
User’s Guide to PBSadmb Page 1

User’s Guide to the R Package PBSadmb
by Jon Schnute and Rowan Haigh

Pacific Biological Station, Nanaimo, BC, Canada
November 2009

1. Introduction

 Perhaps only a small minority of R users know about the powerful software package
ADMB (AD Model Builder, http://admb-project.org/) released into the public domain in 2009. It
provides a remarkably efficient tool for estimating parameters and their uncertainty, based on
complex nonlinear statistical models. Its effectiveness stems partly from the use of automatic
differentiation (AD, also called algorithmic differentiation) to compute the gradient of an
objective function to be minimized. It includes robust algorithms for modal estimation and
Markov chain Monte Carlo (MCMC) sampling from Bayesian posterior distributions. Other
common inference methods, such as asymptotic covariances and likelihood profiles, are also
supported. ADMB allows you to examine your data with any statistical model that has a properly
defined likelihood function or Bayesian posterior. The model can have hundreds or even
thousands of unknown parameters that require estimation.

Originally, ADMB was developed commercially by its principal author David Fournier
and the company Otter Research Ltd. (http://www.otter-rsch.com/). It quickly gained wide use in
fishery data analyses, although it has potential value in many scientific fields. Thanks to a
generous grant from the Gordon and Betty Moore Foundation (http://www.moore.org/), the
ADMB Project (http://admb-project.org/) acquired rights to the software and began releasing it
to the public domain in 2008. At the time of writing this report, the release has nearly been
completed (http://admb-project.org/community/public-domain). Many people worked hard to
make this possible, and we thank all of them for their efforts. An authoritative history of ADMB
remains to be written, but it would make a very colourful story for an ambitious historian of
computer science who has a lively sense of humour. It involves a cast of remarkable personalities
who know how to develop serious scientific tools while having a great deal of fun. Not by
accident, some of the spin-off packages bear the names of New Zealand wines, such as Coleraine
(http://fish.washington.edu/research/coleraine/).

The R software environment easily accommodates external programs. R packages
routinely include C/C++ code, and the packaging system automatically compiles the code for all
supported operating systems. More generally, R can connect to a wide range of software written
independently. For example, the open source program ggobi (http://www.ggobi.org/, “Good
pictures force the unexpected upon us”) allows users to visualize high dimensional data in a
number of creative ways. This software runs independently from R, but the package rggobi
allows R users to think of it as just another R application. Commands in R allow you to do
anything that you could otherwise do with ggobi. To make things work, a user may need to
install ggobi in the operating system of choice before installing the R package rggobi.

ADMB necessarily involves a C++ environment that cannot be entirely masked by R.
The automatic differentiation algorithms, implemented with C++ classes, require a user to
express the posterior or likelihood in C++. The author (Dave Fournier) had the ingenious idea of

User’s Guide to PBSadmb Page 2

making this process as easy as possible with a template that handles most of the annoying
bookkeeping, so that a user need only write code (very similar to R code) that expresses the
model analytically. Program development involves three distinct steps: (1) converting the
template to true C++ code, (2) compiling the C++ code, and (3) linking the resulting object
module to ADMB libraries. The complete cycle makes an executable file that recognizes a
variety of command line arguments. PBSadmb implements these steps with the R commands
convAD (convert to C++), compAD (compile C++), and linkAD (link to libraries). A
composite command makeAD performs all three steps sequentially. Another command runAD
runs the executable file with specified arguments.

The native interface to ADMB differs slightly among operating systems. For example, a

Windows platform uses DOS batch files, whereas a Linux system uses bash scripts. Although
this doesn’t create any serious problems, it does require a bit of adjustment when moving from
one system to another. The R platform, available on Windows, Linux, and MacOS X, offers a
common interface that appears the same, regardless of the operating system. We have designed
PBSadmb to take advantage of this fact. Consequently, a user who interacts with ADMB via R
sees exactly the same interface on every platform.

PBSadmb allows a user to enter all ADMB commands in an R terminal, rather than a
DOS or bash terminal. Furthermore, because R is now the language of choice, commands to
ADMB can be integrated with R commands in the same script file. We introduce standards that
make it possible to preserve variable names between R scripts and ADMB template files. A
single R script can use ADMB to make an executable file, generate an MCMC sample, and draw
a pairs plot of the results.

Although PBSadmb has the primary goal of accessing ADMB via R scripts, we also
provide a Graphical User Interface (GUI) that greatly facilitates ADMB model development.
New users may find it particularly helpful for editing code, testing it rapidly, and inspecting
results (such as MCMC simulations). The GUI gives links to help files and examples that
illustrate key aspects of ADMB model development. Use of the GUI is, however, entirely
optional, and experienced users of ADMB and R may confine their applications of PBSadmb
entirely to R script files. Even they might still find the GUI useful for configuring the software to
run properly.

The initials ‘PBS’ refer to the Pacific Biological Station, a major fisheries laboratory
operated by Fisheries and Oceans Canada on the Pacific coast in Nanaimo, British Columbia,
Canada (http://www.pac.dfo-mpo.gc.ca/sci/pbs/). We have developed a number of packages for
R, each starting with the acronym PBS. Three of these (PBSmapping, PBSmodelling, and
PBSddesolve) existed prior to PBSadmb on the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/). We use Google Code web sites to maintain a source code archive for
each of our packages. See http://code.google.com/p/pbs-software/ for links to all of them. In
particular, http://code.google.com/p/pbs-admb/ has the source code and other information about
PBSadmb.

Arguably, this package should have been called pbsADMB to put the proper emphasis on
the role of ADMB. We have chosen, however, to preserve the naming style of our other

User’s Guide to PBSadmb Page 3

packages because they tend to be closely linked. For example, PBSadmb uses numerous
functions from PBSmodelling and extends many of the programming goals of that earlier
package. We encourage users to try all of our packages, or at least read their descriptions.

If you are an R user who wants the freedom to build arbitrarily complex statistical
models, we believe you’ll find this package an invaluable tool. Although ADMB was motivated
by problems in fisheries science, professionals in many other fields (such as economics, finance,
medicine, genetics, physics, and chemistry) will likely be surprised, if not astonished, at its
power. We’ve written this package to help make ADMB transparent, useful, and available to a
much wider audience than its traditional core in fishery science.

2. Using PBSadmb

 To use PBSadmb, you first need to install it properly by the detailed procedure in
Appendix A. As suggested in the introduction, this involves the two R packages PBSadmb and
PBSmodelling, as well as ADMB itself. A C/C++ compiler is also required, which needs
special installation on a Windows platform, but may come automatically as part of Linux or
MacOS X. The GUI also requires a suitable choice of text editor.

