 12 show the use
and results of classical and robust PCA without scaling, followed by plotting of the first two PCs (we’ll discuss plotting
options momentarily). You can see from these plots that the robust and classical methods have produced rather different
results, not only in the overall appearance of the plots, but in the amount of variance explained by each PC.

Since we’ve plotted the scores to see the results, let’s mention a few features of plotScores which produces a 2D plot
of the results (we’ll deal with 3D options later). Note that an annotation is provided in the upper left corner of the plot
that describes the history of this analysis, so you don’t lose track of what you are viewing. The tol argument controls
what fraction of points are labeled with the sample name. This is a means of identifying potential outliers. The ellipse

argument determines if and how the ellipses are drawn (the 95% confidence interval is used).

You can choose "none" for no ellipses, "cls" for classically computed confidence ellipses, "rob" for robustly computed
ellipses, or "both" if you want to directly compare the two. Note that the use of classical and robust here has nothing
to do with the PCA algorithm — it’s the same idea however, but applied to the 2D array of scores produced by PCA.
Points outside the ellipses are more likely candidates for outlier status.

Plots such as shown in Figures 11 and 12 can give you an idea of potential outliers, but ChemoSpec includes more
sophisticated approaches. The function pcaDiag can produce two types of plots that can be helpful (Figures 13 and
14). The meaning and interpretation of these plots is discussed in more detail in Varmuza and Filzmoser, Chapter 3.[2]
NOTE: There is some sort of problem with the OD plot as you can plainly see. I’ll be working on it!

Depending upon your data, and your interpretation of the results, you may decide that some samples should be discarded,
in which case you can use removeSample as previously described, then repeat the PCA analysis. The next step for most
people is to determine the number of PCs needed to describe the data. This is usually done with a scree plot as shown
in Figure 15. In this case, it’s clear that most of the variance can be described by one PC! We’ll pursue that more in a
bit.

If you are using classical PCA, you can also get a sense of the number of PCs needed via a bootstrap method, as shown
in Figure 16. Note that this method is iterative and takes a bit of time. Comparing these results to the scree plot, you’ll
see that the bootstrap method suggests that 4 or 5 PCs would not always be enough to reach the 95% level, while the
scree plot suggests that 1 PC is sufficient.

Now let’s turn to viewing scores in 3D. There are currently 3 options in ChemoSpec: plotting using lattice graphics,
which produces a static plot that you have to adjust manually, and two interactive plots, one based on package rgl

and one based upon package rggobi which in turn uses the program GGobi. Probably the best place to start is with
plotScoresRGL. It it well suited to exploring data, and can be printed out in high quality. However, the nature of the
open GL graphics device means that the title and the legend move with the data, so this may not give a hardcopy suitable
for publications. This interactive plot cannot be invoked in this document, but here are the necessary commands:

plotScoresRGL(SrE3.IR, class, title = "S. repens IR Spectra",

leg.pos = "A", t.pos = "B") # not run - it’s interactive!

For full details, of course take a look at the manual page, ?plotScoresRGL. If you want a similar and probably more
publication-worthy plot, you can use plotScores3D as shown in Figure 17. In this example we’ve set ellipse = FALSE

because the ”adSrE” data points form a very elongated ellipse which sets the plotting limits in such a way that other
points become very hard to see.

Finally, you can install the program GGobi and the package rggobi and use plotScoresG to produce an different

2 A SAMPLE EXPLORATION 22

class <- classPCA(SrE3.IR, choice = "noscale")

plotScores(SrE3.IR, title = "S. repens IR Spectra",

class, pcs = c(1, 2), ellipse = "rob", tol = 0.01)

Warning message: Group EPO has only 1 member (no ellipse possible)

Warning message: Group OO has only 1 member (no ellipse possible)

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

S. repens IR Spectra: PCA Score Plot

robust ellipses by group

PC1 score (93%)

