
RTAQ: Tools for the analysis of
trades and quotes in R

Jonathan Cornelissen∗ Kris Boudt†

01-03-2010

Abstract

The Trades and Quotes data of the New York Stock Exchange is a
popular input for the implementation of intraday trading strategies, the
measurement of liquidity and volatility and investigation of the market
microstructure, among others. This document describes a collection of
R functions to carefully clean and match the trades and quotes data, cal-
culate ex post liquidity and volatility measures and detect price jumps
in the data.
Latest version of the package: http://r-forge.r-project.org/R/?group id=316

∗K.U.Leuven, Belgium.
†Lessius University College and K.U.Leuven, Belgium.

Correspondence to: Kris Boudt, Faculty of Business and Economics, 69 Naamsestraat, B-
3000 Leuven, Belgium. E-mail: kris.boudt@econ.kuleuven.be Tel: +32 16 326728 Fax: +32
16 326624
Financial support from the National Bank of Belgium is gratefully acknowledged.
NOTE: This is work in progress. If interested, please contact the authors for the latest
version of the documentation.

1

1 Introduction

Handling high-frequency data is particularly challenging because of the specific
characteristics of the data, as extensively documented in Bingcheng and Zivot
(2003). A first major difficulty is the enormous number of observations, that
can reach heights of millions observations per stock per day. Secondly, the
recorded data often contains errors for various reasons. Third, transaction-by-
transaction data is by nature irregularly spaced over time.

In this document we present functions to clean and analyse this type of
data, using the software package R 2.10.1. To facilitate further analysis, the
data objects are stored in xts (extensible time series) format and the index of
each observation is given by a timeDate object. In order for these functions
to work properly, the packages “xts” and “timeDate” should be installed and
loaded.

The remainder of this paper is organized as follows. The next section gives
a description of the data and how to load it into R. Subsequently, section 3
presents the code to clean the raw high-frequency data. In sections 4 to 6 we
discuss the functions to calculate liquidity measures, aggregate the data and
calculate volatility measures respectively.

2 Data description

The TAQ database of the NYSE contains the intraday (high-frequency) infor-
mation for all listed stocks on both the transactions and the best quotes of the
designated market maker (formerly called specialist). This enables researchers
and practitioners to investigate microstructure issues and to measure volatil-
ity as wel as liquidity more precisely, which explains its popularity as a data
source. The data is typically subdivided into two files, containing information
on the trades and quotes respectively.

1. Raw trade data: 9 columns: see Table 1

2. Raw quote data: 9 columns: see Table 2

2

Table 1:
Elements of raw trade data

SYMBOL The stock’s ticker

DATE Date on which the trade was registered
the function convert (section 2.1.1) assumes dd/mm/yyyy format

EX Exchange on which the trade occurred
see section 3.1.2

TIME Time on which trade was registered
function convert (section 2.1.1) assumes hh:mm:ss format

PRICE Transaction price
SIZE Number of shares traded
COND Sales condition code
CR Correction indicator
G127 Combined ”G”, Rule 127, and stopped stock trade indicator

The raw TAQ data can be obtained in several ways.1 Therefore, we are
forced to determine a “standard” way to store and organise the data, before
the functions for the analysis can be presented. We propose to save the raw
data in txt format and structure it as illustrated by Figure 1. This means that
the folder “TAQdata” contains a number of folders (one for each trading day
in the sample), while each of these folders contains two txt files for each stock,
containing the information on trades and quotes respectively.

In a following step the txt files are loaded into R, the data is converted into
an xts-object2 and subsequently stored in the “RData” format. The function
convert() presented in section 2.1.1 performs this convertion while maintaining
the same folder and name structure as in Figure 1 (except for the fact that the
data is now stored as “.RData” obviously). After this process, the converted
data can be used as input for the functions proposed in this document.

We opt to store the data as xts-objects because this type of object can be
indexed by an indication of time and date, in this case from the class “time-

1The NYSE itself delivers historical data on monthly DVD’s (A procedure to automati-
cally extract the desired data can be found in Appendix A) or for recent data through the
“TAQ web”. TAQ data can also be obtained through external vendors such as the Wharton
Research Data Services.

2More information can be found in the user guide of the package xts (Ryan and Ulrich,
2009).

3

Table 2:
Elements of raw quote data

SYMBOL The stock’s ticker

DATE Date on which the trade was registered
the function convert (section 2.1.1) assumes dd/mm/yyyy format

EX Exchange on which the quote occurred.
see section 3.1.2

TIME Time on which trade was registered
function convert (section 2.1.1) assumes hh:mm:ss format

BID Bid price
BIDSIZE Bid size in number of round lots (100 share units)
OFFER Offer price
OFFERSIZE Offer size in number of round lots (100 share units)
MODE Quote condition

Date”.3 This allows the user to conveniently make use of the functionality of
xts and timeDate. For example:4

• To select observations from April 2008: xtsobject[“2008-04”];

• To select observations from April 1 until april 10, 2008:
xtsobject[“2008-04-01::2008-04-10”]

This means the DATE and TIME column from the raw data are used to
compute the timeDate index of the format “CCYY-MM-DD HH:MM:SS” of
each observation and can then be removed. Consequently:

1. The trade data xts-object contains 7 columns and index of the timeDate
class: SYMBOL/EX/PRICE/SIZE/COND/CR/G127

2. The quote data xts-object contains 7 columns and an index of the time-
Date class: SYMBOL/EX/BID/BIDSIZE/OFFER/OFFERSIZE/MODE

3More information can be found in the user guide of the timeDate package (Wuertz and
Chalabi, 2009).