 Because this package applies to R, we assume that our readers have at least some
familiarity with R itself and the standard methods of installing packages from the CRAN
repository. If you are new to ADMB, you need to know that a typical project has a file prefix (*)
and three associated files to hold the code (*.tpl), input data (*.dat), and initial parameter values
(*.pin).

We illustrate the use of ADMB by considering a very simple estimation problem for the
familiar von Bertalanffy growth curve:

(1) 0()[1] σε− −

∞= − +iK a t
i iy L e , where 1, ,= …i n .

This formula calculates observed lengths iy from observed ages ia and a vector 0(, , ,)σ∞L K t of
four unknown parameters. The residuals ε i in (1) are assumed to be independent normal random
variables with mean 0 and standard deviation 1. From the density function for a normal
distribution, the negative log likelihood for this model is:

(2) 2
0 1 1

1
2

1
2

(, , , | , , , , ,) log ()
σ

σ σ∞
=

= + −∑… …
n

n n i i
i

L K t a a y y n y z ,

where the predicted length iz at age ia is

(3) 0()

0(; , , ,) [1]σ − −
∞ ∞= − iK a t

i iz a L K t L e .

We drop an additive constant in (2) that does not affect the analysis. The notation emphasizes
that we regard as a function of the parameters for fixed values of the data.

User’s Guide to PBSadmb Page 4

If the ADMB prefix for this project is vonb, then the three text files vonb.tpl,

vonb.dat, vonb.pin would contain, respectively:

• the code for in (2),
• the data (,)i ia y for 1, ,= …i n , and
• initial values of the parameters 0(, , ,)σ∞L K t .

This operational framework motivates the scripting language developed in PBSadmb, which
includes the following commands (some mentioned previously):

convAD convert *.tpl to *.cpp,
compAD compile *.cpp to a binary object,
linkAD link the binary object with ADMB libraries and create an executable file,
makeAD convert, compile, and link to make an executable file,

runAD run an ADMB executable with specified command line arguments,
showArgs show all possible command line arguments for an ADMB executable,
runMC run an ADMB executable in MCMC mode,
plotMC plot the results of an MCMC simulation,

editAD edit text files for the current project in the text editor,
readRep read one of the standard reports generated by an ADMB executable,
startLog start a log file (*.log) of ADMB activity,
appendLog append to a log file of ADMB activity,
cleanAD remove files created by ADMB that tend to proliferate in the working directory,
convOS convert text files to the format for the operating system (windows or unix).

These commands illustrate the functions available in PBSadmb. For a complete list, see
Appendix C. The database ADMBcmd contains an archive of scripts used to perform ADMB
commands with various compilers on various operating systems, as described in Appendix B.

3. The PBSadmb GUI

 As we have emphasized, PBSadmb principally defines a scripting language for
interacting with ADMB. However, the package ADMB itself is quite complex, and new users
might find it rather intimidating. Even experienced users like us sometimes forget key details
needed to accomplish certain tasks. For this reason we offer a GUI that greatly facilitates ADMB
model development. In our own workshops, we have found it an invaluable tool for educational
purposes.

The GUI (Figure 1) allows a user to explore all aspects of ADMB model development.
The interface emphasizes four distinct phases:

• Initialize the package with appropriate paths , check that they make sense, and save them in
a file normally called Adopts.txt.

User’s Guide to PBSadmb Page 5

• Make the executable file for a chosen prefix, with options between “Safe” and “Optimized”
compilation and a choice to have random effects or not.

• Run the executable code with suitable command line arguments, where the “All args” button
shows all available arguments. The interface gives particular support for generating MCMC
samples and likelihood profiles. The “Custom” button supports arbitrary “AD args”.

• Inspect the Output by “View”ing various reports or “Import”ing them into the R working
environment. As mentioned earlier, we give special support to MCMC samples with plots
that allow a user to inspect the sampled chain. The widgets “Thin and “Col” (for “Columns”)
enable a user to thin the current chain and select variables for plotting.

Figure 1. The graphical user interface (GUI) in PBSadmb, generated by the R command
admb() on a Windows platform.

User’s Guide to PBSadmb Page 6

Buttons labelled “>” in the “Initialize” and “Make” sections allow a user to browse for
available choices. Text boxes in the “Make” section show the times required for converting
(row 1) compiling (row 2), and linking (row 3). The R function proc.time reports the ‘user
time’ and ‘system time’, as well as the elapsed time, and these correspond to the three columns
in the interface. Similarly, text boxes in the “Run” section show the run times.

Experienced ADMB users know that ADMB leaves many “footprints” as files in the
current working directory. The interface gives you “Clean” buttons to help clean them up. To
make things easy, each “Clean” button activates a second GUI that displays potential files
associated with the project prefix, as well as other debris files spawned by ADMB. The user can
fine-tune the selection using the “Select” and “Deselect” buttons. When the “Clean” button is
pressed, a final prompting GUI pops up to confirm deletion of the selected files. Once the files
have been deleted, the Clean window remains and the user can choose another prefix (by typing
manually or pressing the selection button “>”) AND hitting the “Refresh” button. This causes the
GUI to rebuild itself with files having the newly selected prefix. If no additional files are
apparent, the Clean window disappears. Files with suffixes .tpl, .dat, .pin, .r, and .pdf
are never picked for potential deletion. Be careful when cleaning; for example don’t delete an
output file until you’re sure you’re ready to do so.

After you’ve successfully installed PBSadmb, we encourage you to experiment with the
GUI. You can quickly see the functionality available in the main menu items. <Edit> allows you
to edit the main project files, and <View> displays the output files. <Examples> copies various
examples (discussed below) into your working directory. <Package> shows the R code for this
package and the Window description file used to create the GUI in Figure 1. <Help> points to
manuals in the package, online resources, and this User’s Guide.

4. ADMB in action

If you’re like us, whenever you install a software package, you immediately want to see it
do something. PBSadmb includes a number of examples that teach new users (and remind
experienced users) how to write, test, and implement an ADMB template. To see them click
<Examples> on the GUI menu. If you click one of them (the file prefix), the program will load
all related files into your current working directory. Typically, these have the suffixes
• .tpl – the ADMB template file;
• .dat – the data used for this template;
• .pin – initial values for the parameter estimates;
• .r – R code that can be sourced to obtain an extended analysis using both ADMB and R;
• .pdf – documentation for this example.