P
C

2
sc

or
e

(3
.3

%
)

centered/noscale/classical

NR_pSrE

SV_EPO

NW_adSrE

Key
adSrE
EPO
OO
pSrE

Figure 11: Classical PCA

2 A SAMPLE EXPLORATION 23

robust <- robPCA(SrE3.IR, choice = "noscale")

plotScores(SrE3.IR, title = "S. repens IR Spectra",

robust, pcs = c(1, 2), ellipse = "rob", tol = 0.01)

Warning message: Group EPO has only 1 member (no ellipse possible)

Warning message: Group OO has only 1 member (no ellipse possible)

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

S. repens IR Spectra: PCA Score Plot

robust ellipses by group

PC1 score (68%)

P
C

2
sc

or
e

(1
9%

)

l1median/noscale/robust

NR_pSrE

SV_EPOTJ_OO

Key
adSrE
EPO
OO
pSrE

Figure 12: Robust PCA

2 A SAMPLE EXPLORATION 24

diagnostics <- pcaDiag(SrE3.IR, class, pcs = 2,

plot = "OD")

● ● ●
●

●
●

●
●

●

●

●

● ● ● ● ●

5 10 15

0.
0

0.
5

1.
0

1.
5

Possible PCA Outliers based on Orthogonal Distance

centered/noscale/classical 2 PCs
Serenoa repens IR quality study

or
th

og
on

al
 d

is
ta

nc
e

NR_pSrE
NW_adSrE

Figure 13: Diagnostics: Orthogonal Distances

2 A SAMPLE EXPLORATION 25

diagnostics <- pcaDiag(SrE3.IR, class, pcs = 2,

plot = "SD")

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Possible PCA Outliers based on Score Distance

centered/noscale/classical 2 PCs
Serenoa repens IR quality study

sc
or

e
di

st
an

ce

SV_EPO

Figure 14: Diagnostics: Score Distances

2 A SAMPLE EXPLORATION 26

plotScree(class, title = "S. repens IR Spectra")

2 4 6 8 10

0
20

40
60

80
10

0

S. repens IR Spectra: Scree Plot

factor

pe
rc

en
t

1 2 3 4 5 6 7 8 9 10

centered/noscale/classical

cumulative percent

 individual percent

Figure 15: Scree Plot

2 A SAMPLE EXPLORATION 27

out <- pcaBoot(SrE3.IR, pcs = 5, choice = "noscale")

●

●

●

●

●

●

1 2 3 4 5

0.
75

0.
80

0.
85

0.
90

0.
95

Bootstrap Analysis of Number of PCs

Number of components

E
xp

la
in

ed
 v

ar
ia

nc
e

Serenoa repens IR quality study centered/noscale/classical

Figure 16: Bootstrap Analysis for No. of PCs

2 A SAMPLE EXPLORATION 28

plotScores3D(SrE3.IR, class, title = "S. repens IR Spectra",

ellipse = FALSE)

S. repens IR Spectra: PCA Score Plot

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PC1 (93%)

PC2 (3.3%)

PC3 (1.8%)

adSrE EPO OO pSrE

Serenoa repens IR quality study

Figure 17: Plotting Scores in 3D using plotScores3D

2 A SAMPLE EXPLORATION 29

plotLoadings(SrE3.IR, class, title = "S. repens IR Spectra",

loads = c(1, 2), ref = 1)

S. repens IR Spectra: Loadings Plot

centered/noscale/classical
wavenumber

0.
00

0.
10

0.
20

1000 2000 3000 4000

R
ef

er
en

ce
 S

pe
ct

ru
m

−
0.

2
−

0.
1

0.
0

0.
1

P
C

 1
 L

oa
di

ng
s

−
0.

