
GEOmap: mapping and geology in R

Jonathan M. Lees
University of North Carolina, Chapel Hill

Department of Geological Sciences
CB #3315, Mitchell Hall

Chapel Hill, NC 27599-3315
email: jonathan.lees@unc.edu

ph: (919) 962-0695

March , 2008

Abstract

Geomap software is aimed at geological applications in mapping.

1 Introduction

I developed a set of programs for making complex geological maps in R. These
program parallel, to a certain extent, the maps and the mapdata packages al-
ready available but they are different in significant ways and provide a slightly
different set of the utilities. Maps currently available in the mapdata package
can be used by GEOmap, but most of the data required by GEOmap is included
in a separate package called geomapdata, loaded independently.

The main differences between maps and GEOmap is the lower demands
GEOmap has on requiring the maps information to be stored as independent
strokes and topologically related polygons. This step, while useful and powerful
for many applications, is onerous to set up for maps that are digitized on the
fly, either from paper copies or from digital images on the screen.

The other difference is in the handling of projections. GEOmap has a few
simple cartographic projections built in and can be expanded later by users.

2 Projections

There are 7 cartographic projections currently installed in GEOmap that can
be called by the user and applied to data either in the forward mode (Lat-Lon
to x-y) or in the inverse mode to go from the projected world back to geographic
coordinates.

The set up of the projection is accomplished by running, for example,

1

> library(GEOmap)
> options(continue = " ")
> kliuLL = c(56.056000, 160.640000)
> PROJ =setPROJ(type=2, LAT0=kliuLL[1], LON0= kliuLL[2] , LATS=NULL, LONS=NULL, DLAT=NULL, DLON=NULL, FN =0)
>

This makes this location (Kliuchevskoi volcano in Kamchatka, Russia) the
origin of a utm spherical projection. The structure PROJ must be passed as
an argument to subsequent calls to GEOmap plotting routines and conversions.
The choices for projections can be seen by calling projtype() as in,

> projtype()

[1] Projection Types
[1] 0 = None
[1] 1 = merc.sphr
[1] 2 = utm.sphr
[1] 3 = lambert.cc
[1] 4 = stereo.sphr
[1] 5 = utm.elps
[1] 6 = equid.cyl
[1] 99 = old crosson projection

And we can see the usage of the projection by loading and plotting a map.
First we plot the map with no projection, so the xy coordinates are Lat-Lon
and the map will be distorted.

> require('geomapdata')
> data(kammap)
> plotGEOmap(kammap, add=FALSE, asp=1)

2

lon

la
t

30
40

50
60

70
80

150 160 170 180 190 200 210

150 160 170 180 −170 −160 −150

Next we show how to plot the map in projected form,

> plotGEOmapXY(kammap, PROJ=PROJ, add=FALSE, xlab="km", ylab="km")

3

−1000 −500 0 500 1000 1500 2000

−
50

0
0

50
0

10
00

15
00

20
00

km

km

Notice that by resizing the window the map retains the proper aspect ration
and the units are correct.

3 Simple Map

4 Map Structure

The internal structure of a GEOmap objection consists of three elements which
are lists themselves. The raw XY coordinates are stored as long vectors on
the POINTS list. These are all the geographic coordinates of the points in the
map structure. The STROKES structure contains the meta data that allows
one to access the POINTS and perform tasks and create graphical output. The
STROKES structure includes a set of vectors which have the following structure:

� STROKES

� POINTS

4

4.1 POINTS

The POINTS is a list consisting of two vectors:

� lat

� lon

These are a concatenation of all the stroke points in the map.

4.2 STROKES

The STROKES list is the meta data for the lat-lon pairs stored in POINTS:

nam Name for the stroke

num Number of points in the stroke

index Index of where the stroke begins in the POINTS vector

col Color for the stroke

style Style: 1=points, 2=lines, 3=polygons

code Index code (optional)

The Index code used in early versions:

a major coasts islands lakes

b intermediate coasts islands lakes

c minor coasts islands lakes

d very minor coasts islands lakes

e major rivers

f intermediate rivers

g minor rivers

h very minor rivers

i political borders

j major faults

k minor faults

l geology formation

m major high ways

n minor roads

p plates

0 generic

5

5 Geologic Example

The following illustrates some of the features available in GEOmap. First we set
up the data and then begin making the plot after manipulating the database.

