
StateTrace: An R Package for State-Trace Analysis

Melissa Prince, Guy Hawkins,

Jonathon Love & Andrew Heathcote

School of Psychology, The University of Newcastle, Australia

Abstract

This introduction to StateTrace, a freely available GUI driven package for the R lan-

guage, is an extended version of Prince, Hawkins, Love and Heathcote (2011), which

provided an abridged description of the application of this package.

State-trace analysis (Bamber, 1979) is a graphical approach that can determine whether

one or more than one latent variable mediates an apparent dissociation between the effects

of two experimental manipulations. State-trace analysis makes only ordinal assumptions,

and so is not confounded by range effects that plague alternative methods, especially

when performance is measured on a bounded scale, such as accuracy. StateTrace auto-

mates many aspects of a state-trace analysis of accuracy and other binary response data,

including implementing Bayesian methods quantifying evidence about the outcomes of a

state-trace experiment and the creation of customisable graphs.

Keywords: state-trace analysis, dimensional analysis, latent variables, StateTrace

1. Introduction

One of the most fundamental questions asked in experimental psychology and the neurosciences

concerns whether a single latent (i.e., not directly observable) variable mediates the relationship

between two or more experimental factors. For example, is recognition memory mediated by one

(memory strength) or two (familiarity and recollection) processes (Dunn, 2004, 2008)? Research-

ers often seek particular patterns of data, called dissociations, in order to answer this question

(Shallice, 1988) and so to infer the existence of functionally independent neural (e.g., Teuber,

1955) or cognitive (e.g., Glanzer & Cunitz, 1986) systems. Typically a one-dimensional or one-

system account is rejected when a dissociation is observed, as quantified by a significant interac-

tion test.

However, it has been repeatedly shown that dissociations quantified by an interaction are prob-

lematic. This is because they cannot compel the rejection of a one-dimensional explanation with-

out making strong and debateable assumptions that are difficult, if not impossible to test (e.g.,

Bogartz, 1976; Busemeyer & Jones, 1983; Dunn, 2003; Dunn & Kirsner, 1988; Henson, 2006;

Poldrack, 2006; Loftus, 1978, 1996). For example, when the response measure is bounded (e.g.,

accuracy), an observed interaction, or equally the failure to observe an interaction, might be scale

dependent (e.g., confounded by floor and ceiling effects) if the function mapping the latent varia-

2 StateTrace: An R Package for State-Trace Analysis

ble to the bounded response scale is nonlinear (Loftus, 1978; see also Prince, Brown & Heath-

cote, 2011).

State-trace analysis (Bamber, 1979), which is also known as dimensional analysis (Loftus, Oberg

& Dillon, 2004), avoids the problems that plague traditional dissociation methods (see Newell &

Dunn, 2008, for a recent summary). It does so by making only the weak and arguably plausible

assumption that latent variables have a monotonic effect on performance; that is, that the direction

of the latent variable’s effect does not change with its magnitude. Latent dimensionality can be

assessed through a simple graph: a plot of one response measure against another. This state-trace

plot must be monotonic if both measures are mediated by the same latent variable. In contrast, if

the plot is not monotonic then more than one latent variable must be in play.

Although state-trace analysis has been applied to a diverse range of topics and areas (see Prince,

Brown & Heathcote, 2011, for an exhaustive summary), no textbooks cover relevant methodolog-

ical issues, such as the need to calibrate state-trace designs in order to produce data diagnostic of

dimensionality. Furthermore, standard statistical methods cannot be used to make inferences

about dimensionality without requiring additional assumptions that detract from the relatively

general and assumption-free nature of state-trace analysis. Prince, Brown and Heathcote (2011)

addressed both gaps. First, they identified methodological issues specific to state-trace experi-

ments and recommended an iterative process of design refinement to avoid them. Second, they

developed Bayesian procedures for binary data analysis that not only quantifies evidence about

dimensionality but also aids in the process of design refinement. These statistical procedures add

only the assumption that a binomial process generates the binary data. In this paper (which is an

extended version of Prince, Hawkins, Love & Heathcote, 2011), we provide a detailed tutorial of

how to use StateTrace, a freely available GUI driven package for the R language (R Develop-

ment Core Team, 2007), which implements Prince, Brown and Heathcote’s (2001) approach in a

way that automates the computationally demanding aspects of the analysis.