15
−

0.
05

0.
05

0.
10

P
C

 2
 L

oa
di

ng
s

Figure 18: Loading Plot

interactive plot. This is actually the most powerful analysis tool, as GGobi is not restricted to 3 dimensions, and can use
projection pursuit methods to find interesting views of your data. With an additional package, DescribeDisplay, you
can create very nice plots of your data. Note that as of December 2010, GGobi has been described as on ”life support”
and it seems there might be a new program in development to replace it. However, you can find a working version at
software.rc.fas.harvard.edu/mirrors/R/ (and related mirrors) thanks to Simon Urbanek. Note that the communication
between plotScoresG and GGobi does not quite work as described earlier under the discussion of the color schemes;
this will not be fixed until the future of GGobi is certain.

plotScoresG(SrE3.IR, class) # not run - it’s interactive!

In addition to the scores, PCA also produces loadings which tell you how each variable (frequencies in spectral applications)
affect the scores. Examining these loadings can be critical to interpreting your results. Figure 18 gives an example. You
can see that the hydroxyl peak above 3,000 cm-1 has a large effect on PC 1, and it is this peak that is responsible for
PC 1 explaining over 90% of the variance (mentioned earlier). It would be of interest to eliminate this peak, and repeat
the PCA, but analysis of specific data is not our goal here.

You can also plot one loading against another, using function plot2Loadings (Figure 19). This is typically not too

http://software.rc.fas.harvard.edu/mirrors/R/

2 A SAMPLE EXPLORATION 30

plot2Loadings(SrE3.IR, class, title = "S. repens IR Spectra",

loads = c(1, 2), tol = 0.002)

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●

●

●

●

●●●
●
●

●●

●

●

●
●●

●

●

●
●
●

●

●

●

●●●
●●
●●●
●●
●●

●

●
●●●●●
●●
●●
●●●●●
●
●●
●
●
●●

●
●●
●
●
●●●●
●●●●
●
●
●
●●
●●

●●
●●

●●●
●

●

●

●

●

●

●
●
●●
●

●

●

●
●●●
●
●
●
●
●●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●
●
●
●●
●
●●●
●

●

●

●

●
●

●
●●●●

●

●

●

●

●

●
●
●
●
●
●●●
●
●
●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●
●
●●●
●●●
●●
●●●
●●
●
●
●●●●●●●

●●
●●●
●●
●●●●●

●●
●●
●
●
●
●
●

●

●

●
●
●
●●

●
●

●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●
●●●
●●●

●
●

●
●●●●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●
●
●
●●●●●●

●
●●

●
●●●●●●●●●●●●●

●
●
●
●●

●
●
●

●●●●●●
●
●
●
●●

●●●
●
●●
●●●
●
●
●
●●

●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●

●
●
●●●●●

●●●●●●●●
●●

●
●
●●

●

●

●

●

●●●
●

●
●

●
●
●●

●
●●
●
●
●
●
●●●

●

●
●●●●

●
●●
●

●

●
●

●●

●●●●●

●

●

●
●●●●
●
●●

●●
●●
●●
●

●●

●
●●
●
●●
●
●●
●
●●

●
●●

●●
●
●

●●
●
●
●

●

●

●

●
●●●
●

●●

●
●

●●
●●●●●●●●●●●●●●●

●
●
●
●
●●●
●●
●●

●

●
●

●

●●

●

●

●●

●

●

●
●●

●●
●

●
●

●●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●
●●●●

●
●●
●
●●●
●
●
●
●
●●●

●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●
●●●●
●
●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●
●●●
●●●●●●
●
●
●●●●●
●●●
●
●●●●
●●●

●
●●

●
●
●●
●●●●
●●

●
●●

●
●●
●
●●
●
●

●●●

●
●

●
●

●
●
●

●●
●
●
●●●
●●
●●●
●●

●●●●●●●
●
●
●

●

●

●

●●
●●
●

●●

●
●●
●
●
●●●●●

●
●●●●●●●●
●●●
●●●

●

●●
●

●●●●
●
●
●●

●●
●●●●●

●●
●●
●
●
●
●

●●

●
●●●
●
●●

●
●
●
●●
●●●●
●
●
●

●●●●
●●
●
●●
●●
●
●●●●●●●●●
●●●●
●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●