> data(cosomap)
> data(faults)
> data(hiways)
> data(owens)
> data(cosogeol)
> ## cosocolnumbers = cosogeol$STROKES$col+1
>
> proj = cosomap$PROJ
> plotGEOmapXY(cosomap, PROJ=proj, add=FALSE, ann=FALSE, axes=FALSE)
> cosogeol = boundGEOmap(cosogeol)
> plotGEOmapXY(cosogeol, PROJ=proj, add=TRUE, ann=FALSE, axes=FALSE)
> plotGEOmapXY(cosomap, PROJ=proj, add=TRUE, ann=FALSE, axes=FALSE)
> plotGEOmapXY(faults, PROJ=proj, add=TRUE, ann=FALSE, axes=FALSE)
>

6

The colors here are not very useful, so we can modify them by assigning
colors from a given palette, in this case the palette of the program geotouch,

> XMCOL = setXMCOL()
> cosocolnumbers = 1:length(cosogeol$STROKES$col)
> newcol = XMCOL[cosogeol$STROKES$col]
> cosocolnums = cosogeol$STROKES$col
> cosogeol$STROKES$col = newcol
>

and lastly we must create a legend by matching the colors with the symbols or
names of hte units:

> ss = strsplit(cosogeol$STROKES$nam, split="_")
> geo = unlist(lapply(ss , FUN="getmem", mem=1))
> UGEO = unique(geo)
> mgeo = match(geo, UGEO)
> cosogeol = boundGEOmap(cosogeol)
> gcol = paste(sep=".", geo, cosogeol$STROKES$col)
> ucol = unique(gcol)
> spucol = strsplit(ucol,split="\\.")
> N = length(spucol)
> names = unlist(lapply(spucol , FUN="getmem", mem=1))
> shades = unlist(lapply(spucol , FUN="getmem", mem=2))
> ORDN = order(names)
> plotGEOmapXY(cosomap, PROJ=proj, add=FALSE, ann=FALSE, axes=FALSE)
> plotGEOmapXY(cosogeol, PROJ=proj, add=TRUE, ann=FALSE, axes=FALSE)
> plotGEOmapXY(cosomap, PROJ=proj, add=TRUE, ann=FALSE, axes=FALSE)
> plotGEOmapXY(faults, PROJ=proj, add=TRUE, ann=FALSE, axes=FALSE)
> geoLEGEND(names[ORDN], shades[ORDN], .28, .14, 16, 6)
>

7

445 BLK COS Mzb QTs Qba Qbc Qbd Qbe Qbh Qbj Qbk Qbl Qbo Qbq Qbr

Qbs Qbv Qbw Qbx Qbz Qls Qoa Qr Qrp Qtb Qtx Qya Ta Tac Tan Tap

Tax Tbc Tbp Tbp Tbr Tbx Tby Tc Tc Tcp Td Tdp Tdx Tdy Tdz Tm

Tmp Trd Tt

6 Building a map plot and controling the figure

In this section I illustrate how to build a map figure by adding several com-
ponents, and controlling the plotting functions. We start by first reading in
some data. The volcano data is taken from the Smithsonian Institution web
site listing volcanoes of the world. These have been converted to s simple file
including LAT, LON, Elevation and volcano name. The station represent the
station locations for the NIED network in Japan. The earthquakes are taken
from a catalog of earthquake hypocenters that can be downloaded from the
Internet from a variety of websites currently available.

> jvolcs = scan(file="Volc_points.LLZ", what=list(name="", lat=0, lon=0, h=0), sep=" ")
> stas = scan(file="newFUJIstation.LLZ", what=list(name="", lat=0, lon=0, h=0), sep=" ")
> eqs = scan(file="japan.eng", what=list(lon=0, lat=0, z=0, m=0))
>
>

Next we set the projection to be centered on Mt. Fuji with a UTM projection.
To extract the LAT-LON of Mt. Fuji from the volcano data base, we use the

8

grep function to match the character string FUJI with the corresponding name
in the data set.