2. State-Trace Analysis

To illustrate state-trace analysis, we use the example data included in the StateTrace package,

which concerns recognition memory judgments indicating whether a test item was previously

studied (old) or not (new). In this experiment, items were studied one at a time and then tested as

pairs of items, one of which was old and one of which was new (i.e., a two-alternative forced

choice, or 2AFC, judgement). The aim of this experiment was to determine whether faces are en-

coded on an extra latent dimension (commonly called configural encoding; Maurer, LeGrand &

Mondloch, 2002), that is not available to non-face stimuli. Here we used houses as the non-face

stimuli as they match faces on characteristics such as being familiar, complex and mono-oriented

(i.e., they have a specific upright orientation).

Like conventional dissociation analyses, state-trace analysis is primarily concerned with the in-

teraction between two experimental factors, which we designate the state and dimension factors.

Our example and software address the common case where both factors have two levels and

come from a completely repeated-measures design. A state-trace plot is created by plotting de-

pendent variable measurements from one level of the state factor against measurements from the

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 3

other level. In our example the dependent measurements (recognition accuracy) differ only in the

type of test items that elicited them, pictures of faces or pictures of houses.

The dimension factor in our example concerns whether items are presented upright or inverted. It

has been proposed that upright faces can be encoded both in terms of their constituent features

(i.e., a feature dimension) and in terms of the configuration of those features (i.e., a configural

dimension), whereas non-face stimuli and inverted faces can only be encoded on the feature di-

mension (Rakover, 2002). This proposal is based on the robust empirical finding that inversion

disproportionately affects recognition performance for faces when compared to non-face stimuli;

known as the Disproportionate Face Inversion Effect (DFIE; Valentine, 1988; Yin, 1969). There-

fore, the manipulation of orientation potentially influences dimensionality differentially for each

level of the state factor (i.e., for houses and faces), leading to our dimension factor designation. In

our 2AFC experiment, items could be studied and tested either upright or inverted; for each par-

ticipant an item was always studied and tested in the same orientation and both members of a test

pair had the same orientation.

With two exceptions, a single latent variable can be responsible for generating the data in a state-

trace plot if and only if the orders of points on each axis are exactly the same as, or exact opposite

of, each other. Graphically this is equivalent to being able to join all points with a curve that nev-

er decreases or never increases. The first exception concerns plots with only two points (as would

be produced by our current 2(state: face, house) x 2(dimension: upright, inverted) design), where

the condition on orders necessarily holds; that is, two points can always be joined by a curve that

always increases or always decreases. Hence a state-trace plot must have at least three points to

be diagnostic of dimensionality. This can be achieved by a dimension factor with more than two

levels, but more commonly a third trace factor enters the design. In our example, the trace factor

manipulates the time allowed to study each item (i.e., study duration). Our software and analyses

can accommodate any number of trace-factor levels, but we recommend at least three and not

many more (see Prince, Brown & Heathcote, 2011, for reasons).

To describe the second exception it is convenient to refer to lines joining points which have dif-

ferent trace-factor levels but share the same dimension-factor levels, as data traces: when data

traces fail to overlap, it is possible for the data to fall on a single monotonic curve even if multi-

ple dimensions do exist. Hence the data traces must overlap on at least one axis for the state-trace

plot to be diagnostic of dimensionality. Typically, performance is better for one level of the di-

mension factor than the other, in which case overlap can be achieved by counteracting the differ-

ence using a non-factorial trace-factor manipulation. The second exception, therefore, provides

the main reason why state-trace experiments and conventional fully factorial experiments have

different requirements: In our example, upright performance is better than inverted performance

for all mono-oriented stimuli (i.e., the inversion effect; Rock, 1974), and so we used longer study

durations for inverted (200, 600, and 1800ms) than upright (66, 200, and 600ms) items. Greater

overlap is better, so an iterative process may be required to select the best set of trace-factor lev-

els for each dimension factor level.