4More examples of the subsetting of xts objects can be found on
“http://www.quantmod.com/examples/data/”.

4

Figure 1: Structure of raw data on hard disk.

2.1 Loading TAQ data in R

2.1.1 convert(from,to,datasource,datadestination,trades=T,quotes=T,
ticker,dir=F)

• Function to convert both trade and quote data stored as “txt” files and
structured as illustrated in Figure 1 into xts-objects and store them in
the “RData” format. Figure 2 illustrates the structure of files after con-
version.

• from: first date to convert e.g. “2008-01-30”

• to: last date to convert e.g. “2008-01-31”

• Datasource: folder in which the original data is stored

• Datadestination: folder in which the converted data should be stored

• trades: determines whether trades are converted

• quotes: determines whether quotes are converted

• ticker: vector with tickers to be converted

• dir: if TRUE the datadestination folder and subfolders will be created
automatically

5

Figure 2: Structure of converted data on hard disk.

2.1.2 TAQload(tickers,from,to,trades=T,quotes=F,
datasource=NULL,variables=NULL)

• Function to load the taq data from a certain stock. If only the trades (or
quotes) should be loaded the function returns them directly as xts object.
If both trades and quotes should be extracted the function returns a list
with two items named “trades” and “quotes” respectively.

• Given that the files are ordered in folders per day, and the folders contain:
ticker trades.RData or ticker quotes.RData. In these files the xts object
is stored.

• tickers: the ticker(s) to be loaded. It is recommended that you use only
1 ticker as input in case of non-synchronic observations. For synchronic
data a vector of tickers can be used.

• from: first day to load e.g. “2008-01-30”

• to: last day to load e.g. “2008-01-30”

• trades: determines whether trades are extracted

• quotes: determines whether quotes are extracted

• datasource: path to folder in which the files are contained

• variables: a character (or character vector) containing the name(s) of
the variable(s) that should be loaded, e.g. c(”SYMBOL”,”PRICE”). By
default all data is loaded.

6

2.1.3 matchtq(tdata,qdata,adjustment=2)

• Function matches the trades and quotes and returns xts object containing
both tdata (qdata) is an xts object with containing the trades (quotes)

• Adjustment = number of seconds the quotes are registered faster than
the trades (should be round and positive). Based on the research of
Vergote (2005), we set 2 seconds as the default.

matchtq = function(tdata,qdata,adjustment=2){

tt = dim(tdata)[2];

index(qdata) = index(qdata) + adjustment;

#merge:

merged = merge(tdata,qdata);

##fill NA’s:

merged[,((tt+1):dim(merged)[2])] = na.locf(as.zoo(merged[,((tt+1):dim(merged)[2])]), na.rm=FALSE);

#Select trades:

index(tdata)=as.POSIXct(index(tdata));

index(merged)=as.POSIXct(index(merged));

merged = merged[index(tdata)];

#return useful parts:

merged = merged[,c((1:tt),((tt+3):(dim(merged)[2])))];

##a bit rough but otherwise opening price disappears...

merged = as.xts(na.locf(as.zoo(merged),fromLast=TRUE));

index(merged) = as.timeDate(index(merged));

return(merged)

}

Code snippet 1.
Function to match trades and quotes.

3 Data cleanup functions

Data-cleaning is an essential step in dealing with tick-by-tick data. We follow
the step-by-step procedure proposed by Barndorff-Nielsen et al. (2008). The
functions to perform the clean-up are presented in schematic way in the fol-
lowing subsections. We refer to “tdata” and “qdata” as the xts-objects that
contain the trades and quotes respectively. “alldata” is used when the function
works on both tdata and qdata.
First, we present the individual cleanup functions for trades and quotes re-
spectively. Secondly, the wrapper functions are presented that perform all the
subsequent cleaning procedures for a number of stocks over a certain time in-
terval. Of course, the data should be organised as described above to benefit
from this functionality.

7

3.1 All data

3.1.1 ExchangeHoursOnly(alldata, daybegin = “09:30:00”,dayend=“16:00:00”)

• Delete entries with a time stamp outside the daybegin-dayend window
(9:30-16:00 by default: the NYSE opening hours).

• This function is not used anymore because the TAQ3 software can do
this faster.

3.1.2 selectexchange(alldata,exch=“N”)

• Retain entries from a single exchange (NYSE)

• By default the NYSE is chosen (exch=“N”)

• The symbols for the other exchanges are:

– A: AMEX

– N: NYSE

– B: Boston

– P: Arca

– C: NSX

– T/Q: NASDAQ

– D: NASD ADF and TRF

– X: Philadelphia

– I: ISE

– M: Chicago

– W: CBOE

– Z: BATS

3.2 Trade data

3.2.1 nozeroprices(tdata)

• Delete entries with a transaction price = 0.

3.2.2 autoselectexchange(tdata)

• Automatically selects observations from the exchange with the highest
value for the variable “SIZE”, i.e. the highest trade volume.

• The name of the selected exchange is printed on the console.

8

3.2.3 Directly via TAQ3 software

• No input of corrected trades (Trades with a Correction Indicator, CORR
6= 0).

3.2.4 salescond(tdata)

• Delete entries with abnormal Sale Condition. (Trades where COND has
a letter code, except for “E” and “F”). 5

3.2.5 mergesametimestamp(tdata,selection=”median”)

• If multiple transactions have the same time stamp: use the median price.

• alternatively:

– selection = “maxvolume”: use the price of the transaction with
largest volume.

– selection = “weightedaverage”: use take the weighted average of all
prices.