> ifuji = grep("FUJI", jvolcs$name)
> PROJ = setPROJ(type=2, LAT0=jvolcs$lat[ifuji] , LON0=jvolcs$lon[ifuji])
>

We load up the japmap provided by the geomapdata package, create the
projected plot and limit the plotting region to a LAT-LON rectangle described
by the vector FUJIAREA. This is calculated using the XY.GLOB function that
takes x-y coordinates in km and converts to LAT-LON geographic coordinates.
These are stored in vector FUJIAREA as a rectangular region, and used in
plotGEOmapXY to restrict the plotting region. Here we have used a distance
of 15o km north and south of Mt. Fuji as our target region.

> LL = XY.GLOB(c(-150, 150), c(-150,150), PROJ =PROJ)
> FUJIAREA = c(LL$lon[1], LL$lat[1], LL$lon[2], LL$lat[2])
>

Now we are ready to plot the data previously scanned and add to the current
plot using the same projection parameters stored in list PROJ. First the whole
of Japan is plotted with the volcanoes plotted as triangle.

> require("geomapdata")
> data("japmap", package="geomapdata")
> plotGEOmapXY(japmap, PROJ=PROJ, xlab="km", ylab="km")
> pointsGEOmapXY(jvolcs$lat, jvolcs$lon, PROJ=PROJ, col='red', pch=2, cex=.5)
> rect(-150, -150, 150,150)
>
>

9

−1500 −1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00

km

km

Next we can zoom into the desired target region shown as a rectangle in the
previous figure:

> plotGEOmapXY(japmap, LIM =FUJIAREA, PROJ=PROJ, xlab="km", ylab="km")
> pointsGEOmapXY(jvolcs$lat, jvolcs$lon, PROJ=PROJ, col='red', pch=2, cex=.5)
> textGEOmapXY(jvolcs$lat, jvolcs$lon , PROJ=PROJ, labels = jvolcs$name, cex=.5, pos=3)
>

10

−150 −100 −50 0 50 100 150

−
15

0
−

10
0

−
50

0
50

10
0

15
0

km

km

IZU−TOBU

HAKONE

FUJI

TATESHINA

ON−TAKE

HAKU−SAN
NORIKURA

YAKE−DAKE

TATE−YAMA

NIIGATA−YAKE−YAMA
MYOKO

KUROHIME
IIZUNA

ASAMA

KUSATSU−SHIRANE
SHIGA

HARUNA
AKAGI

HIUCHI

NIKKO−SHIRANENANTAIOMANAGO_GROUP

TAKAHARA

NASU

OSHIMA

TO−SHIMA

NII−JIMA

KOZU−SHIMA

MIYAKE−JIMA

KUROSE_HOLE

HACHIJO−JIMA

To restrict plotting of specific features in the map database japmap we can
pass a selection vector to the plotting program. In this case the Japan map has
coastal data and internal prefecture boundaries. The prefecture boundaries are
useful for orientation on maps, but they may also clutter a plot if they are not
needed. In this case the STROKES in the data have tags labeled either “a” or
“i”, where the tag “i” stands for internal.

> print(japmap$STROKES$code)

[1] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[19] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[37] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[55] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[73] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[91] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[109] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[127] "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a" "a"
[145] "a" "a" "a" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i"
[163] "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i"
[181] "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i"
[199] "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i" "i"

11

if we choose those strokes that are not internal and create a selection vector,
we can quickly elliminate the internal boundaries.

> isel = which(japmap$STROKES$code != "i")
> plotGEOmapXY(japmap, LIM =FUJIAREA, PROJ=PROJ, SEL=isel, xlab="km", ylab="km")
> pointsGEOmapXY(jvolcs$lat, jvolcs$lon, PROJ=PROJ, col='red', pch=2, cex=.5)
> textGEOmapXY(jvolcs$lat, jvolcs$lon , PROJ=PROJ, labels = jvolcs$name, cex=.5, pos=3)
>
>

−150 −100 −50 0 50 100 150

−
15

0
−

10
0

−
50

0
50

10
0

15
0

km

km

IZU−TOBU

HAKONE

FUJI

TATESHINA

ON−TAKE

HAKU−SAN
NORIKURA

YAKE−DAKE

TATE−YAMA

NIIGATA−YAKE−YAMA
MYOKO

KUROHIME
IIZUNA

ASAMA

KUSATSU−SHIRANE
SHIGA

HARUNA
AKAGI

HIUCHI

NIKKO−SHIRANENANTAIOMANAGO_GROUP

TAKAHARA

NASU

OSHIMA

TO−SHIMA

NII−JIMA

KOZU−SHIMA

MIYAKE−JIMA

KUROSE_HOLE

HACHIJO−JIMA

7 Convert from a GMT file

Many earth scientists use the program GMT (Generic Mapping Tools) to make
figures for research and publication. GMT is a program that includes plotting
routines, a small amount of analysis and numerous cartographic projections.
The main output of GMT is postscript figures. One purpose of GEOmap is to
replace GMT with a more general mapping platform that produces figures as
well is high level statistical analysis.