●

−0.2 −0.1 0.0 0.1

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

S. repens IR Spectra: Covariance of Loadings

PC1 (93%) loadings

P
C

2
(3

.3
%

)
lo

ad
in

gs

centered/noscale/classical

1704.8

1706.8

1708.7

1710.6

1741.5

1743.4

1745.3

1747.3

 705.9 707.8 709.7 711.6

2916.0

2917.9
2919.8

2921.8

Figure 19: Plotting One Loading vs. Another

useful for spectroscopic data, since many of the variables are correlated (as they are parts of the same peak, hence the
serpentine lines in the figure). The most extreme points on the plot, however, can give you an idea of which peaks
(frequencies) serve to differentiate a pair of PCs, and hence, drive your data clustering.

However, a potentially more useful approach is to use an s-plot to determine which variables have the greatest influence.
A standard loadings plot (plotLoadings) shows you which frequency ranges contribute to which principal components,
but the plot allows the vertical axis to be free. Unless you look at the y axis scale, you get the impression that the
loadings for principal component 1 etc. all contribute equally. The function sPlotSpectra plots the correlation of each
frequency variable with a particular score against the covariance of that frequency variable with the same score. The
result is an s-shaped plot with the most influential frequency variables in the upper right hand and lower left quadrants.
An example is shown in Figure 20. This method was reported in Wiklund et. al.[12]

Finally, you can blend the ideas of PCA and HCA. Since PCA eliminates the noise in a data set (after you have selected
the important PCs), you can carry out HCA on the PCA scores, since the scores represent the cleaned up data. The
result using the CuticleIR data set are not different than doing HCA on the raw spectra, so we won’t illustrate it, but
the command would be:

2 A SAMPLE EXPLORATION 31

spt <- sPlotSpectra(SrE3.IR, class, title = "S. repens IR Spectra",

pc = 1, tol = 0.001)

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●
●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●●

●●
●
●
●
●●
●●

●●
●
●●

●
●
●
●●
●

●
●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●●

●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●
●
●
●
●

●●●
●●●

●

●
●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●
●
●
●●●●

●●●
●
●
●
●
●●

●

●

●

●

●
●

●
●●●●●●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●

●
●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●
●
●

●●●●●●●●●●●●●●●●●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●●●●

●
●●

●
●
●●●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●● ●

●
●

●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●●
●
●●●

●
●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●●●

●●
●

●

●

●●●●●●●●●●●● ● ● ● ●
●

●

●

●

●

●

●

●

●

● ● ● ● ●●●●●●●
●

●
●

●
●

●

●

●

●

●

●
●
●

●●●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●●

●
●
●

●
●
●
●●●
●
●
●●●●
●
●●
●
●
●●●●●●
●
●
●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●●
●
●

●

●

●

●
●●●

●

●

●

●

●
●●●●●●●●●●●

●●
●●

●●
●
●
●
●
●
●
●
●

●
●

●
●●●●

●
●

●

●
●●●●●●●●●●●
●
●●
●
●●●●●
●
●
●
●
●
●
●●●●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●