3.2.6 rmtradeoutliers(tdata,qdata)

• Delete entries with prices that are above the ask plus the bid-ask spread.
Similar for entries with prices below the bid minus the bid-ask spread.

• Note: in order to work correctly, the input of this function should be
cleaned trade and quote data respectively.

3.3 Quote data

3.3.1 nozeroquotes(qdata)

• Delete entries with a bid or ask = 0.

3.3.2 autoselectexchangeq(qdata)

• Automatically selects only observations of the exchange with highest
value for “BIDSIZE + OFFERSIZE”, i.e. the highest volume.

• The name of the selected exchange is printed on the console.

5See the TAQ3 (version 1.1.9) User’s Guide for additional details about sale conditions.

9

3.3.3 mergequotessametimestamp(qdata)

• When multiple quotes have the same timestamp, we replace all these
with a single entry with the median bid and median ask price.

3.3.4 rmnegspread(qdata)

• Delete entries for which the spread is negative.

3.3.5 rmlargespread(qdata,maxi=50)

• Delete entries for which the spread is more than “maxi” times the median
spread on that day.

3.3.6 rmoutliers(qdata,maxi=10,window=50,type=“advanced”)

• if type = “standard”:
Delete entries for which the mid-quote deviated by more than “maxi”
median absolute deviations6 from a rolling centered median (excluding
the observation under consideration) of “window” observations.

• if type = “advanced”:
Remove entries for which the mid-quote deviates by more than “maxi”
median absolute deviations from the value closest to the midquote of
these three options:

1. Rolling centered median (excluding the observation under consid-
eration)

2. Rolling median of the following “window” observations

3. Rolling median of the previous “window” observations

The advantage of this procedure compared to the “standard” proposed
by Barndorff-Nielsen et al. (2008) is that it will not incorrectly remove
large price jumps. Therefore this procedure has been set as the default
for removing outliers.

3.4 Total cleanup wrappers

3.4.1 tradescleanup(from,to,datasource,datadestination,ticker)

• Function performs all cleaning procedures mentioned for “all” and “trade”
data for all stocks in “ticker” over the interval [from,to] and saves the

6On this point we deviate from Barndorff-Nielsen et al. (2008) who propose the “mean”
absolute deviation, because their method is sensitive to outlier masking.

10

result in the folder datadestination. Since the function “rmtradeoutliers”
also requires cleaned quote data as input, it is not incorporated here and
there is a seperate wrapper (see section 3.4.3).

• from: first date to clean e.g. “2008-01-30”

• to: last date to clean e.g. “2008-01-31”

• datasource: folder in which the original data is stored

• datadestination: folder in which the cleaned data should be stored

• ticker: vector of tickers for which the data should be cleaned

• NOTE: In case trades for a certain stock on a certain date are miss-
ing, the corresponding folder (see Figure 1) should contain a file “miss-
ing ticker.RData” to indicate that it can be skipped. If you have used
the function “convert”, this will automatically be the case.

3.4.2 quotescleanup(from,to,datasource,datadestination,ticker)

• Function performs all cleaning procedures mentioned for “all” and “quote”
data for all stocks in “ticker” over the interval [from,to] and saves the
result in datadestination

• from: first date to clean e.g. “2008-01-30”

• to: last date to clean e.g. “2008-01-31”

• datasource: folder in which the original data is stored

• datadestination: folder in which the cleaned data should be stored

• ticker: vector of tickers for which the data should be cleaned

• NOTE: In case quotes for a certain stock on a certain date are miss-
ing, the corresponding folder (see Figure 1) should contain a file “miss-
ingquotes ticker.RData” to indicate that it can be skipped. If you have
used the function “convert”, this will automatically be the case.

11

3.4.3 tradescleanup finalop(from,to,datasource,datadestination,ticker)

• Function performs cleaning procedure “rmtradeoutliers” for the trades
of all stocks in “ticker” over the interval [from,to] and saves the result in
datadestination. Note that also (cleaned) quotes should be available in
“datasource”.

• from: first date to clean e.g. “2008-01-30”

• to: last date to clean e.g. “2008-01-31”

• datasource: folder in which the original data is stored

• datadestination: folder in which the cleaned data should be stored

• ticker: vector of tickers for which the data should be cleaned

• NOTE: In case trades (quotes) for a certain stock on a certain date are
missing, the corresponding folder (see Figure 1) should contain a file
“missing ticker.RData” (“missingquotes ticker.RData”) to indicate that
it can be skipped. If you have used the function “convert”, this will
automatically be the case.

4 Liquidity measurement

The functions presented in this section compute liquidity measures for each and
every trade (for which a quote has been found and that has not been remove
by cleaning). Thus, the output represents the “spot” liquitidity. In the next
section, the tools to obtain aggregated liquidity measures will be presented.
A good review of liquidity measures and terminology can be found in “TAQ
Project - Database User Guide” by Renaud Beaupain. The same terminology
and function names are used here. We compute these liquidity measure before
aggregating the data. In a second step the liquidity measures can be aggregated
which is discussed in the next section.