12

As a result I show here how one can convert a file used by GMT to a GEOmap
data file. Map information in GMT are stored as strokes separated by a flagged
marker, typically by the greater than symbol “>”. Here we read in a GMT map
file that has coordinates of the crude, world, plate-tectonic boundaries.

> plates = scan(file="Plates.gmt", what="", sep="\n")

This file has separated strokes, but also some more information (meta data)
on the separator lines, which can be used to augment the GEOmap database.
There are 89 strokes in this data file. These are the first 10 headers:

> g = grep("^>", plates)
> plates[g[1:10]]

[1] "> PLT1 13 2 13 p 3.800000 12.500000 93.599998 91.800003"
[2] "> PLT2 35 2 13 p -9.400000 2.900000 114.900002 94.500000"
[3] "> PLT3 16 2 13 p 53.090000 59.124100 -142.994995 -164.031006"
[4] "> PLT4 7 2 13 p 50.610699 52.518600 -165.889999 -178.641998"
[5] "> PLT5 12 2 13 p 50.633400 55.190498 179.565002 163.968994"
[6] "> PLT6 4 2 13 p -10.300000 -9.500000 122.400002 116.400002"
[7] "> PLT7 32 2 13 p 1.900000 34.500000 138.300003 121.599998"
[8] "> PLT8 11 2 13 p -1.200000 1.200000 136.500000 131.000000"
[9] "> PLT9 8 2 13 p 17.000000 20.000000 94.099998 93.800003"
[10] "> PLT10 23 2 13 p 3.100000 34.000000 147.300003 132.100006"

>
>

First we will read in each stroke, extract the LAT-LON information and
store in a list.

> PLATES = list(STROKES=list(nam=NULL, num=NULL, index=NULL, col=NULL, style=NULL, code=NULL),
POINTS=list(lat=NULL, lon=NULL))
> K = 0
> for(i in 1:length(g))

{
i1 = g[i]+1
i2 = g[i+1]-1
if(i == length(g)) i2 = length(plates)
LONLAT = as.numeric(unlist(strsplit(plates[i1:i2], split=" ")))
lon = LONLAT[seq(from=1, to=length(LONLAT), by=2)]
lat = LONLAT[seq(from=2, to=length(LONLAT), by=2)]

PLATES$POINTS$lat = c(PLATES$POINTS$lat, lat)
PLATES$POINTS$lon = c(PLATES$POINTS$lon, lon)

PLATES$STROKES$nam = c(PLATES$STROKES$nam, paste("PLATE", i, sep=""))
PLATES$STROKES$num = c(PLATES$STROKES$num, length(lat))
PLATES$STROKES$index = c(PLATES$STROKES$index, K)

13

PLATES$STROKES$col = c(PLATES$STROKES$col, "blue")
PLATES$STROKES$style = c(PLATES$STROKES$style, 2)
PLATES$STROKES$code = c(PLATES$STROKES$code, "p")

K = K+length(lat)

}
> PLATES$POINTS$lon = fmod(PLATES$POINTS$lon, 360)
> PLATES = boundGEOmap(PLATES, NEGLON =FALSE)
> PLATES$PROJ = PROJ
>

> data(worldmap)
> plotGEOmap(worldmap, asp=1)
> plotGEOmap(PLATES, add=TRUE)
>

lon

la
t

−
15

0
−

10
0

−
50

0
50

10
0

15
0

0 50 100 150 200 250 300 350

0 50 100 150 −160 −110 −60 −10

Or to show the map of Japan, projected with volcanoes, earthquakes and
plate tectonic boundaries,

