
Package SBSA: Simplified Bayesian Sensitivity

Analysis (Version 0.1.2)

Davor Čubranić Paul Gustafson

November 29, 2011

Abstract

SBSA is an R package that offers a simplified interface to Bayesian sensi-
tivity analysis. This vignette contains a guided walkthrough of using the
package to analyze a dataset. It covers calling into the package, and how
the result can be checked, tuned, and analyzed.

1 Introduction

1.1 The Model

Consider a health outcome Y , exposure X, and confounders Z = (Z1, . . . , Zp)′

and U = (U1, . . . , Uq)′. In the case of continous outcome Y , the outcome model
can straightforwardly be expressed as:

(Y |U ,Z, X) ∼ N(α0 + αxX + β′uU + β′zZ, σ
2) (1)

However, in practice the measurements of U are unavailable, whereas only
noisy measurements W are available in place of Z. Thus we refer to U and Z
as unobserved and near-observed confounders, respectively.

The SBSA package provides functionality to estimate the parameters of this
model from the observed data (W , Y,X). In this vignette, we will focus on prac-
ticalities of using the package. For full details of the model and the algorithm,
please see Gustafson et al. [3].

1.2 Parameters

We already introduced in equation 1 parameters α0, αx, βu, βz, and σ2. Of
these, αx is what an analyst will be most interested in, since it shows the
relationship of the outcome to the exposure. But to understand the model and
be able to tune the package, you should be aware of the remaining parameters.

Remember that Wj is a noisy surrogate for Zj . If we assume that the
measurement errors for the components of Z are uncorrelated with each other,
we can model

1

(W |Y,U ,Z, X) ∼ Np(Z, diag(τ21 , . . . , τ
2
p)) (2)

Next, we specify a normal model for the distribution of exposure and near-
observed confounders as: (

X
Z

)
∼ Np+1(0, Σ̃(τ2)) (3)

where Σ̃ = Σ − diag(0, τ21 , . . . , τ
2
p), and we pretend to know Σ = V ar(X,W ′).

(Note that Σ will have unit diagonal elements if X and W are standardized,
simplifying the calculation.)

Finally, we need to link U to (X,Z). We can simplify the model by assuming
there is just a single unobserved confounder U as{

U

∣∣∣∣(X
Z

)}
∼ N(γxX + γ′zZ, c

2) (4)

The choice of the single unobserved confounder corresponds to the situation
where the investigator is concerned about the possible existence of one or more
important confounders whose identities, and mutual relationships, are unknown.

2 Example

Let us work with a simulated dataset (Y,X,Z1, Z2, U), where the exposure X
and the true confounders, (Z, U) are equi-correlated with corr=.6:

> set.seed(42)

> n <- 100

> tmp <- sqrt(0.6) * matrix(rnorm(n), n, 4) +

+ sqrt(1 - 0.6) * matrix(rnorm(n * 4), n, 4)

> x <- tmp[, 1]

> z <- tmp[, 2:4]

while the observed outcome Y is generated according to Equation (1):

> y <- rnorm(n, x + z %*% rep(0.5, 3), 0.5)

The two near-observed confounders Z are mismeasured asW with ICC=0.7,
while U is unobserved:

> w <- z[, 1:2]

> w[, 1] <- w[, 1] + rnorm(n, sd = sqrt(1/0.7 - 1))

> w[, 2] <- w[, 2] + rnorm(n, sd = sqrt(1/0.7 - 1))

Finally, we standardize X and W :

> standardize <- function(x) (x - mean(x))/sqrt(var(x))

> x.sdz <- standardize(x)

> w.sdz <- apply(w, 2, standardize)

Note: The package will check if these arguments have been standardized and
will warn you if they have not.

2

2.1 Analysis

Let’s use SBSA to estimate the parameters of the model given the observed data
(Y,Xsdz,Wsdz). There is a single entry point function in the SBSA package,
fitSBSA. It runs MCMC for the specified number of steps, using the observed
data and prior information. There is also a number of user-tunable parameters,
which we will cover as we go along.