The liquidity functions make make use of the following data input:

1. data: xts-object containing the joined trades and quotes

2. tdata: xts-object containing the trades

3. qdata: xts-object containing the quotes

12

4.1 gettradedir(data)

• Function returns a vector with the inferred trade direction which is de-
termined using the Lee and Ready algorithym (Lee and Ready, 1991):

• data = xts object containing joined trades and quotes (e.g. using matchtq())

• NOTE: the value of the first (and second) should be ignored if price=midpoint
for the first (second) observation.

gettradedir = function(data){

##Variable declaration:

bid = as.numeric(data$BID);

offer = as.numeric(data$OFFER);

midpoints = (bid + offer)/2;

price = as.numeric(data$PRICE);

buy1 = price > midpoints; #definitely a buy

equal = price == midpoints;

#Is it an up-tick?

dif1 = c(TRUE,0 < price[2:length(price)]-price[1:(length(price)-1)]);

#Tick is equal to previous tick?

equal1 = c(TRUE,0 == price[2:length(price)]-price[1:(length(price)-1)]);

dif2 = c(TRUE,TRUE,0 < price[3:length(price)]-price[1:(length(price)-2)]);

buy = buy1 | (dif1 & equal) | (equal1 & dif2 & equal);

buy[buy==TRUE]=1;

buy[buy==FALSE]=-1;

return(buy);

}

Code snippet 2.
Implementation of the Lee and Ready (1991) algorithm to get the inferred trade direction.

4.2 liquidity(data,tdata,qdata)

• Function returns all liquidity measures mentioned below (from section
4.3 to 4.25) as xts object

• column names are the same as function names:
e.g.: object = liquidity(data,tdata,qdata)
object$es will give you the effective spread
object$price impact will give you the price impact
etc.

13

4.3 es(data)

• Function returns the effective spread as xts object.

Effective Spreadt = 2 ∗Dt ∗ (PRICEt −
(BIDt + OFFERt)

2
),

where Dt is 1 (-1) if tradet was buy (sell) (Boehmer, 2005; Bessembinder,
2003). Note that the input of this function consists of the matched trades
and quotes, so this is were the time indication refers to (and thus not to
the registered quote timestamp).

4.4 rs(data,tdata,qdata)

• Function returns the realized spread as an xts object.

• Please note that the returned object can contain less observations than
the original “data” because of the need to find quotes that match the
trades 5-min ahead.

Realized Spreadt = 2 ∗Dt ∗ (PRICEt −
(BIDt+300 + OFFERt+300)

2
),

where Dt is 1 (-1) if tradet was buy (sell) (Boehmer, 2005; Bessembinder,
2003). Note that in this case the time indication of BID and OFFER
refers to the registered time of the quote in seconds.

4.5 value trade(data)

• Returns the trade value as xts object.

trade valuet = SIZEt ∗ PRICEt.

4.6 signed value trade(data)

• Returns the signed trade value as xts object.

signed trade valuet = Dt ∗ (SIZEt ∗ PRICEt).

4.7 signed trade size(data)

• Returns the signed size of the trade as xts object.

signed trade sizet = Dt ∗ SIZEt.

14

4.8 di diff(data)

• Returns the depth imbalance (as a difference) as xts object.

depth imbalace (as difference)t =
Dt ∗ (OFFERSIZEt − BIDSIZEt)

(OFFERSIZEt + BIDSIZEt)
,

where Dt is 1 (-1) if tradet was buy (sell) (Boehmer, 2005; Bessembinder,
2003). Note that the input of this function consists of the matched trades
and quotes, so this is where the time indication refers to (and thus not
to the registered quote timestamp).

4.9 di div(data)

• Returns the depth imbalance (as a ratio) as xts object.

depth imbalace (as ratio)t = (
Dt ∗OFFERSIZEt

BIDSIZEt

)Dt ,

where Dt is 1 (-1) if tradet was buy (sell) (Boehmer, 2005; Bessembinder,
2003). Note that the input of this function consists of the matched trades
and quotes, so this is where the time indication refers to (and thus not
to the registered quote timestamp).

4.10 pes(data)

• Returns the Proportional Effective Spread as xts object.

proportional effective spreadt =
effective spreadt

(OFFERt + BIDt)/2

(Venkataraman, 2001).
Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

4.11 prs(data)

• Returns the Proportional Realized Spread as xts object.

proportional realized spreadt =
realized spreadt

(OFFERt + BIDt)/2

(Venkataraman, 2001).
Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

15

4.12 price impact(data)

• Returns the price impact as xts object.

price impactt =
effective spreadt − realized spreadt

2

(Boehmer, 2005; Bessembinder, 2003).

4.13 prop price impact(data)

• Returns the Proportional Price impact as xts object.

proportional price impactt =
100 ∗ (effective spreadt−realized spreadt)

2

OFFERt+BIDt

2

(Venkataraman, 2001).
Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

4.14 tspread(data)

• Returns the half traded spread as xts object.

half traded spreadt = Dt ∗ (PRICEt −
(BIDt + OFFERt)

2
),

where Dt is 1 (-1) if tradet was buy (sell) (Boehmer, 2005; Bessembinder,
2003). Note that the input of this function consists of the matched trades
and quotes, so this is where the time indication refers to (and thus not
to the registered quote timestamp).

4.15 pts(data)

• Returns the proportional half traded spread as xts object.

proportional half traded spreadt =
half traded spreadt

OFFERt+BIDt

2

.

Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

16

4.16 p return sqr(data)

• Returns the squared log return on Trade prices as xts object.

squared log return on Trade pricest = (log(PRICEt)− log(PRICEt−1))2.

Note: the first observation is set to zero.

4.17 p return abs(data)

• Returns the absolute log return on Trade prices as xts object.

absolute log return on Trade pricest = | log(PRICEt)− log(PRICEt−1)|.

Note: return of first observation is set to zero.

4.18 qs(data)

• Returns the quoted spread as xts object.

quoted spreadt = OFFERt − BIDt.

Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

4.19 pqs(data)

• Returns the proportional quoted spread as xts object.

proportional quoted spreadt =
quoted spreadt

OFFERt+BIDt

2

(Venkataraman, 2001).
Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

4.20 logqs(data)

• Returns the logarithm of the quoted spread as xts object.

log quoted spreadt = log(
OFFERSIZEt

BIDt

)

(Hasbrouck and Seppi, 2001).
Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

17

4.21 logsize(data)

• Returns the log quoted size as xts object.

log quoted sizet = log(OFFERSIZEt)− log(BIDSIZEt)

(Hasbrouck and Seppi, 2001).
Note that the input of this function consists of the matched trades and
quotes, so this is where the time indication refers to (and thus not to the
registered quote timestamp).

4.22 qslope(data)

• Returns the quoted slope as xts object.

quoted slopet =
quoted spreadt

log quoted sizet

(Hasbrouck and Seppi, 2001).

4.23 logqslope(data)

• Returns the log quoted slope as xts object.

log quoted slopet =
log quoted spreadt

log quoted sizet

.

4.24 mq return sqr(data)

• Returns midquote squared returns as xts object.

midquote squared returnt = (log(midquotet)− log(midquotet−1))2,

where midquotet = BIDt+OFFERSIZEt

2
.

4.25 mq return abs(data)

• Returns absolute midquote returns slope as xts object.

midquote squared returnt = | log(midquotet)− log(midquotet−1)|,

where midquotet = BIDt+OFFERSIZEt

2
.

18

5 Aggregation functions

5.1 General

5.1.1 aggregatets(ts, FUN=previoustick, on=”minutes”, k=1, weights=F)

• Returns aggregated time-series as xts object.

• Valid values for the argument “on” include: secs, seconds, mins, min-
utes,hours, days, weeks.

• Aggregates over on*k intervals using FUN on every interval. By default
previous-tick aggregation is done, which means that the last observation
in each interval is selected.

• Function can handle irregularly spaced Timeseries.

• The timestamps of the new time series are the closing times and/or days
of the intervals. E.g. for a weekly aggregation the new timestamp is the
last day in that particular week (namely sunday).

• By default weights=F and no weighting scheme is used. When you assign
an xts object with wheights to the argument ”weights”, a weighted mean
is taken over each interval. Of course, the weights should have the same
timestamps as the supplied time-series.

aggregatets = function(ts, FUN=previoustick, on="minutes", k=1, weights=F){

#Without weights:

if(weights[1]==F){

ep = endpoints(ts, on, k);

ts2 = period.apply(ts,ep,FUN);

}

#With weights:

if(weights[1]!=F){

tsb = cbind(ts,weights);

ep = endpoints(tsb, on, k);

ts2 = period.apply(tsb,ep,FUN=weightedaverage);

}

if(on=="minutes"|on=="mins"|on=="secs"|on=="seconds"){

if(on=="minutes"|on=="mins"){secs = k*60;}

if(on=="secs"|on=="seconds"){secs = k}

a = .index(ts2) + (secs-.index(ts2) %\% secs);

ts3 = .xts(ts2,a);

}

if(on=="hours"){

secs = 3600;

a = .index(ts2) + (secs-.index(ts2) \%\% secs);

ts3 = .xts(ts2,a);

19

}

if(on=="days"){

secs = 24*3600;

a = .index(ts2) + (secs-.index(ts2) \%\% secs) - (24*3600);

ts3 = .xts(ts2,a);

}

if(on=="weeks") {

secs = 24*3600*7;

a = (.index(ts2) + (secs-(.index(ts2) + (3L * 86400L)) \%\% secs))-(24*3600);

ts3 = .xts(ts2,a);

}

#return to timeDate timestamps

index(ts3) = as.timeDate(index(ts3));

return(ts3);

}

Code snippet 3.
Very general aggregation function that can handle irregularly spaced time series and applies FUN on every
time interval.

5.1.2 agg price(ts,FUN = previoustick,on=”minutes”,k=5)

• Returns aggregated times-series as xts object.

• The first observation of new object is the opening price.

• Aggregates over on*k intervals using FUN on every interval.

• Valid arguments for on: see function “aggregate”.

• The following observations are the closing prices over their respective
intervals, and consequently the last observation is the closing price of
that day if FUN=previoustick.

5.2 Trades and Quotes

5.2.1 agg trades(tdata,on=”minutes”,k=5)

• Aggregates an entire trades xts object (tdata) over a on*k interval.

• Returned xts-object contains: SYMBOL,EX,PRICE,SIZE.

• Variables COND, CR, G127 are dropped because aggregating them makes
no sense.

• The first observation is always included (to have the exact opening price).

20

5.2.2 agg quotes(qdata,on=”minutes”,k=5)

• Aggregates an entire quotes xts object (qdata) object over a on*k inter-
val.

• Returned xts-object contains: SYMBOL,EX,BID,BIDSIZE,OFFER,OFFERSIZE.

• Variable MODE is dropped because aggregation makes no sense.

• The first observation is always included (to have the exact opening
quotes).