14

> plotGEOmapXY(japmap, PROJ=PROJ, SEL=isel, xlab="km", ylab="km")
> pointsGEOmapXY(jvolcs$lat, jvolcs$lon, PROJ=PROJ, col='red', pch=2, cex=.5)
> pointsGEOmapXY(eqslat,eqslon, PROJ=PROJ, col='green', pch=".", cex=2)
> plotGEOmapXY(PLATES, PROJ=PROJ, add=TRUE)
>

−1500 −1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00

km

km

Here the earthquakes are plotted as one single color but often we would like
to see the events plotted with colors coded according to depth,

> rcol = rainbow(120)
> ecol = 1+floor(99* (eqs$z-min(eqs$z))/(max(eqs$z)-min(eqs$z)))
> plotGEOmapXY(japmap, PROJ=PROJ, SEL=isel, xlab="km", ylab="km")
> ## pointsGEOmapXY(jvolcs$lat, jvolcs$lon, PROJ=PROJ, col='red', pch=2, cex=.5)
> pointsGEOmapXY(eqslat,eqslon, PROJ=PROJ, pch=".", cex=2, col=rcol[ecol])
> plotGEOmapXY(PLATES, PROJ=PROJ, add=TRUE)
>

15

−1500 −1000 −500 0 500 1000

−
10

00
−

50
0

0
50

0
10

00

km

km

To finish off the plot we had the horizontal scale in km, the size of the
earthquakes scaled by magnitude with a small legend at the top, and a horzontal
scale showing the colors associated with depth. The following is a short function
for plotting the earthquake size scale at the top.

> print(sizelegend)

function (se, am, pch = pch)
{

if (missing(pch))
pch = 1

u = par("usr")
ex = c(u[1] + 0.05 * (u[2] - u[1]), u[1] + 0.2 * (u[2] -

u[1]))
why = u[3] + 0.95 * (u[4] - u[3])
N = length(se)
rect(u[1], u[3] + 0.9 * (u[4] - u[3]), u[1] + 0.25 * (u[2] -

u[1]), u[4], col = "white", border = NA, xpd = TRUE)
points(seq(from = ex[1], to = ex[2], length = N), rep(why,

length = N), pch = pch, cex = se, xpd = TRUE)
text(seq(from = ex[1], to = ex[2], length = N), rep(why,

16

length = N), labels = am, pos = 3, xpd = TRUE)
}
<environment: namespace:GEOmap>

and the figure is constructed by:

> esiz = exp(eqs$m)
> rsiz = RESCALE(esiz, .4, 10, min(esiz), max(esiz))
> plotGEOmapXY(japmap, PROJ=PROJ, SEL=isel, xlab="", ylab="", axes=FALSE)
> ## pointsGEOmapXY(jvolcs$lat, jvolcs$lon, PROJ=PROJ, col='red', pch=2, cex=.5)
> PLAT = pretty(eqs$lat)
> PLON = pretty(eqs$lon)
> addLLXY(PLAT ,PLON , GRIDcol="black", LABS=0, BORDER=0 , PROJ=PROJ)
> pointsGEOmapXY(eqslat,eqslon, PROJ=PROJ, pch=rep(1, length(rsiz)) , cex=rsiz, col=rcol[ecol])
> plotGEOmapXY(PLATES, PROJ=PROJ, add=TRUE)
> HOZscale(eqs$z, rcol[1:100] , units = "km depth", SIDE = 1, s1 = 0.5, s2 = 0.95)
> ## location of zebra: zeb = locator(); DUMPLOC(zeb)
>
> zeb=list()
> zeb$x=c(458.266070479352,870.677297484252)
> zeb$y=c(-129.768792704472,-12.2491966665725)
> zebra(zeb$x[1],zeb$y[1], 500, 100, 60, lab="Km", cex=.6)
> am = pretty(eqs$m)
> am = am[am>min(eqs$m) & am<max(eqs$m)]
> em = exp(am)
> se = RESCALE(em, .4, 10, min(esiz), max(esiz))
> sizelegend(se, am, pch=1)
> plotGEOmapXY(japmap, PROJ=PROJ, SEL=isel, xlab="km", ylab="km", add=TRUE)
>
> ## plotGEOmapXY(worldmap, PROJ=PROJ, add=TRUE)