When the GUI copies text files to the working directory, they automatically get converted
(via the function convOS) to the correct format for the operating system, with line endings
<CR><LF> in Windows and <LF> in Unix. Sometimes ADMB fails when the input files have a
format inappropriate for the OS. (We encountered this problem with the ADMB command
tpl2rem, called by our function convAD.) If you move files across platforms, remember that

User’s Guide to PBSadmb Page 7

conversion might be necessary. Linux users probably have the native OS commands todos and
fromdos for this purpose. Windows users can get similar utilities from the Internet.

We encourage new users to explore the examples in the following order:

simple, adapted from an example in the ADMB manual, codes the likelihood for regressing a
vector y on a vector x. Take special note of how code is written for the four SECTIONs (DATA,
PARAMETER, PROCEDURE, REPORT). Values initialized in the DATA_SECTION come
from simple.dat, and values initialized in the PARAMETER_SECTION come from
simple.pin.

simple_mc, a variant of simple, can give a Bayesian posterior sample of the parameters. The
GUI allows you to perform a run with “MCMC” options (the number of simulations and the
thinning frequency). You can then view results visually with plots generated from the “Output”
section of the GUI.

simple_pbs, a variant of simple_mc, has a REPORT_SECTION written explicitly for
PBSadmb to ensure that variable names in R code match those from ADMB. In this case, the file
simple_pbs.r performs four tasks:
• making the executable file simple_pbs.exe (in Windows) or simple_pbs (in Linux)

from simple_pbs.tpl,
• running the executable file,
• loading the data from simple_pbs.rep into R, while preserving variable names, and
• producing a standard regression plot for the data exported imported from

simple_pbs.rep.

vonb, similar to simple_pbs, implements the estimation problem posed by equations (1)–(3)
in Section 2. It can also generate a likelihood profile for the parameter Linf, renamed for this
purpose as VonBLinf. In this case, ADMB generates a file named VonBLinf.plt, with the
parameter name prefix, not the prefix vonb.

catage, taken from ADMB web sites, implements a more complex model designed for
estimating biological parameters from fishery data on catch and age structure. In the case, the
code allows a user to compute a likelihood profile for the predicted biomass pred_B.

pheno, also taken from ADMB web sites, implements a model with the “random effects”
feature. The lines declaring a random_effects_vector play a role similar to
init_vector in earlier examples, except that the estimation method for random effects
variables works differently (and much more slowly). The file pheno.pin includes initial
values for the two random effects vectors declared in pheno.tpl.

5. R scripts to run ADMB

The examples simplePBS and vonb both contain R files (*.r) that illustrate the use
of R scripts to code ADMB analyses in R. We focus here on the vonb example. Display 1
shows the Report Section in the model template. It writes variable names (preceded by $) and
variable values. Running the executable file produces the report file vonb.rep listed in

User’s Guide to PBSadmb Page 8

Display 2. This file has “PBS format”, defined in the package PBSmodelling. Think of it as
an R list object with named components.

Once you understand the relationship between the Report Section in Display 1 and the
report file in Display 2, examine the R code in Display 3. It produces the plot in Figure 2, based
entirely on data exported from the ADMB model. The functions readList and unpackList
from PBSmodelling produce R variables with the same names as corresponding variables in
the template file, given the structure of the Report Section in Display 1. This technique
represents a standard in PBSadmb for writing ADMB template code to ensure variables with
identical names and values in the R environment. Just write the Report Section to export both
names and values, as illustrated in Display 1.

Display 1. The Report Section in vonb.tpl. It generates a report file vonb.rep that contains
both variable names and values for easy import into the R environment. This technique ensures
variables with common names and values in both ADMB and R.

REPORT_SECTION
 report << "$Linf" << endl;
 report << Linf << endl;
 report << "$K" << endl;
 report << K << endl;
 report << "$t0" << endl;
 report << t0 << endl;
 report << "$sigma" << endl;
 report << sigma << endl;
 report << "$fval" << endl;
 report << fval << endl;
 report << "$age" << endl;
 report << age << endl;
 report << "$y" << endl;
 report << y << endl;
 report << "$ypred" << endl;
 report << ypred << endl;
 report << "$mcnames" << endl;
 report << "Linf K t0 sigma LK fval" << endl;
 report << "$mcest" << endl;
 report << Linf << " " << K << " " << t0 << " " << sigma << " "
 << LK << " " << fval << endl;

User’s Guide to PBSadmb Page 9

Display 2. The report file vonb.rep produced by running vonb.exe. To fit in the space
available on this page, the vectors y and ypred have been truncated. The file represents an R
list with named components.

$Linf
57.2689
$K
0.164044
$t0
0.152865
$sigma
0.492146
$fval
-3.34367
$age
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
$y
 7.36 14.3 21.8 27.6 31.5 35.3 39 41.1 43.8 45.1 ...
$ypred
 7.43029 14.9707 21.3702 26.8015 31.4111 35.3233 ...
$mcnames
Linf K t0 sigma LK fval
$mcest
57.2689 0.164044 0.152865 0.492146 9.39464 -3.34367

Display 3. The R source file vonb.r. In the R console, the command source("vonb.r")
initializes PBSadmb from a file Adopts.txt (presumably available and correct), makes
vonb.exe from vonb.tpl, generates the plot in Figure 2, and compares results computed
independently by ADMB and R.

Initialize
require(PBSmodelling); require(PBSadmb); readADopts("Adopts.txt")

Make and run "vonb.exe"
makeAD("vonb"); runAD("vonb");

Read and unpack the report;
i.e., create R variables with the same names used in "vonb.tpl"
vonb <- readList("vonb.rep"); unpackList(vonb);

Plot the data
plot(age,y); lines(age,ypred,col="red",lwd=2);

Check the calculations in R
ypredR <- Linf*(1-exp(-K*(age-t0)));
nobs <- length(age);
fvalR <- nobs*log(sigma) + sum((ypredR-y)^2)/(2.0*sigma^2)

cat("Functions values (ADMB & R):\n");
cat(fval," ",fvalR,"\n")

cat("Predictions (ADMB & R):\n");
cat(ypred,"\n");
cat(ypredR,"\n");

User’s Guide to PBSadmb Page 10

The code in Display 3 can be supplemented by two simple commands:
> runMC("vonb",100000,100)
> plotMC("vonb")

to give the Bayesian posterior scatter plot shown in Figure 3. The first line runs 100,000
simulations, thinning to keep only 1 of every 100 results. The second line plots the 1,000 points
that result from this calculation. The following lines from the Report Section (Display 1) play a
key role in producing Figure 3:
report << "$mcnames" << endl;
report << "Linf K t0 sigma LK fval" << endl;
report << "$mcest" << endl;
report << Linf << " " << K << " " << t0 << " " << sigma << " "
 << LK << " " << fval << endl;

by communicating the names of the variables preserved in the MCMC simulation ($mcnames)
and their values at the posterior mode ($mcest). These provide the graph with variable names
along the diagonal and coordinates of the mode, shown as a red point corresponding to the
minimum (fval).