●●●●●●●●●●
●●●●●●
●●●●●●●●
●●●●
●
●●●●●●
●
●●●
●●●
●

●
●●●

●●
●●●
●●
●
●●
●
●
●●

●
●
●
●●
●
●
●
●
●

●●●

●
●●●
●
●

●

●●●●

●

●

●

●
●
●●●
●●
●

●
●

●

●
●

●
●●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●●

●
●
●●●

●

●
●

●
●●

●
●

●●

●

●

●

●●

●
●●
●
●

●

●

●
●

●
●

●

●

●●
●
●

●

●●
●●

●

●

●

●

●
●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●●

●●
●●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●
●
●●

●
●
●
●●
●
●

●

●
●

●●●
●●

●

−0.03 −0.02 −0.01 0.00 0.01 0.02

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

S. repens IR Spectra: s−Plot

covariance

co
rr

el
at

io
n

centered/noscale/classical
1706.81708.7

1741.51743.41093.51124.4

1704.8

Figure 20: s-Plot to Identify Influential Frequencies

2 A SAMPLE EXPLORATION 32

Raw
Data = Grand

Mean
Means for
each level
of factor 1

Means for
each level
of factor 2

Means for
each level

of
factor 1 x
factor 2

Residual
Error+

+

+

+

Figure 21: aovPCA breaks the data into a series of submatrices

#############################
#############################

#############################

#############################

#############################

#############################

#############################
#############################

#############################

#############################

#############################

#############################

original data factor matrix

group membership

rows replaced by
average of all
samples of a given
factor level

#############################
#############################

#############################

#############################

#############################

#############################

#############################
#############################

#############################

#############################

#############################

#############################

original data factor matrix

group membership

Figure 22: Submatrices are composed of rows which are averages of each factor level

hcaScores(SrE3.IR, class, scores = c(1:5), title = "S. repens IR Spectra")

2.6 ANOVA-PCA

Harrington et. al.[13] (and a few others[14]) have demonstrated a method which combines traditional ANOVA with PCA.
Standard PCA is blind to class membership, though one generally colors the points in a score plot using the known class
membership. ANOVA-PCA uses the class membership to divide the original centered data matrix into submatrices. Each
submatrix corresponds to a particular factor, and the rows of the submatrix have been replaced by the average spectrum
of each level of the factor. The original data set is thought of as a sum of these submatrices plus residual error. The
residual error is added back to each submatrix and then PCA is performed. This is conceptually illustrated in Figures ??
and 22.

ANOVA-PCA has been implemented in ChemoSpec via the functions aovPCA, aovPCAscores and aovPCAloadings.
The idea here is that if a factor is significant, there will be separation along PC1 in a plot of PC1 vs PC2. Unfortunately,
there are not enough groups and levels within the SrE.IR data set to carry out ANOVA-PCA. However, the help page
for aovPCA contains an example using the CuticleIR data set which illustrates how to carry out the analysis. It also
demonstrates another useful function, splitSpectraGroups which allows you to take an existing group designation and
split into new designations. See > ?aovPCA .

3 FUNCTIONS THAT ARE NOT DISCUSSED HERE 33

2.7 Model-Based Clustering Using mclust

PCA and HCA are techniques which are unsupervised and assume no underlying model. HCA computes distances between
pairs of spectra and groups these in an iterative fashion until the dendrogram is complete. PCA seeks out components
that maximize the variance. While in PCA one often (and ChemoSpec does) displays the samples coded by their group
membership, this information is not actually used in PCA; any apparent correspondence between the sample group
classification and the clusters found is accidental in terms of the computation, but of course, this is what one hopes to
find!

mclust is a model-based clustering package that takes a different approach.[15, 16]. mclust assumes that there are
groups within your data set, and that those groups are multivariate normally distributed. Using an iterative approach,
mclust samples various possible groupings within your data set, and uses a Bayesian Information Criterion (BIC) to
determine which of the various groupings it finds best fits the data distribution. mclust looks for groups that follow
certain constraints, for instance, one constraint is that all the groups found must have a spherical distribution of data
points, while another allows for ellipsoidal distributions. See the paper by Fraley and Raftery[16] for more details. The
basic idea however is that mclust goes looking for groups in your data set, and then you can compare the groupings it
finds with the groupings you know to be true.