17

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●●●●●●

●

●

●

●●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●

● ●●●●●●●
●

●●●●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●
●

●
● ●

●

●
●

●

●
●●●●●● ●
●●
●

●

●

●●
●●

●
●

●●● ●●
●
●

●
●
●

●●

●

●

● ●
●

●●

●●●

●●●
●

●
●
●

●

●●●●●
●
●●

●

●
●●●●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●●●
●
●
●

●

●●

●

●●
●

●

●
●

●
●

●●

●

●●

●
●●

●

●

●●

●

●

●●

●

●

●
●● ●

●

●

●

● ●●
●

●

●●

●

●●
●●●●●●●●●●

●

●

●

●
●

●●
●●●
●

●

●●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

● ●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●
●

●●
●●

●●●●

●

●●●●●●●●●●●●
●

●

●●●●●

●

●●

●● ●●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●
●●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●
● ●

●

●
●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●
●●●●

●

●
●
●

●
●●●

●●●●●
● ●

●●●●●●
●
●

●

●●
●●●●
●●●
●
●

●●●
●

●●●●

●
●
●
●●

●
●
●●

●

●●
●●●●●●●●●●●●

●
●●●●●●
●

●●●

●

●●●●●●●●●●●
●●●●●

●
●●●

●

●

●

●●
●●

●

●●●●
●

●

●

●

●●●

●●●●

●●

●

●

●●

●

●●●●

●●

●

●

●

●●●●●●●●●

●

●

●
●
●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●●●●
●
●●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●
●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●● ●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●●●●●●●●●

●●

●
●

●●●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●●●●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●●

●

●●
●

●

●

●

●
●●●●

●

●●●●●●
●

●

●

●
●●●●●
●

●

●
●●

●

●●●

●●

●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●●●●●●●●●●
●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●
●●●●
●
●●●●●●

●
●●●●●●●●●●●●●

●●● ●

●

●●●

●

●●●●●
●●

●

●●●●●●●●
●
●●●●●●●●

●

●●●● ●
●●●
●

●
●●●●●●●●●
●
●●

●

●●●●●●●

●

●●●●●●●●●●●●●
●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●●●● ●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●●

●

●

●●●
●

●

●
●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●●

●

●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●●●●●●

●
●●●●●
●

●

●●●●●●●●●
●

●●
●

●●●●●

●

●
●

●●●●●
●●

●
●●●●●

●

●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●
●

●

●
●
●●

●

●●●●●

●

●

●

●●

●●

●

●

●
●●

●

●
●●
●
●

●●●●●

●●●●●●●●●●
●
●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

● ●
●●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●●●●

●

●

●

●

●

●

● ●●●●●●

●

●
●

●● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●●●●

●

●

●●●●●●●●●●●● ●●

●

●●●●●●

●●

●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●●●●●●●●●●●●●
●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●●●

●●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●

●

●●●●●●● ●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●●●
●

●●●

●

●●●●

●

●

●
●

●

●

●

●

●

●●●

●●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●●●●●●●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●●●●●●
●●●●●●●

●●
●●
●
●

●
●
●

●
●
●●●●

●●●●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●●
●

●

●
●
●●●
●
●●

●

●●●●●
●
●●●

●●
●

●

●

●

●

●

●●
●●

●●●●●●●●●●●●

●

●

●●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●●●●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●●

●

●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●

●● ●

●

●

●●●●●●●●

●

●

●●
●

●●

●

●

● ●

●

●

●

●●●
●

●●●

●●●●

●

●
●

●

●●
●●

●

●●●●●●●●●
●

●●●
●●

●

●

●●
●

●

●●

●

●●●●●●●●●●●

●

●●●

●

●

● ●

●

●●

●

●●●

●

●●●●●

●

●
●●

●

●

●●
●

●

●

●

●●
●

●●
●

●●
●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●●●

●

●●

●

●
●

●

●

●●
●●

● ●

●

●

●●●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●
●

●
●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●●

●

●
●●

●
●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●●

●

●

●

●

●

●●

●

●●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●
●●●●●●●●

●●

●

●●
●●

●●●
●●●●●

●
●●

●●
●
●
●
●

●

●

●
●

●
●
●

●

●●
●

●●

●

●
●●

●

●

●

●

●

●

●●●●●●●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●

●●

●
●●

●

●

●

●●

●

●

●

●

●●●
●

●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●● ●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●