2.1.1 Describing the prior

Let’s first express some prior information about the confounders. Recall that
1− τ2j is the ICC describing the reliability of Wj as a surrogate for Zj . We can

think of a prior under which each τ2j is independently distributed as Beta(aj , bj).
If, in this example, we believe that ICC is very likely above 0.6 with mode at
0.8, we can express that via Beta(6, 21) distribution:

> a <- 6

> b <- 21

To check, remember that the mode of Beta(a, b) = a−1
a+b−2 , so the mode of

ICC would be 1− a−1
a+b−2 . For Beta(6, 21), the ICC mode is then:

> 1 - (a - 1)/(a + b - 2)

[1] 0.8

Similarly, for ICC to likely be above 0.6, τ2 should be likely to be below
that value, which we can check via the value of the distribution function of
Beta(6, 21) at 0.6, or in R:

> pbeta(0.6, a, b)

[1] 0.9999737

2.1.2 Choosing sampler jumps

Having thus chosen our prior, we can move on. SBSA’s algorithm uses MCMC
with reparametrizing block-sampling, using the following six blocks: (α?), (β?

z),
(τ2?), (σ2?), (γ?

z), (γ?x, β
?
u).1 We will see this block structure both in inputs

when specifying block sampler jumps to the algorithm, and in the output, where
acceptance rates are reported for each block separately.

For each block, we need to specify the value of the sampler jump; 0.1 is a
reasonable enough choice to try first:

> sampler.jump <- c(alpha = 0.1, beta.z = 0.1, sigma.sq = 0.1,

+ tau.sq = 0.1, beta.u.gamma.x = 0.1, gamma.z = 0.1)

1See Gustafson et al. [3] for details of reparametrization.

3

2.1.3 Running SBSA

We will leave all other parameters at their default settings, and run the MCMC
for 20,000 steps:

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = sampler.jump)

As used above, we passed the following arguments to fitSBSA:

• the observed data, (Y,Xsdz,Wsdz)

• prior’s hyperparameters a and b

• number of MCMC iterations, nrep

The result of SBSA, captured here in variable sbsa.fit, contains the esti-
mated parameters α, βz, βu, γz, γx, τ2, and σ2, in respective elements of the
output:

> names(sbsa.fit)

[1] "alpha" "beta.z" "gamma.z" "tau.sq" "gamma.x"

[6] "beta.u" "sigma.sq" "acc"

An additional element of the output, acc, contains the acceptance rate of
each block.

2.1.4 Tuning the acceptance rate

Before proceeding with analysis, we should do some high-level checks of the
sampler’s output. Let’s begin by checking the acceptance count of the sampler:

> sbsa.fit$acc

alpha beta.z sigma.sq tau.sq

10168 12006 14653 6709

beta.u.gamma.x gamma.z

17941 18428

Again, we can see the block-sampling structure in acc, where each MCMC
sampling block gets a named element indicating the number of accepted up-
dates. Checking the MCMC acceptance rate is an important first step before
interpreting the results. The reason is that we want the algorithm to explore the
state space efficiently, and acceptance rate is an indication of this. An accep-
tance rate that’s either too high or too low means that the sampling is inefficient:
high acceptance rate means that the chain is moving slowly and sampling largely
around the current point; alternatively low acceptance rate means that proposed
samples are often rejected and the chain is not moving much at all. Either way,
the chain will explore the state space poorly, which we want to avoid.

4

What acceptance rate is “just right” is open to much debate (see [1], [2],
[4]), but a rule of thumb given by Roberts and Rosenthal [5] recommends a rate
between 0.15 and 0.5. So let us try to get the acceptance rate for each block to
30–40%, that is, acc in the 6000–8000 range. This is done by adjusting the size
of the block’s sampling jump: when the acceptance rate is too low, we decrease
the jump and, vice versa, when the acceptance rate is too high, we increase
the jump. Keeping in mind is that changing one block’s jump may change the
acceptance rate of other blocks, it’s still best to adjust the jump one block at a
time until all are within the desired range.

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = c(alpha = 0.2, beta.z = 0.1,

+ sigma.sq = 0.1, tau.sq = 0.1, beta.u.gamma.x = 0.1,

+ gamma.z = 0.1))

> sbsa.fit$acc

alpha beta.z sigma.sq tau.sq

5161 12018 14634 6778

beta.u.gamma.x gamma.z

17746 18311

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = c(alpha = 0.15, beta.z = 0.1,

+ sigma.sq = 0.1, tau.sq = 0.1, beta.u.gamma.x = 0.1,

+ gamma.z = 0.1))

> sbsa.fit$acc

alpha beta.z sigma.sq tau.sq

7235 12112 14640 6607

beta.u.gamma.x gamma.z

17655 18371

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = c(alpha = 0.15, beta.z = 0.2,

+ sigma.sq = 0.1, tau.sq = 0.1, beta.u.gamma.x = 0.1,

+ gamma.z = 0.1))

> sbsa.fit$acc

alpha beta.z sigma.sq tau.sq

7096 7194 14669 6678

beta.u.gamma.x gamma.z

17842 18493

And so on until we reach a satisfactory acceptance rate:

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = c(alpha = 0.15, beta.z = 0.2,

+ sigma.sq = 0.35, tau.sq = 0.1, beta.u.gamma.x = 0.8,

+ gamma.z = 1))

> sbsa.fit$acc

5

alpha beta.z sigma.sq tau.sq

7145 7283 7181 6623

beta.u.gamma.x gamma.z

7777 7829

2.1.5 Checking parameter mixing

Once we have found good sampling jumps, we should check that the chains mix
well by plotting parameter values as time series:

> mfrow <- par(mfrow = c(2, 2))

> plot(window(ts(sbsa.fit$alpha[, 1]), deltat = 30),

+ ylab = expression(alpha[0]))

> plot(window(ts(sbsa.fit$alpha[, 2]), deltat = 30),

+ ylab = expression(alpha[x]))

> plot(window(ts(sbsa.fit$beta.u), deltat = 30),

+ ylab = expression(beta[u]))

> plot(window(ts(sbsa.fit$gamma.x), deltat = 30),

+ ylab = expression(gamma[x]))

> par(mfrow = mfrow)

As you can see in Figure 1, the mixing appears to be fine, so we can proceed
with the analysis.

2.1.6 Parameter inference

Finally, we can have a look at the estimated value of each parameter. Here, we
look at αx, but throw away the first 10,000 iterations as the burn-in:

> mean(sbsa.fit$alpha[10001:20000, 2])

[1] 1.141829

> sqrt(var(sbsa.fit$alpha[10001:20000, 2]))

[1] 0.7652895

Keep in mind that these parameters are estimated using Xsdz and Wsdz,
the standardized X and W . In order to get them back we need to reverse the
standardizing transformation:

> trgt <- sbsa.fit$alpha[10001:20000, 2]/sqrt(var(x))

> c(mean(trgt), sqrt(var(trgt)))

[1] 1.1381229 0.7628055

6

Time

α 0

0 5000 15000

−
0.

2
0.

0
0.

2

Time

α x

0 5000 15000

−
2

0
2

4

Time

β u

0 5000 15000

−
3

−
1

1
3

Time

γ x

0 5000 15000

0.
0

1.
0

2.
0

3.
0

Figure 1: Parameter traces, thinned to every thirtieth sample

2.2 Handling different levels of mis-measurement

What about the case where we believe that different confounders are measured
with different accuracy? In this case, τi 6= τj , and we would like the model to
reflect our assumption.

In the following examples, we’ll work with a modified W , in which one
component is mismeasured with ICC=0.7, while the other is measured more
accurately, with ICC=0.95:

> w <- z[, 1:2]

> w[, 1] <- w[, 1] + rnorm(n, sd = sqrt(1/0.7 - 1))

> w[, 2] <- w[, 2] + rnorm(n, sd = sqrt(1/0.95 - 1))

> w.sdz <- apply(w, 2, standardize)

The prior can reflect our new belief about W by expressing the ICC (or
rather, τj) of each component separately. As before, we believe that the ICC of
W1 is very likely above 0.6 with mode at 0.8, modelled via Beta(6, 21). But we
now also believe that the ICC of W2 is very likely above 0.8 with mode at 0.95,
which we can model via τ22 ∼ Beta(3, 39):

> a <- c(6, 3)

7

> b <- c(21, 39)

We check our choices of a and b as before. First, the ICC mode:

> 1 - (a - 1)/(a + b - 2)

[1] 0.80 0.95

and the likelihood of ICC being above the desired value for each component:

> pbeta(c(0.6, 0.8), a, b)

[1] 0.9999737 1.0000000

Generally with the random walk Metropolis-Hastings algorithm, the best
mixing is obtained if the component jump sizes scale according to the corre-
sponding posterior standard deviations. This means that the magnitude of
jump of the τ2? block sampler might also reasonably be different for each com-
ponent of τ2. We specify per-component jump by giving a numeric vector as the
tau.sq element of the sampler.jump argument, in this case using the previous
jump value for the first component (0.1) and trying half the size for the second
(0.05):2

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = list(alpha = 0.15, beta.z = 0.2,

+ sigma.sq = 0.35, tau.sq = c(0.1, 0.05),

+ beta.u.gamma.x = 0.8, gamma.z = 1))

> sbsa.fit$acc

alpha beta.z sigma.sq tau.sq

6484 6043 6319 7025

beta.u.gamma.x gamma.z

8133 7976

We still need to increase slightly the magnitude of jump for the (γ?xβ
?
u) block:

> sbsa.fit <- fitSBSA(y, x.sdz, w.sdz, a, b, nrep = 20000,

+ sampler.jump = list(alpha = 0.15, beta.z = 0.2,

+ sigma.sq = 0.35, tau.sq = c(0.1, 0.05),

+ beta.u.gamma.x = 0.9, gamma.z = 1))

> sbsa.fit$acc

alpha beta.z sigma.sq tau.sq

6550 6056 6390 6961

beta.u.gamma.x gamma.z

7033 7732

2Note that this means sampler.jump now has to be a list, because its elements have differing
lengths.