ChemoSpec contains several functions that interface with and extend mclust functions. mclust first uses the BIC to
determine which model best fits your data; these results are shown in Figure 23. Next, Figure 24 shows the 5 groups that
mclust finds in the data which actually is composed of 4 groups (though admittedly, two of those groups are composed
of one member each; these are labeled ”e”). It’s of some interest to visually compare the score plot in Figure ?? with
the mclust results in Figure 24. Next, mclust will map the true groups onto the groups it has found. Points in error
are X-ed out. These results can be seen in Figure 25. From this plot, you can see that mclust finds 4 groups among
the two true groups ”adSrE” and ”pSrE”.

You can also do a similar analysis in 3D, using mclust3dSpectra. This function uses mclust to find the groups, but
then uses non-mclust functions to draw confidence ellipses. This function uses rgl graphics so it cannot demonstrated
here, but the commands would be:

mclust3dSpectra(SrE3.IR, class) # not run - it’s interactive!

You have all the options here that you do with plotScoresRGL, namely, classical, robust or no ellipses, control of the
ellipse details, and labeling of extreme points.

I hope you have enjoyed this tour of the features of ChemoSpec!

3 Functions That Are Not Discussed Here

The help files of course do apply . . .

1. splitSpectraGroups A good example of its use can be found in > ?aovPCA .

2. hypTestScores

3. hmapSpectra

4 Technical Background

ChemoSpec is written entirely in R, there is no compiled code. Hence, it should be platform independent (please let me
know if you discover otherwise). ChemoSpec uses S3 classes under the hood because frankly they were much faster to
write. For the pros and cons of classes and object-oriented programming in R, see the help archives (search my name for
one thread and some really interesting replies from the big dogs). ChemoSpec employs several different graphics packages
- the choice was one of practicality. In general, I tried to make all the graphics output look similar for consistency.

In understanding the operation of a package, it is useful to know how the functions relate to each other, i.e., which
functions call each other. These relationships are readily visualized with a diagram like Figure 26. This was generated
by first using the foodweb function in package mvbutils[17], then removing the links to function chkSpectra which

4 TECHNICAL BACKGROUND 34

model <- mclustSpectra(SrE3.IR, class, plot = "BIC",

title = "S. repens IR Spectra")

2 4 6 8

0
20

40
60

80

number of components

B
IC

●

●

●
●

●

●

●

●

●

●
● ●

● ●

●

●

● ●

●

●
●

●

●
●

●

●

●

●EII
VII
EEI
VEI
EVI

VVI
EEE
EEV
VEV
VVV

S. repens IR Spectra: How Many Clusters?

Serenoa repens IR quality study centered/noscale/classical

Mclust optimal model: EEV

Figure 23: mclust Chooses an Optimal Model

4 TECHNICAL BACKGROUND 35

model <- mclustSpectra(SrE3.IR, class, plot = "proj",

title = "S. repens IR Spectra")

−0.5 0.0 0.5

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

PC1

P
C

2

a
a

a

a

a

a

b

b c

cc

c

d

d

e

e

S. repens IR Spectra: Clusters Found by mclust

Serenoa repens IR quality study centered/noscale/classical

Mclust optimal model: EEV

Figure 24: mclust’s Thoughts on the Matter

4 TECHNICAL BACKGROUND 36

model <- mclustSpectra(SrE3.IR, class, plot = "errors",

title = "S. repens IR Spectra", truth = SrE3.IR$groups)