5.3 Liquidity

In Section “Liquidity Functions”, several functions were presented to calculate
the spot liquidity. We can use the aggregation functions presented to calculate
“aggregated liquidity measures”. Generally, there are two options:

1. The first option is to take an equally weighted mean over each subinter-
val. If you would like to get the effective spread aggregated over 30-min
intervals for example:

Effective_spread = es(data);

agg_eff_spread = aggregatets(Effective_spread,k=30,FUN=mean);

2. The second and probably more interesting option is to take a weighted
mean of the liquidity measure over a certain interval. Typically, the
trade size is taken as weighting criterium. For example, to calculate the
aggregated (30-minute) effective spread using this option:

Effective_spread = es(data);

agg_eff_spread =

aggregatets(Effective_spread,weights = data$SIZE,k=30)

6 Daily volatility measurement

In this section we will present functions to calculate univariate and multivariate
measures of volatility. Apart from the standard estimators (such as Realized

21

Volatility (RV) and Realized Covariation (RCov)), we focus on estimators of
volatility that are robust to jumps in the price level. In that sense, this section
is complementary to the R package “Realized” of Payseur (2008) which has
functions to compute (non jump-robust) volatility measures.
The input for the multivariate volatility measures should be equispaced time-
series, with all timeseries aggregated to the same time grid obviously. Section
5 describes the tools to aggregate timeseries to equispaced intervals. In what
follows, we denote by M the number of observations for a certain time period
t (i.e. the number of “gridpoints”). The number of timeseries is represented
by N .

6.1 Univariate measures

6.1.1 RV(returnseries)

• Returns the Realized Variance (RV).

• returnseries is a vector/zoo/xts object containing all returns in period t
for one asset.

• Let rt,i be a return (with i = 1, . . . ,M) in period t. Then the Realized
Variance is given by the sum of the squared intraday returns

RVt =
M∑
i=1

r2
t,i

6.1.2 ROWVar(returnseries, seasadjR = NULL, wfunction = ”HR”
, alphaMCD = 0.5, alpha = 0.001)

• Returns the Realized Outlyingness Weighted Variance (ROWVar) (Boudt
et al., 2008).

• returnseries is a vector/zoo/xts object containing all returns in period t
for one asset.

• seasadjR is a matrix/zoo/xts object containing the seasonaly adjusted
returns in period t for one asset. This is an optional argument.

• wfunction: Determines whether a Hard Rejection (”HR”) or Soft Rejec-
tion (”SR”) weight function is to be used. By default a Hard Rejection
(wfunction = ”HR”) function is used.

22

• alphaMCD is a numeric parameter controlling the size of the subsets over
which the determinant is minimized. Allowed values are between 0.5 and
1 and the default is 0.5. See Boudt et al. (2008) or “?covMcd” in the
robustbase package.

• alpha is a parameter between 0 and 1, that determines the rejection
threshold value (see Boudt et al. (2008) for details).

• Let rt,i be a return (with i = 1, . . . ,M) in period t and dt,i a measure for
the local outlyingness of that return, as defined in Boudt et al. (2008).
The ROWVar is then given by

ROWVart = cw

∑M
i=1 w(dt,i)r

2
t,i

1
M

∑M
i=1w(dt,i)

.

6.1.3 RBPVar(returnseries)

• Returns the Realized BiPower Variation (RBPVar) (Barndorff-Nielsen
and Shephard, 2004b).

• returnseries is a vector/zoo/xts object containing all returns in period t
for one asset.

• Let rt,i be a return (with i = 1, . . . ,M) in period t. Then, the RBPVar
is given by

RBPVart =
π

2

M∑
i=2

|rt,i||rt,i−1|

6.1.4 MinRV(returnseries)

• Returns the MinRV (Andersen et al., 2009).

• returnseries is a zoo/xts object containing all returns in period t for one
asset.

• Let rt,i be a return (with i = 1, . . . ,M) in period t. Then, the MinRV is
given by

MinRVt =
π

π − 2

(
M

M − 1

)M−1∑
i=1

min(|rt,i|, |rt,i+1|)2

23

6.1.5 MedRV(returnseries)

• Returns the MedRV (Andersen et al., 2009).

• returnseries is a zoo/xts object containing all returns in period t for one
asset.

• Let rt,i be a return (with i = 1, . . . ,M) in period t. Then, the MedRV is
given by

MedRVt =
π

6− 4
√

3 + π

(
M

M − 2

)M−1∑
i=2

med(|rt,i−1|, |rt,i|, |rt,i+1|)2

6.2 Multivariate measures

6.2.1 RCov(Nreturnseries)

• Returns the Realized Covariation (RCov).

• Nreturnseries is a (M × N) matrix/zoo/xts object containing the N
return series over period t.

• Let rt,i be an intraday (Nx1) return vector and i = 1, ...,M the number
of intraday returns. Then the RCov is given by

RCovt =
M∑
i=1

rt,ir
′
t,i.

6.2.2 ROWCov(Nreturnseries, seasadjR = NULL, wfunction = ”HR”
, alphaMCD = 0.5, alpha = 0.001)

• Returns the Realized Outlyingness Weighted Covariation (ROWCov)
(Boudt et al., 2008).

• Nreturnseries is a (M × N) matrix/zoo/xts object containing the N
return series over period t.

• seasadjR is a (M × N) matrix/zoo/xts object containing the seasonaly
adjusted returns. This is an optional argument.

• wfunction: Determines whether a Hard Rejection (”HR”) or Soft Rejec-
tion (”SR”) weight function is to be used. By default a Hard Rejection
(wfunction = ”HR”) function is used.

24

• alphaMCD is a numeric parameter controlling the size of the subsets over
which the determinant is minimized. Allowed values are between 0.5 and
1 and the default is 0.75. See Boudt et al. (2008) or “?covMcd” in the
robustbase package.

• alpha is a parameter between 0 and 1, that determines the rejection
threshold value (see Boudt et al. (2008) for details).