 The results in Figure 3 can also be obtained directly from the GUI. Furthermore,
plotMC can also draw a variety of plots, as indicated by the five coloured buttons along the
bottom line of the GUI. Try them!

Acknowlegements

Our intrepid programmer, Alex Couture-Beil, greatly assisted the development of PBSadmb by
improving its integration with PBSmodelling. In some cases, this meant changing PBSmodelling to
enhance support for external packages. We thank all members of the ADMB community for their efforts
on the open source project, particularly Dave Fournier, John Sibert, Mark Maunder, and Johnoel Ancheta.
Ian Taylor helped us experiment with early conversions of PBSadmb from Windows to Linux.
Saang-Yuan Hyun conducted tests and made a number of helpful suggestions. Andy Edwards generously
contributed funding to support programming expenses.

User’s Guide to PBSadmb Page 11

Figure 2. Plot of data points and a fitted von Bertalanffy growth curve, obtained by sourcing the
R code in Display 3. The data portrayed here come entirely from the ADMB model. The source
code compares these numbers with independent calculations in R.

User’s Guide to PBSadmb Page 12

Figure 3. Scatter plot of 1,000 points from the vonb posterior distribution, generated by the
code in vonb.r and the two additional commands: runMC("vonb",100000,100);
plotMC("vonb"). The red point indicates the posterior mode, where fval is minimized. The
variables labelled Linf, K, t0, sigma, LK, and fval represent ∞L , K, 0t , σ , the product

∞L K , and , respectively.

User’s Guide to PBSadmb Page 13

Appendix A. Installing PBSadmb

As for most R packages, installation of PBSadmb is fairly easy. Unfortunately, this one
requires other software as well, so please be patient while going through all the required steps.
Essentially, you need to install R, PBSmodelling, PBSadmb, the R toolkit required for
package development, and a text editor suitable for writing templates and viewing reports. Then
you need to run R, load PBSadmb, and give it some configuration information. At this point,
you should have a working version of the interface in Figure 1. Here are the details.

Step 1. Install the current version of R for your operating system from a package manager or the
CRAN web site http://cran.r-project.org/. We assume that you have enough familiarity with R to
do this without difficulty. If you have a version of R already installed, update it to the current
version (R 2.10.0 at the time of writing this report) if necessary.

Step 2. Run R and install current versions of the packages PBSmodelling and PBSadmb.
Ideally, both of these should be available on CRAN, but we also plan to keep Windows binary
(*.zip) and package source (*.tar.gz) files on our web sites:

http://code.google.com/p/pbs-modelling/ for PBSmodelling,
http://code.google.com/p/pbs-admb/ for PBSadmb.

In Windows, you can install packages from the R GUI, but on all systems you can use the
command install.packages().

Step 3 (Windows). If you have a Windows OS, go to the web site http://www.murdoch-
sutherland.com/Rtools/, and download the file Rtools29.exe. Run this executable file, and
install the R tools in a directory of your choice. In this example, we assume that you’ve used the
directory C:\Utils\Rtools. Take a moment to inspect the installed files. You should find a
subdirectory C:\Utils\Rtools\MinGW\bin that contains the GNU compilers, including
g++.exe. If you type

C:\Utils\Rtools\MinGW\bin\g++ --version

in a command window, you should see the result
g++ (GCC) 4.2.1-sjlj (mingw32-2)

This means that you’re using g++ version 4.2.1, where the sjlj refers to “Short Jump/Long
Jump”. You also have all the tools required to build R packages like PBSadmb.

Please note that we do not currently support the compilers by Borland or Microsoft. Any user
keenly interested in such options can help by contributing to the database discussed in
Appendix B.

Step 3 (Linux or MacOS X). If you have a Unix system, hopefully you already have compiler
support for C/C++. To check this, open a bash window and type
g++ --version

Hopefully, you’ll see a result like

User’s Guide to PBSadmb Page 14

g++ (Ubuntu 4.3.3-5ubuntu4) 4.3.3

You also need to know where the executable g++ is located. On our Ubuntu system, it’s in the
directory /usr/bin/, but you may to go to the root directory (cd /) and run a command
(whereis g++) to find the path.

Step 4. Obtain a good text editor that you can use for code development. On Windows, the
Notepad will work, but much better options are available. We happen to use a commercial
program called UltraEdit (http://www.ultraedit.com/), but you may prefer to get something free,
like the Crimson Editor (http://www.crimsoneditor.com/) or Tinn-R
(http://www.sciviews.org/Tinn-R/). Ideally, use an editor that supports syntax highlighting and
displays multiple files in a single window, with tabs to select among them.

On Linux systems, gedit seems to work reasonably well.

Step 5. Download the package ADMB for your OS, from the official web site
http://admb-project.org/downloads. Currently, we support the following distributions:

Operating System File Description File
Windows Windows MinGW GCC 3.4 admb-9.0.363-win32-mingw-gcc3.4.zip
Linux 32 Linux (32-bit) GCC 4.2 admb-9.0.363-intel-linux32-gcc4.2.zip
Linux 64 Linux (64-bit) GCC 4.2 admb-9.0.363-intel-linux64-gcc4.2.zip
Intel MacOS Intel MacOS (10.4) for GCC 4.0 admb-9.0.202rc3-macos10.4-gcc4.0.zip

Once you have the relevant zip file, look through its contents to locate the directory that contains
a few text files (including LICENSE and README) and subdirectories (including bin,
include, and lib). Put all these files and directories in a directory of your choice, such as
C:\Utils\ADMB for Windows or /home/Waldo/ADMB in Linux if your username happens
to be Waldo. (Thus the home directory ~ is equivalent to /home/Waldo.)

Step 6. Run R in an empty working directory. Then type these two commands into the R
console:
> require(PBSadmb)
> admb()

The GUI should appear, along with a warning message that you have no AD options file. You
can use the GUI to set three paths, always using the Unix syntax in which the forward slash /
(rather than the Windows backslash \) separates subdirectories.

• The “ADM path” should be the path chosen in Step 5, such as C:/Utils/ADMB or
/home/Waldo/ADMB. This directory should have the ADMB subdirectories bin,
include, and lib.