Warning message: classification and truth differ in number of groups

−0.5 0.0 0.5

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

PC1

P
C

2

a
a

a

a

a

a

b

b c

cc

c

d

d

e

e

S. repens IR Spectra: Misclassifications?

Serenoa repens IR quality study centered/noscale/classical

Mclust optimal model: EEV

Figure 25: Comparing mclust Results to the TRUTH

5 ACKNOWLEDGEMENTS 37

aovPCA

aovPCAloadings
aovPCAscores

avgFacLvls

baselineSpec

binBuck

binData

check4Gaps

classPCA
colLeaf

conColScheme

coordProjCS

getManyCsv

groupNcolor

hcaScores

hcaSpectra

hmapSpectra

hypTestScores

isWholeNo

labelExtremes

labelExtremes3d

LoopThruSpectra

makeEllipsoid

mclust3D

mclust3dSpectra

mclustSpectra

normSpectra

normVec

pcaBoot

pcaDiag

plot2Loadings

plotHCA

plotLoadings

plotScores

plotScores3D

plotScoresCor

plotScoresDecoration

plotScoresG

plotScoresRGL

plotScree

plotSpectra

q2rPCA

r2qPCA

removeFreq

removeSample

robPCA

rowDist

seX

seXy

seXy95
seXyIqr

seXyMad

shrinkLeaf

specSurvey

splitSpectraGroups

sPlotSpectra

sumGroups

sumSpectra

Figure 26: Map of Functions in ChemoSpec

generates a lot of clutter since nearly all functions in ChemoSpec call it. Finally, the resulting adjacency matrix was
converted into a graph by gplot in package sna[18].

5 Acknowledgements

The development of ChemoSpec began while I was on sabbatical, and was aided greatly by an award of a Fisher Fellowship.
These programs are coordinated by the Faculty Development Committee at DePauw, and I am very grateful to them
as well as the individuals who originally created these programs. One of my student researchers, Kelly Summers, took
the data included in CuticleIR in the summer of 2009 as part of a preliminary study. Prof. Dan Raftery at Purdue
University provided an NMR data set (not included here) which was very helpful in troubleshooting functions. I am also
grateful to Prof. Peter Filzmoser who answered a number of my questions related to the algorithms in his chemometrics
package. Finally, Roberto Canteri of the Fundazione Bruno Kessler (Italy) brought some small bugs to my attention, and
made some good suggestions for improving the underlying code. I am grateful to Roberto for assistance!

6 THE COMPETITION 38

6 The Competition

Several other packages exist which do some of the same tasks as ChemoSpec, and do other things as well. spectrino

is a GUI interface that runs only under the Windows OS[19]. It runs as a separate program in communication with R.
It is oriented mainly toward processing and organizing spectral data prior to statistical analysis. hyperspec is a very
nice package that appeared while I was developing ChemoSpec, and it does many of the same things as ChemoSpec,
and a few more. It is written using S4 classes which suggests that Claudia Beleites is a better computer scientist
than me! TIMP is geared toward more sophisticated modeling of time-dependent spectral data sets.[20] Finally, the
package Metabonomic[21] provides a GUI interface to spectral processing such as baseline correction, as well as a range
of exploratory and supervised statistical methods. Note: my comments here are based on the latest versions I have
explored; newer versions may have considerably more features. Check ’em out for yourself!

References

[1] B. A. Hanson, ChemoSpec: Exploratory Chemometrics for Spectroscopy, 2011. R package version 1.47-0.

[2] K. Varmuza and P. Filzmoser, Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, 2009.

[3] D. S. Wishart, “Current progress in computational metabolomics,” Briefings in Bioinformatics, vol. 8, no. 5,
pp. 279–293, 2007.

[4] Y. Xie, knitr: A general-purpose package for dynamic report generation in R, 2011. R package version 0.0.8.

[5] A. Craig, O. Cloareo, E. Holmes, J. K. Nicholson, and J. C. Lindon, “Scaling and normalization effects in NMR
spectroscopic metabonomic data sets,” Analytical Chemistry, vol. 78, no. 7, pp. 2262–2267, 2006.

[6] R. Romano, M. T. Santini, and P. L. Indovina, “A time-domain algorithm for NMR spectral normalization,”
Journal of Magnetic Resonance, vol. 146, no. 1, pp. 89–99, 2000.

[7] R. A. van den Berg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. van der Werf, “Centering,
scaling, and transformations: improving the biological information content of metabolomics data,” BMC
Genomics, vol. 7, p. 15, 2006.