• Let rt,i, for i = 1, . . . ,M be a sample of M high-frequency (Nx1) return
vectors and dt,i their outlyingness given by the squared Mahalanobis dis-
tance between the return vector and zero in terms of the reweighted MCD
covariance estimate based on these returns. The Realized Outlyingness
Weighted Covariation is defined as

ROWCovt = cw

∑M
i=1w(dt,i)rt,ir

′
t,i

1
M

∑M
i=1w(dt,i)

.

where w(·) is a hard rejection weight function and cw the corresponding
correction factor assuming the return follow a normal distribution , as
described in Boudt et al. (2008).

6.2.3 RBPCov(Nreturnseries)

• Returns the Realized BiPower Covariation (RBPCov) (Barndorff-Nielsen
and Shephard, 2004a).

• Nreturnseries is a (M × N) matrix/zoo/xts object containing the N
return series over period t.

• The RBPCov is defined as the process whose value at time t is the N -
dimensional square matrix with k, q-th element equal to

RBPCov[k, q]t =
π

8

(∑M
i=2

∣∣r(k)t,i + r(q)t,i

∣∣ ∣∣r(k)t,i−1 + r(q)t,i−1

∣∣
−
∣∣r(k)t,i − r(q)t,i

∣∣ ∣∣r(k)t,i−1 − r(q)t,i−1

∣∣),
where r(k)t,i is the k-th component of the return vector ri,t.

6.2.4 tresholdcov(Nreturnseries)

• Returns the treshold covariance matrix proposed in Gobbi and Mancini
(2009).

25

• Nreturnseries is a (M × N) matrix/zoo/xts object containing the N
return series over period t.

• The treshold value TRM is taken as suggested in Jacod and Todorov
(2009).

tresholdcov[k, q]t =
M∑
i=1

r(k)t,i1{r2
(k)t,i

≤TRM} r(q)t,i1{r2
(q)t,i

≤TRM}.

6.2.5 RCor(Nreturnseries)

• Returns the Realized Correlation (RCor).

• Nreturnseries is a (M × N) matrix/zoo/xts object containing the N
return series over period t.

• The (k,q)th element of the daily Realized correlation matrix on day t is
defined as

RCor[k, q]t =

∑n
i=1 r(k)t,i ∗ r(q)t,i√∑n

i=1 r
2
(k)t,i

∑n
i=1 r

2
(q)t,i

where r(k)t,i is the k-th component of the return vector rt,i and n the
number of observations per day.

7 Jump detection

In this section we will present functions to test the presence of a jump compo-
nent in the daily volatility and in the intraday return series. However, this is
work in progress.

26

References

Andersen, T. G., D. Dobrev, and E. Schaumburg (2009, November). Jump-
robust volatility estimation using nearest neighbor truncation. working pa-
per (15533).

Barndorff-Nielsen, O. and N. Shephard (2004a). Measuring the impact of
jumps in multivariate price processes using bipower covariation. Discussion
paper, Nuffield College, Oxford University .

Barndorff-Nielsen, O. and N. Shephard (2004b). Power and bipower varia-
tion with stochastic volatility and jumps. Journal of Financial Economet-
rics 2 (1), 1–37.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard (2008).
Realised kernels in practice: Trades and quotes. Econometrics Journal 4,
1–32.

Bessembinder, H. (2003). Issues in assessing trade execution costs. Journal of
Financial Markets , 223–257.

Bingcheng, Y. and E. Zivot (2003). Analysis of high-frequency financial data
with S-Plus. UWEC-2005-03 .

Boehmer, E. (2005). Dimensions of execution quality: Recent evidence for us
equity markets. Journal of Financial Economics 78 (3), 553–582.

Boudt, K., C. Croux, and S. Laurent (2008). Outlyingness weighted quadratic
covariation. Mimeo.

Gobbi, F. and C. Mancini (2009, October). Identifying the covariation between
the diffusion parts and the co-jumps given discrete observations. working
paper (math/0610621).

Hasbrouck, J. and D. J. Seppi (2001). Common factors in prices, order flows
and liquidity. Journal of Financial Economics , 383–411.

Jacod, J. and V. Todorov (2009). Testing for common arrival of jumps in
discretely-observed multidimensional processes. Annals of Statistics 37,
1792–1838.

Lee, C. M. C. and M. J. Ready (1991). Inferring trade direction from intraday
data. Journal of Finance 46, 733–746.

Payseur, S. (2008). realized: Realized. R package version 0.81.

27

Ryan, J. A. and J. M. Ulrich (2009). xts: Extensible Time Series. R package
version 0.6-7.

Venkataraman, K. (2001). Automated versus floor trading: An analysis of ex-
ecution costs on the paris and new york exchanges. The Journal of Finance,
56, 1445–1485.

Vergote, O. (2005). How to match trades and quotes for NYSE stocks?
K.U.Leuven working paper .

Wuertz, D. and Y. Chalabi (2009). timeDate: Rmetrics - Chronological and
Calendarical Objects. R package version 2100.86.

28

A Extracting TAQ data from DVD’s

In this section we discuss a practical method to extract historical TAQ data
in case it has been delivered on DVD’s. Other delivery methods are neglected
for now.