Although not required for valid inference about dimensionality, the trace factor must have a mon-

otonic effect on the dependent measure in order for non-monotonicity in a state-trace plot (and

hence the need for more than one latent variable) to be unambiguously attributed to the interac-

4 StateTrace: An R Package for State-Trace Analysis

tion between the state and dimension factors. In some cases a monotonic trace-factor effect can

be assumed based on prior evidence (e.g., increased study time typically always leads to in-

creased accuracy). Alternatively, examining the monotonicity of points in each data trace pro-

vides a direct check. The chances of passing this check can be increased by choosing increments

in trace-factor levels that lead to substantial and equal increments in performance, which, like

ensuring data-trace overlap, may require iterative design refinement. For example, the durations

for our 2AFC experiment increased by a constant multiple and were selected based on prior evi-

dence that recognition memory accuracy increases linearly with log study time (e.g., Loftus et al.,

2004). Prince, Brown and Heathcote’s (2011) analysis supports both types of design refinement

by providing methods that quantify evidence about data-trace overlap and a monotonic trace-

factor effect.

To summarise the design of our example data, the state factor defining the axes of the state-trace

plot corresponds to the type of stimulus presented (faces or houses). The dimension factor, which

has the potential to differentially influence the underlying latent variable(s), corresponds to the

orientation (upright or inverted) of the study presentation. The trace factor, which creates varia-

tion in the data points within each level of the dimension factor, corresponds to the study dura-

tion. Finally, lines joining sets of points from the same dimension-factor level are called data

traces.

2.1. Quantifying Evidence

Although graphically simple, the visual inspection of state-trace plots can sometimes be mislead-

ing due to measurement noise. This is particularly the case for the analysis of individual partici-

pant data where levels of measurement noise can be high. However, individual analysis is re-

quired to make strong inferences based on state-trace analysis because neither the monotonicity

nor non-monotonicity of state-trace plots is necessarily preserved when averaged over partici-

pants (see Prince, Brown & Heathcote, 2011, for examples). Hence a quantitative approach to

state-trace analysis provides an important complement to visually assessing the state-trace plot.

StateTrace provides inference about individual participant experimental results by quantifying

evidence about four mutually exclusive models:

1) Non-trace: The trace factor does not always have a monotonic effect (i.e., one or more da-

ta traces are non-monotonic) and hence non-monotonicity in the state-trace plot cannot be

unambiguously attributed to the interaction between the state and dimension factors.

2) No-overlap: Data traces do not overlap (i.e., even though the state-trace plot is monotonic

no conclusions can be made about dimensionality).

3) Uni-dimensional: Performance is mediated by a single latent variable (i.e., the state-trace

plot is monotonic and provides a valid basis for inference about dimensionality).

4) Multi-dimensional: Performance is mediated by more than one latent variable (i.e., the

state-trace plot is non-monotonic).

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 5

Each of these models specifies a set of order restrictions on the points in a state-trace plot. Evi-

dence for each model is quantified using a Bayes factor (BF; Kass & Raftery, 1995). The BF

quantifies the change in relative beliefs (odds) about two models, which is caused by observing

the data. That is, it is the change from prior odds (the odds before seeing the data) to posterior

odds (the odds after seeing the data). For example, if two models, M1 (the numerator model) and

M2 (the denominator model), are initially considered equally likely, then BF = 10 implies M1 is

ten times more likely than M2 after observing the data.

Formally, the BF is the ratio of the average likelihood of each model, where the average takes

into account uncertainty about the true values of the model’s parameters and the model’s flexibil-

ity (i.e., its ability to fit any data pattern). Bayes factors can be thought of as measures of relative

goodness-of-fit that compensate for differences in model flexibility. In the current context the

denominator (M2) is always an encompassing model under which all orders are equally likely.

Hence, a BF > 1 favours the less flexible order-restricted (numerator) model over the encompass-

ing (denominator) model, which by definition fits any data perfectly. Conventions vary, but evi-

dence for the numerator model can be considered weak for BF < 3, positive when BF > 3, strong

when BF > 20 and very strong when BF > 100.

If it is assumed that one model amongst a set is the model that generated the data (i.e., the true

model) Bayes factors for the set of models can be combined to calculate posterior model proba-

bilities, p, which quantify evidence about each model in the set in a relative manner (as the set of

probabilities sum to one). High probabilities provide evidence favouring a model and low proba-

bilities against. Table 1 provides some conventions aiding interpretation. Note these conventions

are similar to those suggested for the Bayes factors as p = BF / (1 + BF), given BF = 1 for the en-

compassing model. If the true-model assumption is not made, a posterior probability still provides

a number on an easy to interpret zero-to-one scale that quantifies the relative evidence for a mod-

el within a set of models; however, that number can no longer be interpreted as a probability.