8

Finally, with all acceptance counts are still within the desired range, we move
on to checking the mixing of the chains (Fig. 2):

> mfrow <- par(mfrow = c(2, 2))

> plot(window(ts(sbsa.fit$alpha[, 1]), deltat = 30),

+ ylab = expression(alpha[0]))

> plot(window(ts(sbsa.fit$alpha[, 2]), deltat = 30),

+ ylab = expression(alpha[x]))

> plot(window(ts(sbsa.fit$beta.u), deltat = 30),

+ ylab = expression(beta[u]))

> plot(window(ts(sbsa.fit$gamma.x), deltat = 30),

+ ylab = expression(gamma[x]))

> par(mfrow = mfrow)

Time

α 0

0 5000 15000

−
0.

2
0.

0
0.

2

Time

α x

0 5000 15000

−
2

0
2

4

Time

β u

0 5000 15000

−
3

−
1

1
3

Time

γ x

0 5000 15000

0.
0

1.
0

2.
0

3.
0

Figure 2: Parameter traces, thinned to every thirtieth sample

We can see the difference in the magnitude of error in the two components
of W in the posterior density of τ2 (Figure 3):

> tau.density <- kde2d(sbsa.fit$tau.sq[, 1],

+ sbsa.fit$tau.sq[, 2],

+ lims = c(0, max(sbsa.fit$tau),

9

+ 0, max(sbsa.fit$tau)))

> filled.contour(tau.density,

+ color.palette = function(n) grey(n:0 / n),

+ xlab = expression({tau[1]}^2),

+ ylab = expression({tau[2]}^2))

0

10

20

30

40

50

60

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

τ1
2

τ 2
2

Figure 3: Contours of posterior density for τ2

Finally, let’s have a look at αx, again throwing away the first 10,000 iterations
as the burn-in:

> mean(sbsa.fit$alpha[10001:20000, 2])

[1] 1.097911

> sqrt(var(sbsa.fit$alpha[10001:20000, 2]))

[1] 0.7771366

And reversing the standardizing transformation:

> trgt <- sbsa.fit$alpha[10001:20000, 2]/sqrt(var(x))

> c(mean(trgt), sqrt(var(trgt)))

[1] 1.0943478 0.7746141

10

3 Conclusion

In this vignette, we guided you through a session using SBSA. We covered the
basic arguments of the fitSBSA function, and how the result can be checked,
tuned, and analyzed. There are other parameters of the algorithm that can be
changed, but we refer you to the manual for full details.

In addition, the data we used in our example was continuous in Y . If your
outcome variable is binary, you should pass argument family=’binary’ to
fitSBSA function, which will switch to use a variant of the SBSA algorithm
designed for binary Y . This variant does not use some of the parameters used
by the algorithm for the continuous case (notably, jump for σ2), and introduces
additional ones. Once again, we refer you to the package manual for information
on using the function, and to Gustafson et al. [3] for details of the statistical
model used.

References

[1] A. Gelman, G. O. Roberts, and W. R. Gilks. (1996) Efficient Metropolis
jumping rules. Bayesian Statistics, 5, 599–607.

[2] C. J. Geyer and E. A. Thompson. (1995) Annealing Markov chain Monte
Carlo with applications to ancestral inference Journal of the American
Statistical Association, 90, 909–920.

[3] P. Gustafson, L. C. McCandless, A. R. Levy, and S. Richardson.
(2010) Simplified Bayesian Sensitivity analysis for mismeasured and un-
observed confounders. Biometrics, 66(4):1129–1137. DOI: 10.1111/j.1541-
0420.2009.01377.x

[4] G. O. Roberts, A. Gelman, and W. R. Gilks. (1997) Weak convergence
and optimal scaling of random walk Metropolis algorithms. Annual of
Applied Probability, 7, 110–120.

[5] G. O. Roberts, and J. S. Rosenthal. (2001) Optimal scaling for various
Metropolis-Hastings algorithms. Statistical Science, 16, 351–367.

11