The obvious first step is to get the data on hard disk. A storage capacity
of roughly 400 GB per year of data for e.g. the S&P100 stocks is required. We
store the zipped data in a folder structure with each folder indicating the date
of one trading day. This requires a simple tool (file: folders dates.R), because
the names of zipfiles on DVD do not directly indicate for which trading days
the file contains data.7

The amount of data that needs to be unzipped is enormous. Therefore, we
propose to use a “client server architecture”. After unzipping the raw data
of one trading day on a certain client computer, the needed data is extracted
using the TAQ3 software and saved back on the server. We opt not to keep the
unzipped raw data stored, since the required storage capacity would be very
high. The entire process is automatically performed by the code in the File:
“unzipper.R”. This file makes use of the files: “getsize.cmd” and “FileSize.bat”
to check for empty extracted files, “tickerlist.txt” contains the list of tickers of
the stocks to be extracted and “basefile.txt” consists of a standard jobfile for
the TAQ3 software. Since the unzip function of R 2.9.1 on a standard computer
is not suited to unzip files larger than 2 GB, we opt for the “command line
version” of 7-zip to do the job. For each trading day the following operations
are performed chronologically:

1. Unzips the raw data of a certain day (stored on client);

2. Creates jobfiles for TAQ3 Selection based on exchange software (stored
on client);

3. Pushes jobfile for each stock’s ticker in the vector “ticker” to the TAQ3
software which saves the extracted data to the external HD;

4. Deletes the jobfiles;

5. Deletes the unzipped raw data.

This file is executed on each client-pc for a certain number of days. On a
standard computer (windows vista, 3.16 Ghz processor and 4GB RAM) this
process takes up to 50 hours per month of data for recent periods.

7The name structure of these zipfiles is as follows: CDA.zip for the first day of the month,
CDB.zip for the second and so on.

29

extract = function(from="2008-01-01",to="2009-05-31",ticker=ticker,trades=TRUE,quotes=TRUE,

zipdir = "R:\\rawdata\\",exdir="R:\\extracteddata\\", tempdir= "c:\\rawdata\\localdrive\\",

taqfolder="C:\\TAQWIN32\\"){

library("timeDate")

dates = timeSequence(from,to, format = "%Y-%m-%d", FinCenter = "GMT")

dates = dates[isBizday(dates, holidays = holidayNYSE(2004:2010))];

for(qq in 1:length(dates)){

##Here starts a loop over the requested time frame.

##Every day in this frame is the "currentdate" at some point.

currentdate = as.character(dates[qq]);

setwd(taqfolder);

1. To unzip a file for the "currentday"

#To unzip a file for the "currentday"

alphabet = c("A","B","C","D","E",...,"S","T","U","V","W","X","Y","Z");

zipnames = paste("CD",alphabet,".zip",sep="");

unzip_locations = paste(zipdir,currentdate,"\\",zipnames,sep="")

condition = file.exists(unzip_locations);

unzip_location = unzip_locations[condition];

chosencharacter = alphabet[condition];

ex_location = tempdir;

command = paste("\"c:\\Program Files\\7Zip\\7z.exe\" e -o",tempdir," \"",unzip_location,"\"",sep="")

system(command, intern = FALSE, ignore.stderr = TRUE,

wait = TRUE, input = NULL, show.output.on.console = TRUE,

minimized = FALSE, invisible = FALSE);

##2. Create jobs for the taq3 software:

currentdate_taq = paste(as.character(as.real(unlist(strsplit(as.character(currentdate),"-"))[2])),

as.character(as.real(unlist(strsplit(as.character(currentdate),"-"))[3])),

unlist(strsplit(as.character(currentdate),"-"))[1],sep="/");

Each of these jobfiles will contain the commands

for the taq3 software to extract data

for exactly 1 stock and 1 day ("currentday")

setwd(paste(taqfolder,"JOBS",sep=""));

jobfile = read.table("basefile.txt", sep="\n");

jobfile = as.character(as.vector(jobfile[,1]));

jobfile[30] = paste("START DATE=",currentdate_taq,sep="");

jobfile[31] = paste("END DATE=",currentdate_taq,sep="");

#Create directory for data to be saved into:

dirname = paste(exdir,currentdate,sep="")

dir.create(dirname)

if(trade){

##3. Execute the taq jobfiles for all stocks in ticker:

##Start trades extraction

for(i in 1:length(ticker)) {

jobfile[2] = paste("JOB DESCRIPTION= extraction_of_",ticker[i],sep="");

jobfile[4] = paste("QUOTES FILE NAME=",dirname,"\\",ticker[i],"_quotes.txt",sep="");

jobfile[5] = paste("TRADES FILE NAME=",dirname,"\\",ticker[i],"_trades.txt",sep="");

jobfile[34] = paste("SYMBOL/CUSIP LIST=",ticker[i],sep="");

jobfile1 = as.factor(jobfile)

jobfile_name = paste(ticker[i],"_jobfile.tjf",sep="");

write.table(jobfile1, file = jobfile_name, append = FALSE, quote = FALSE, sep = " ",

30

eol = "\n", na = "NA", dec = ".", row.names = FALSE,

col.names = FALSE);

command = paste(taqfolder,"taq3.exe ",taqfolder,"JOBS\\",ticker[i],"_jobfile.tjf",sep="")

system(command, intern = FALSE, ignore.stderr = TRUE,

wait = TRUE, input = NULL, show.output.on.console = TRUE,

minimized = FALSE, invisible = FALSE);

##4.Delete job file after execution of job:

unlink(paste(ticker[i],"_jobfile.tjf",sep=""), recursive = FALSE)

}

}

##5. Delete the unzipped-files’ folder:

unlink(ex_location, recursive = TRUE);

}

}

Code snippet 4.
The above code illustrates the part of the function ”extract” for the extraction of trades for a certain time-
frame (“from” until “to”) and all stocks in the vector “ticker”. The logical arguments ”trades” and “quotes”
determine whether or not to extract trades and/or quotes. The raw zipfiles should be stored in “zipdir”, the
raw unzipped data will temporarily be stored in “tempdir” and the extracted data in “exdir”. The TAQ3
software and other helpfiles should be stored in “taqfolder”.

31