• The “GCC Path” should be the path to g++ in Step 3, such as
C:/Utils/Rtools/MinGW/bin or /usr/bin.

• The “Editor” should be the complete path to executable file for the editor chosen in Step 4,
such as C:/Utils/Crimson/cedt.exe or /usr/bin/gedit.

You can use the buttons labelled “>” to navigate to the appropriate directories or files.

User’s Guide to PBSadmb Page 15

Step 7. In the “Initialize” section, click the “Check” button. If everything is OK, you should see
the green message “OK” in the adjacent text box. The red message “Fix” means that something
essential can’t be found on the paths you’ve specified. Either you haven’t installed something
correctly, or one of the paths is wrong.

When everything is OK, click “GUI to R” to save your specified options in the (hidden) R
variable .PBSadmb that contains your specified options. It has class PBSoptions, defined in
PBSmodelling. As usual, you can inspect it in the R console by typing its name .PBSadmb.
Finally, click “R to File”. This creates a file Adopts.txt in your current working directory
that you can inspect with the text editor.

In the future, when you issue the R command admb() with this working directory, the file
Adopts.txt will automatically determine the paths in the GUI. Furthermore, you can copy
this file to any other directory from which you want to use PBSadmb. Conceivably, you might
use different option files for projects in different directories.

Appendix B. ADMB scripts in ADMBcmd

 As we have discussed, ADMB involves the three basic operations convAD, compAD,
and linkAD to convert, compile, and link a template file. The software also offers two binary
options: safe/optimized and normal/random effects. In theory, these operations and their options
give 3 2 2 12× × = combinations. However, conversion doesn’t depend on the safe/optimized
option and compilation doesn’t depend on the choice normal/random effects. This leaves only
the 8 possible commands to ADMB that are indexed in the table below:

Index Step Safe Random Effects
1 convert F
2 convert T
3 compile F
4 compile T
5 link F F
6 link T F
7 link F T
8 link T T

Each of these commands can vary among operating systems and compilers. To achieve

multilingual status, PBSadmb needs a database of the relevant 8 commands for each
combination of operating system and compiler. This is contained in the data frame ADMBcmd,
with column names OS (operating system), Comp (compiler), Index (index from the table
above), Step (convert, compile, or link), Safe (safe mode when true, optimized when false),
RanEff (random effects when true, normal when false), Command (coded version of the shell
command to the operating system), and Comment (any additional information). You can view
ADMBcmd with the R command:
> data(ADMBcmd); ADMBcmd

User’s Guide to PBSadmb Page 16

 For reasons associated with R, various operating systems, and regular expressions, we
use the character @ to denote environment variables in our coded commands, where
• @prefix is the current prefix,
• @adHome is the path to ADMB, chosen during installation Step 5 (Appendix A) and shown

as “ADM path” in the GUI,
• @ccPath is the path to g++ chosen during installation Step 3 (Appendix A) and shown as

“GCC path” in the GUI.

For similar reasons, we use a backtick ` to denote quotation marks (rather than an apostrophe '
or double quotes ").

As an example of our encoding scheme, command #1 in Windows and Linux is,
respectively,
`@adHome/bin/tpl2cpp.exe` @prefix
`@adHome/bin/tpl2cpp ` @prefix

where backticks are used in case the variable @adHome has embedded spaces. (PBSadmb does
not allow a prefix to have embedded spaces.) Currently, our script management system
distinguishes only between the options available for the R variable .Platform$OS.type
which are windows or unix. Happily, these two options appear adequate to the support the
ADMB versions listed in installation Step 5.

 Users interested in support for other compilers can help us by expanding the database
ADMBcmd to include more alternatives. The distribution of PBSadmb includes an Excel
spreadsheet with our current scripts in the directory admb_scripts. For highly technical
readers, we point out that command #2 requires special treatment, due to the implementation of
the ADMB command tpl2rem.

Appendix C. Detailed PBSadmb documentation

C.1. Functions in ADMB

The list of functions in this section comes from the PBSmodelling command
> viewCode("PBSadmb",output=2)

Function Description
admb Start the PBS ADMB GUI
appendLog Append Data to Log File
checkADopts Check ADMB Options for Link Integrity
cleanAD Clean ADMB-Generated Files from the Working Directory
compAD Compile C Code
convAD Convert TPL Code to CPP Code
convOS Convert Text Files to Default OS Format
copyFiles Copy System Files
editAD Edit ADMB Files

User’s Guide to PBSadmb Page 17

editADfile Edit a File
installADMB Install windows admb binary (for gcc)
linkAD Link Object Files to Make an Executable
makeAD Make an Executable Binary File from a C File
makeADopts Creates the ADMB Options List
parseCmd Parse an Indexed ADMB Command
plotMC Plot Results of MCMC Simulation
readADopts Reads an ADMB Options List into Memory From a File
readRep Read an ADMB Report into R Memory
runAD Run an Executable Binary File
runMC Run an Executable Binary File in MCMC Mode
showADargs Show All Arguments for an ADMB Executable
startLog Start a Log File
writeADopts Writes the ADMB Options List from Memory to a File

C2. PBSadmb manual

The following pages show the standard R manual for PBSadmb, including help pages for all
objects, a table of contents, and an index. This manual also appears on the CRAN web site:
http://cran.r-project.org/web/packages/PBSadmb/index.html. (Or from CRAN’s root, locate
“Packages” and find “PBSmodelling”.)

For a description of the method used to generate the pages that follow, see Appendix D.2 of the
PBSmodelling User’s Guide included with PBSmodelling.

User’s Guide to PBSadmb Page 18

This page intentionally left blank.

Package ‘PBSadmb’
November 20, 2009

Version 0.51.42

Date 2009-11-20

Title PBS ADMB

Author Jon T. Schnute, Rowan Haigh

Maintainer Jon T. Schnute <Jon.Schnute@dfo-mpo.gc.ca>

Depends R (>= 2.7.0), PBSmodelling (>= 2.06)

Description R Support for ADMB (Automatic Differentiation Model Builder)

License GPL (>=2)

R topics documented:
admb . 20
ADMBcmd . 20
appendLog . 21
checkADopts . 22
cleanAD . 23
compAD . 23
convAD . 24
convOS . 25
copyFiles . 26
editAD . 27
editADfile . 27
installADMB . 28
linkAD . 28
makeAD . 29
makeADopts . 30
parseCmd . 31
plotMC . 31
readADopts . 32
readRep . 33
runAD . 34
runMC . 35
showADargs . 36
startLog . 36
writeADopts . 37

19

20 ADMBcmd

admb Start the PBS ADMB GUI

Description

Start up the PBS GUI for running ADMB.