[8] S. C. Zhang, C. Zheng, I. R. Lanza, K. S. Nair, D. Raftery, and O. Vitek, “Interdependence of signal processing
and analysis of urine H-1 NMR spectra for metabolic profiling,” Analytical Chemistry, vol. 81, no. 15,
pp. 6080–6088, 2009.

[9] P. E. Anderson, N. V. Reo, N. J. DelRaso, T. E. Doom, and M. L. Raymer, “Gaussian binning: a new kernel-based
method for processing NMR spectroscopic data for metabolomics,” Metabolomics, vol. 4, no. 3, pp. 261–272,
2008.

[10] T. De Meyer, D. Sinnaeve, B. Van Gasse, E. Tsiporkova, E. R. Rietzschel, M. L. De Buyzere, T. C. Gillebert,
S. Bekaert, J. C. Martins, and W. Van Criekinge, “NMR-based characterization of metabolic alterations in
hypertension using an adaptive, intelligent binning algorithm,” Analytical Chemistry, vol. 80, no. 10,
pp. 3783–3790, 2008.

[11] T. K. Karakach, P. D. Wentzell, and J. A. Walter, “Characterization of the measurement error structure in 1D H-1
NMR data for metabolomics studies,” Analytica Chimica Acta, vol. 636, no. 2, pp. 163–174, 2009.

[12] S. Wiklund, E. Johansson, L. Sjostrom, E. J. Mellerowicz, U. Edlund, J. P. Shockcor, J. Gottfries, T. Moritz, and
J. Trygg, “Visualization of gc/tof-ms-based metabolomics data for identification of biochemically interesting
compounds using opls class models,” Analytical Chemistry, vol. 80, no. 1, pp. 115–122, 2008. PMID: 18027910.

[13] P. Harrington, N. Vieira, J. Espinoza, J. Nien, R. Romero, and A. Yergey, “Analysis of variance-principal
component analysis: A soft tool for proteomic discovery,” ANALYTICA CHIMICA ACTA, vol. 544, no. 1-2,
pp. 118–127, 2005.

[14] R. C. Pinto, V. Bosc, H. Nocairi, A. S. Barros, and D. N. Rutledge, “Using ANOVA-PCA for discriminant analysis:
Application to the study ofmid-infrared spectra of carraghenan gels as a function of concentration and
temperature,” ANALYTICA CHIMICA ACTA, vol. 629, no. 1-2, pp. 47–55, 2008.

REFERENCES 39

[15] C. Fraley and A. Raftery, mclust: Model-Based Clustering / Normal Mixture Modeling, 2009. R package version
3.4.

[16] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant analysis, and density estimation,” Journal of
the American Statistical Association, vol. 97, no. 458, pp. 611–631, 2002.

[17] M. V. Bravington, mvbutils: Workspace organization, code and documentation editing, package prep and editing,
etc., 2009. R package version 2.5.0.

[18] C. T. Butts, sna: Tools for Social Network Analysis, 2010. R package version 2.2-0.

[19] T. Krastev, “spectrino software: Spectra visualization and preparation for R,” Journal of Statistical Software,
vol. 18, no. 10, pp. 1–16, 2007.

[20] K. M. Mullen and I. H. M. van Stokkum, “TIMP: an R package for modeling multi-way spectroscopic
measurements,” Journal of Statistical Software, vol. 18, no. 3, 2007.

[21] J. L. Izquierdo, Metabonomic: GUI for Metabonomic Analysis, 2009. R package version 3.3.1.

	Introduction
	A Sample Exploration
	Getting Data into ChemoSpec
	Preliminary Inspection of Data
	Data Pre-Processing Options
	Hierarchical Cluster Analysis
	Principal Components Analysis
	ANOVA-PCA
	Model-Based Clustering Using mclust

	Functions That Are Not Discussed Here
	Technical Background
	Acknowledgements
	The Competition
	References