●

●●●●●

●

●●●●●

●

●

●●●

●
●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●●●●
●
●

●●
●

●
●●

●

●●●

●●
●●
●
●●
●
●●●
●●●
●●●

●

●

●
●
●●●
●
●

●●
●●

●
●●

●

●

●●●

●

●●
● ●

●
●●

●
●●●
●

●●
●●●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●●●●●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●●

●

●●

●

●●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●●

●
● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●●
●

●●●
●●

●
●●
●●●

●

●

●●●
●●
●●●●
●●●●●●●
●●●●●●

●
●●●●●

●
●●●●

●

●● ●●
●

●●●●●
●●
●
●

●
●●

● ●
●
●
●

●
●
●

●
●●
●
●

●

●●●●●
●

●●
●●●

●●●
●●

●

●

●●

●
●
●
●
●
●●●

●
●●●●

●
●●●●●●●●●●
●

●●
●

●

●

●●●●●
●●●

●
●●
●

●
●●●●●●
●

●
●
●
●●●
●

●
●●
●

●

●
●●●●●●

●
●●●●

●●
●

●
●
●

●●
●

●●
●●

●●●
●●●●●●●●●
●●

●

●●●
●

●●
●

●●●●

●

●

●
●●●

●●
●
●●●●
●
●

●

●
●●

●●
●

●
●

●
●

●
●●

●

●

●●

●

●

●

●
●●●●
●

●

●

●● ●●

●

●●●

●

●

●

●●

●

●

●●
●

●●
●

●

●

●

●

●
●●●
●●●
●●

●

●

●

●

●

●

●
●
●

●

●●●●
●
●

●

●

●●

●

●
●●●

●

●

●●●
●●●●
●

●

●

●

●

●●
● ●●

●

●●
●

●●

●
●
●

●
●●
●
●●

●

●

●

●

●

●
●●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●●●●●●●●●●●●●
●●●● ●●●●●

●

●

●

●
● ●●●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

● ●●●●●●●

●

●●

●

●

●

●●

●

●

●●

●

●
● ●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

● ●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●

●●

●

●

●

●●

●

●●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●
●●●

●●
●●●●●●●●●
●●●●●●●●●●
●
●●
●
●●
●

●
●
●●
●●●●●

●

●●●●

●

●

●

●●●●
●

●●●
●

●

●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

588 km depth1

0 500Km

● ● ●
2 4 6

Next we can plot this in a slightly different way, using a home grown symbol
function.

> EXY = GLOB.XY(eqslat,eqslon, PROJ)
> PLAT = pretty(eqs$lat)
> PLON = pretty(eqs$lon)
> esiz = exp(eqs$m)
> rsiz = RESCALE(esiz, .04, .2, min(esiz), max(esiz))
> ### plot with the larges events first so they do not
> ### cover the smaller ones
>
> ordsiz = order(rsiz, decreasing = TRUE)
> acol=rcol[ecol]
> plotGEOmapXY(japmap, PROJ=PROJ, SEL=isel, xlab="", ylab="", axes=FALSE)
> addLLXY(PLAT ,PLON , GRIDcol="black", LABS=0, BORDER=0 , PROJ=PROJ)
> pgon(EXY$x[ordsiz],EXY$y[ordsiz], siz=rsiz[ordsiz], col=acol[ordsiz], border='black', startalph =60, K=5, lwd=.5, xpd=TRUE)
> plotGEOmapXY(PLATES, PROJ=PROJ, add=TRUE)
> plotGEOmapXY(japmap, PROJ=PROJ, SEL=isel, xlab="", ylab="", axes=FALSE, add=TRUE)
> HOZscale(eqs$z, rcol[1:100] , units = "km depth", SIDE = 1, s1 = 0.5, s2 = 0.95)
>

18

>

588 km depth1

8 Geologic Map Symbols

Geologic maps are often complex figures illustrating large amounts of inter-
connected information. Numerous line styles have specific meanings indicating
geologic structures useful for illustrating relationships of surface and subsurface
features.

Several standard geological symbols are available for plotting specific faults
on plots. These can be seen by executing the gridded plot of many line dress
ups:

> GEOsymbols()

19

contact anticline syncline OverTurned−antOverTurned−syn

perp thrust normal dextral sinestral

detachmentbcars

20