Usage

admb(prefix="", wdf="admbWin.txt", optfile="ADopts.txt")

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

wdf string name of the window description file that creates the GUI.

optfile string name of options file (usually in user’s working directory).

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts

ADMBcmd Database of ADMB Command Scripts

Description

Command scripts for ADMB’s convert, compile, and link routines

Usage

data(ADMBcmd)

Format

A data frame with the following 8 variables:

OS operating system

Comp C++ compiler type

Index index that indicates convert, compile or link with options: safe or optimize, random effects or normal.

Step description of processing step (convert, compile, or link)

Safe logical: if TRUE use safe mode; if not, use optimise mode.

RanEff logical: if TRUE use random effects model; if not, use normal model.

Command the command suitable for specified combination of Step, Safe, and RanEff

Comment comment about the command, if any

appendLog 21

Details

This database represents a compilation of ADMB scripts for various operating systems and compilers. A user’s
project normally starts with a template file, named with a prefix to denote the project and a standard suffix .tpl.
This file must go through three processing steps: conversion to C/C++ code, compilation by a specified compiler,
and linking with ADMB libraries.

The reulting command depends on the operating system, compiler, processing step, and two binary options
(safe/optimized; normal/random effects). In principle, the three processing steps and two binary options give
3x2x2=12 possibilities. However, conversion doesn’t depend on the “safe/optimized” choice, and compilation
doesn’t depend on “normal/random effects”. This reduction leaves only 8 possibilities, specified by an index in
the range 1:8.

A variable in a Command string is designated by the prefix character @. We use this for convenient string substi-
tution by parseCmd, the function that translates database strings into actual ADMB commands.

The subdirectoy .../ADMB/scripts in the installed package contains an Excel spreadsheet, used as the source
file for this database. Currently, our database is incomplete, and we heartily encourage the ADMB community to
make contributions for additional operating systems and compilers.

Source

Jon T. Schnute, Pacific Biological Station, Nanaimo BC

See Also

parseCmd

appendLog Append Data to Log File

Description

Append summary information or output to a previously created log file.

Usage

appendLog(prefix, lines)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

lines data to append to ’prefix’.log).

Value

No explicit value reurned. Appends data into a log file ’prefix’.log.

Note

A wrapper function that can be called from a GUI exists as .win.appendLog.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

22 checkADopts

See Also

startLog, editADfile

checkADopts Check ADMB Options for Link Integrity

Description

Check that .ADopts has all required components and that links point to actual files on the hard drive.

Usage

checkADopts(opts=getOptions(.PBSadmb), check=c("admpath","gccpath","editor"),
warn=TRUE, popup=FALSE)

Arguments

opts ADMB options values.

check components of .ADopts to check.

warn logical: if TRUE, print the results of the check to the R console.

popup logical: if TRUE, display program location problems in a popup GUI.

Value

Boolean value where TRUE indicates all programs were located in the specified directories and FALSE if at least
one program cannot be found. The returned Boolean scalar has two attributes:
warn - named list of test results, and
message - named vector of test results.

Note

A wrapper function that can be called from a GUI exists as .win.checkADopts.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts,readADopts

cleanAD 23

cleanAD Clean ADMB-Generated Files from the Working Directory

Description

Detects files in the working directory with the specified prefix and removes them all save those with the suffix
.tpl, .dat, and .pin.

Usage

cleanAD(prefix)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

Details

Aside from potential garbage files with the specified prefix, other files associated with ADMB are detected.
Also files *.tmp and *.bak are displayed. Calling cleanAD invokes the hidden function .cleanUp, which
creates a GUI menu of the potential garbage files. The user can select whichever files s/he wishes for disposal.

Value

Returns nothing. Invokes a GUI menu of potential garbage files.

Note

A wrapper function that can be called from a GUI exists as .win.cleanAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeAD, runAD, readRep

compAD Compile C Code

Description

Compile C++ code in ’prefix’.cpp to create a binary object file ’prefix’.o.

Usage

compAD(prefix, raneff=FALSE, safe=TRUE, logfile=TRUE, add=TRUE,
verbose=TRUE, comp="GCC")

24 convAD

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").
raneff logical: use the random effects model, otherwise use the normal model (currently does not

influence the compile stage, but the argument is preserved here for future development).
safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use

optimized mode for fastest execution.
logfile logical: if TRUE, create a log file of the messages from the shell call.
add logical: if TRUE, append shell call messages to an exsiting log file.
verbose logical: if TRUE, report the shell call an its messages to the R console.
comp string: compiler to use - "GCC" is only currently supported

Details

This function uses the C++ comiler declared in .ADopts. If logfile=TRUE, any errors will appear in
’prefix’.log. If verbose=TRUE, they will appear in the R console.

Value

Invisibly returns the shell call and its messages.

Note

A wrapper function that can be called from a GUI exists as .win.compAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

convAD, linkAD, makeAD

convAD Convert TPL Code to CPP Code

Description

Convert code in ’prefix’.tpl to C++ code in ’prefix’.cpp.

Usage

convAD(prefix, raneff=FALSE, logfile=TRUE, add=FALSE,
verbose=TRUE, comp="GCC")

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").
raneff logical: if TRUE, use the random effects model executable tpl2rem.exe, otherwise use the

normal model executable tpl2cpp.exe.
logfile logical: if TRUE, create a log file of the messages from the shell call.
add logical: if TRUE, append shell call messages to an exsiting log file.
verbose logical: if TRUE, report the shell call an its messages to the R console.
comp string: compiler to use - "GCC" is only currently supported

convOS 25

Details

This function invokes the ADMB command tpl2cpp.exe or tpl2rem.exe, if raneff is FALSE or TRUE
respectively. If logfile=TRUE, any errors will appear in ’prefix’.log. If verbose=TRUE, they will
appear in R console.

Value

Invisibly returns the shell call and its messages.

Note

A wrapper function that can be called from a GUI exists as .win.convAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

compAD, linkAD, makeAD

convOS Convert Text Files to Default OS Format

Description

Convert text files to the default format of the operating system.

Usage

convOS(inam, onam = inam, path = getwd())

Arguments

inam string vector of names specifying files to be converted to the format of the operating system.
onam string vector of name specifying the output files (the default overwrites the input file).
path string specifying the path where the input files are located (defaults to current working direc-

tory).

Value

Text file(s) formatted in accordance with standards of the operating system.

Note

This function essentially executes a readLines command followed by a call to writeLines.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

copyFiles, .addQuotes

26 editAD

copyFiles Copy System Files

Description

Copy files with specified prefixes and suffixes from one location to another.

Usage

copyFiles(prefix, suffix=NULL, dir0=getwd(), dir1=getwd(), ask=TRUE)

Arguments

prefix string scalar/vector of potential file prefixes.

suffix string scalar/vector of potential file suffixes.

dir0 source directory from which to copy files.

dir1 destination directory to copy files to.

ask logical: if TRUE, popup boxes will prompt the user for every instance that a file will be over-
written.

Details

This function uses R’s list.files and file.copy functions. The pattern recognition tends not to work
when given the wildcard character *; however, the user may use this character, and the code will interpret it.

Value

Invisibly returns a Boolean vector with names of files that have been copied or not.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo, BC

See Also

editAD

editAD Edit ADMB Files

Description

Edit files associated with specified prefix and suffixes.

Usage

editAD(prefix, suffix=c(".tpl",".cpp",".log"))

editADfile 27

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

suffix string scalar/vector specifying one or more suffixes.

Value

Invisibly returns Boolean vector with elements TRUE if files exist, FALSE if they do not.

Note

A wrapper function that can be called from a GUI exists as .win.editAD.

This function explicitly uses the editor chosen for PBSadmb. PBSmodelling has another function openFile
that uses Windows file associations or an application specified with setPBSext.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

editADfile, makeADopts

editADfile Edit a File

Description

Edit a file using the text editor specified in .ADopts.

Usage

editADfile(fname)

Arguments

fname string name of file in current working directory (or elsewhere if path delimited by / or \).

Value

Returns Boolean: TRUE if file exists, FALSE if it does not.

Note

This function explicitly uses the editor chosen for PBSadmb. PBSmodelling has another function openFile
that uses Windows file associations or an application specified with setPBSext.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

editAD, makeADopts

28 linkAD

installADMB Install windows admb binary (for gcc)

Description

Only applicable for Windows: Downloads and installs the windows ADMB binary for gcc. ADMB is installed
under PBSadmb’s library directory under R.

Usage

installADMB()

Value

The path where ADMB was installed.

linkAD Link Object Files to Make an Executable

Description

Links the binary object file ’prefix’.o to the ADMB libraries and produces the executable file ’prefix’.exe.

Usage

linkAD(prefix, raneff=FALSE, safe=TRUE, logfile=TRUE, add=TRUE,
verbose=TRUE, comp="GCC")

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

raneff logical: use the random effects model, otherwise use the normal model.

safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use
optimized mode for fastest execution.

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

comp string: compiler to use - "GCC" is only currently supported

Details

This function uses the C++ comiler declared in .ADopts. If logfile=TRUE, any errors will appear in
’prefix’.log. If verbose=TRUE, they will appear in the R console.

Value

Invisibly returns the shell call and its messages.

makeAD 29

Note

A wrapper function that can be called from a GUI exists as .win.linkAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

convAD, compAD, makeAD

makeAD Make an Executable Binary File from a C File

Description

Essentially a wrapper function that calls in sequence: convAD, compAD, and linkAD.

Usage

makeAD(prefix, raneff=FALSE, safe=TRUE, logfile=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

raneff logical: use the random effects model, otherwise use the normal model.

safe logical: if TRUE, use safe mode with bounds checking on all array objects, otherwise use
optimized mode for fastest execution.

logfile logical: if TRUE, create a log file of the messages from the shell call.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function uses the C++ comiler declared in .ADopts. If logfile=TRUE, any errors will appear in
’prefix’.log. If verbose=TRUE, they will appear in the R console.

Value

Returns nothing. The three functions called by makeAD each return the shell call and its messages.

Note

A wrapper function that can be called from a GUI exists as .win.makeAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

convAD, compAD, linkAD, cleanAD

30 parseCmd

makeADopts Creates the ADMB Options List

Description

Creates a global list object detailing the pathways to the ADMB directory, the GCC bin, and the user’s preferred
text editor.

Usage

makeADopts(admpath, gccpath, editor)

Arguments

admpath explicit path to the user’s ADMB directory.

gccpath explicit path to the user’s GCC bin (C-compiler) directory.

editor explicit path and program to use for editing text.

Value

Creates a global, hidden list object called .ADopts.

Note

A wrapper function that can be called from a GUI exists as .win.makeADopts.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts, writeADopts

parseCmd Parse an Indexed ADMB Command

Description

Parse an indexed ADMB command line for a specified index, operating system (os), and compiler (comp).
The result depends on the project prefix, the path (admpath) to the ADMB home directory, and the path
(gccpath) to the C++ compiler. Within the database, variables are denoted by leading @ characters.

Usage

parseCmd(prefix, index, os=.Platform$OS, comp="GCC", admpath="", gccpath="")

plotMC 31

Arguments

prefix prefix for the ADMB project.

index index that indicates one of eight possibilities related to three processing steps (convert, com-
pile, link) and options: safe or optimize, random effects or normal.

os operating system

comp C++ compiler description

admpath explicit path for the ADMB home directory.

gccpath explicit path for the C++ bin directory.

Value

Character string, the ADMB command from ADMBcmd corresponding to the specified index, prefix, and system
paths.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC

See Also

ADMBcmd

plotMC Plot Results of MCMC Simulation

Description

Plot results of an ADMB MCMC simulation using various plot methods.

Usage

plotMC(prefix, act="pairs", pthin=1, useCols=NULL)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

act string scalar: action describing plot type (current choices: "pairs", "eggs", "acf",
"trace", and "dens").

pthin numeric scalar indicating interval at which to collect records from the .mc.dat file for plot-
ting.

useCols logical vector indicating which columns of .mc.dat to plot.

Note

A wrapper function that can be called from a GUI exists as .win.plotMC. Use the PBSadmb GUI to explore
these plots easily.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

32 readRep

See Also

runMC, showADargs

readADopts Reads an ADMB Options List into Memory From a File

Description

Reads ADMB options into a global, hidden list object called .ADopts from an ASCII text file using
PBSmodelling::readList).

Usage

readADopts(optfile="ADopts.txt")

Arguments

optfile string name of an ASCII text file containing ADMB options information.

Value

No values returned. Reads the ADMB options into the list object .ADopts.

Note

A wrapper function that can be called from a GUI exists as .win.readADopts.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts,writeADopts

readRep Read an ADMB Report into R Memory

Description

Import ADMB-generated report files into R’s memory using the names of the report files to name the R-objects.

Usage

readRep(prefix, suffix=c(".cor",".rep",".std",".mc.dat"), global=FALSE)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

suffix string scalar/vector specifying one or more suffixes.

global logical: if TRUE, save the imported reports as objects to global environment using the same
names as the report files.

runAD 33

Details

If the report object is one of c(".cor", ".std", ".mc.dat"), the report object is a data frame, otherwise
it is a string vector. Multiple report objects are returned as a list of objects. A single report object is returned as
the object itself.

This function attempts to detect the file format from a number of possibilities. For example, if the file has
the special format recognized by PBSmodelling, then the function returns a list with named components. The
example vonb included with this package shows how to write the template to get consistent variable names
between ADMB and R. See the User’s Guide for complete details.

Value

Invisibly returns the list of report objects. If only one report is imported, a single report object is returned.

Note

A wrapper function that can be called from a GUI exists as .win.readRep.

Author(s)

Rowan Haigh, Pacific Biological Station, Nanaimo BC, Canada

See Also

editADfile, .win.viewRep

runAD Run an Executable Binary File

Description

Run the executable binary file ’prefix’.exe that was created by makeAD.

Usage

runAD(prefix, argvec="", logfile=TRUE, add=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

argvec string scalar/vector of arguments appropriate for the executable ’prefix’.exe.

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function typically reads the two files ’prefix’.dat and ’prefix’.pin, although in same cases one
or both of these files may not be necessary.

If logfile=TRUE, output (including error messages, if any) will appear in ’prefix’.log. If verbose=TRUE,
it will appear in the R console.

34 runMC

Value

Invisibly returns the results of the shell call.

Note

A wrapper function that can be called from a GUI exists as .win.runAD.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

runMC, makeAD, cleanAD

runMC Run an Executable Binary File in MCMC Mode

Description

Run the executable binary file ’prefix’.exe, created by makeAD, to generate MCMC simulations.

Usage

runMC(prefix, nsims=2000, nthin=20, outsuff=".mc.dat",
logfile=FALSE, add=TRUE, verbose=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

nsims numeric scalar indicating number of MCMC simulations to perform.

nthin numeric scalar indicating the sampling rate or thinning of the nsims MCMC simulations to
report.

outsuff string name suffix of the MCMC output data file.

logfile logical: if TRUE, create a log file of the messages from the shell call.

add logical: if TRUE, append shell call messages to an exsiting log file.

verbose logical: if TRUE, report the shell call an its messages to the R console.

Details

This function runs ’prefix’.exe twice, first with the arguments -mcmc ’nsims’ -mcsave ’nthin’
and second with the argument -mceval. By default, output goes to the file ’prefix’.mc.dat, although a
user can specify a different output suffix.

To see this function in action, use the PBSadmb GUI with the example vonb or simpleMC.

Value

Invisibly returns the results of the shell call.

Note

A wrapper function that can be called from a GUI exists as .win.runMC.

showADargs 35

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

runAD, makeAD, cleanAD

showADargs Show All Arguments for an ADMB Executable

Description

Show all arguments available for an ADMB executable in the default text editor.

Usage

showADargs(prefix, ed=TRUE)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

ed logical: if TRUE, write the ADMB arguments to a file and view them with the text editor, else
display the arguments on the R console.

Value

Invisibly returns the argument list.

Note

A wrapper function that can be called from a GUI exists as .win.showADargs.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

editADfile, runAD

36 writeADopts

startLog Start a Log File

Description

Start a log file by removing any previous version and appending header information.

Usage

startLog(prefix)

Arguments

prefix string name prefix of the ADMB project (e.g., "vonb").

Value

No explicit value reurned. Writes header lines into a log file ’prefix’.log.

Note

A wrapper function that can be called from a GUI exists as .win.startLog.

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

appendLog, editADfile

writeADopts Writes the ADMB Options List from Memory to a File

Description

Writes the global ADMB options list to a file in ’PBS’ format (see PBSmodelling::writeList).

Usage

writeADopts(optfile="ADopts.txt")

Arguments

optfile string name of the intended output file.

Value

Returns opts invisibly. Writes the options list object to an ASCII file.

Note

A wrapper function that can be called from a GUI exists as .win.writeADopts.

writeADopts 37

Author(s)

Jon T. Schnute, Pacific Biological Station, Nanaimo BC, Canada

See Also

makeADopts, readADopts

Index

∗Topic IO
admb, 20
copyFiles, 26

∗Topic character
convOS, 25

∗Topic datasets
ADMBcmd, 20

∗Topic data
checkADopts, 22
makeADopts, 30
readADopts, 32
writeADopts, 37

∗Topic file
appendLog, 21
convOS, 25
editAD, 27
editADfile, 27
installADMB, 28
readRep, 33
showADargs, 36
startLog, 36

∗Topic hplot
plotMC, 31

∗Topic interface
compAD, 23
convAD, 24
linkAD, 28
makeAD, 29
runAD, 34
runMC, 35

∗Topic list
checkADopts, 22
makeADopts, 30
readADopts, 32
writeADopts, 37

∗Topic manip
cleanAD, 23
parseCmd, 31
readRep, 33

∗Topic programming
compAD, 23
convAD, 24
linkAD, 28
makeAD, 29
runAD, 34

runMC, 35
∗Topic utilities

copyFiles, 26

admb, 20
ADMBcmd, 20, 31
appendLog, 21, 37

checkADopts, 22
cleanAD, 23, 30, 34, 35
compAD, 23, 25, 29, 30
convAD, 24, 24, 29, 30
convOS, 25
copyFiles, 26, 26

editAD, 26, 27, 28
editADfile, 22, 27, 27, 33, 36, 37

installADMB, 28

linkAD, 24, 25, 28, 30

makeAD, 23–25, 29, 29, 34, 35
makeADopts, 20, 22, 27, 28, 30, 30, 32, 37

parseCmd, 21, 31
plotMC, 31

readADopts, 22, 32, 37
readRep, 23, 33
runAD, 23, 34, 35, 36
runMC, 32, 34, 35

showADargs, 32, 36
startLog, 22, 36

writeADopts, 30, 32, 37

38

	PBSadmb.pdf
	admb
	ADMBcmd
	appendLog
	checkADopts
	cleanAD
	compAD
	convAD
	convOS
	copyFiles
	editAD
	editADfile
	installADMB
	linkAD
	makeAD
	makeADopts
	parseCmd
	plotMC
	readADopts
	readRep
	runAD
	runMC
	showADargs
	startLog
	writeADopts