Table 1: Conventions to aid interpretation of the posterior model probabilities (after Raftery,

1995)

Favouring model Against model

p > .99 Very strong evidence p < .01

.95 < p ≤ .99 Strong evidence .01 ≤ p < .05

.75 < p ≤ .95 Positive evidence .05 ≤ p < .25

.25 ≤ p ≤ .75 Equivocal evidence

Note also that models can be excluded from the set under consideration when previous evidence

is deemed strong enough to reject them without examining the current experimental data. For ex-

ample, trace-factor manipulations are usually selected based on prior evidence that they have a

monotonic effect. In this trace-true case the non-trace model can be excluded from the set, allow-

ing the relative evidence for each of the remaining three models to be compared. StateTrace can

output both Bayes factors, to quantify absolute evidence about whether the data provide sufficient

6 StateTrace: An R Package for State-Trace Analysis

support for clear conclusions about each model, as well as posterior model probabilities, to quan-

tify the relative evidence for models that are considered plausible a priori.

2.2. Computing Bayes Factors

Prince, Brown and Heathcote (2011) used posterior sampling methods proposed by Klugkist,

Kato and Hoijtink (2005) and Klugkist, Laudy and Hoijtink (2005) to compute Bayes factors for

the four models. Although conceptually straightforward (i.e., they simply count the frequency

with which different orders occur), these methods are computationally expensive. In order to

make them practical Prince, Brown and Heathcote used two types of sampling:

1) Faster Monte-Carlo (MC) sampling, used to obtain samples from a model that makes no

order constraints, which we refer to as encompassing sampling, and

2) Slower Markov-Chain Monte-Carlo (MCMC) sampling, used to obtain samples under the

trace model constraint, which we call trace model sampling.

In principle MC methods could be used for all required sampling, but the yield of samples rele-

vant to models (2) – (4) is often so low that this would be far too inefficient to be used in practice.

Although slower per sample, the MCMC method always yields relevant samples after an initial

“burn-in” period and so in practice is a better option.

As described in the next section of this paper, StateTrace manages the process of computation,

enabling estimates to be automatically refined to a specified level of accuracy and for computa-

tion to be limited to convenient time periods (e.g., overnight runs). Users may output posterior

model probabilities that instantiate two model-selection strategies, either simultaneous selection

among all four models (an exhaustive strategy) or a trace-true strategy that excludes the non-

trace model a priori. Raw counts can also be accessed to support other strategies, such as sequen-

tial model selection (see Prince, Brown & Heathcote, 2011, for details).

3. Using StateTrace: An Example Analysis

The StateTrace package runs under R, a free software environment for statistical computing and

graphics (R Development Core Team, 2007). R is available for Windows, Mac OS X and Linux,

can be downloaded from http://www.r-project.org/. When R expects an input command, it issues

the > prompt. Experienced R users can execute the functions instantiated in StateTrace from the

command line, call them from their own functions and modify and incorporate the code in their

own functions as required, subject to the requirements of the software license agreement. Here we

describe how to use StateTrace through a GUI (guided user interface) suitable for users less ex-

perienced with R, allowing them to view default values of function arguments and enter alterna-

tive values via widgets, such as text entry boxes, slider bars, true/false check boxes, and multi-

option lists. The GUI functionality is provided by Hoffman and Laird’s (2009) fgui package.

StateTrace, fgui and coda are installed once into an instance of R by typing

> install.packages("StateTrace")

http://www.r-project.org/

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 7

on the R command line. Subsequently, each time R is invoked StateTrace functionality is made

available by typing

> library("StateTrace")

On some operating systems equivalent menu based methods can be used for both of these steps;

for example, for Windows users a package can be installed by selecting ‘Packages > Install

package(s) from local zip files…’ from the menu toolbar and then navigating to and selecting the

downloaded file, while the functionality of StateTrace can be made available by selecting

‘Packages > Load Package…’ from the menu toolbar and selecting “StateTrace” from the dis-

played list.

The main StateTrace GUI (see Figure 1) can be invoked by typing

> guista()

and provides access to each of the StateTrace functions: stFirst, stSample, stSummary,

stProbplot, stBootav, stPlot and staManage. Clicking the corresponding function buttons will

open further GUI windows. Alternatively, these GUIs can be called directly by typing “gui” fol-

lowed by the function name and parentheses (e.g., guistFirst()). In general terms, com-

mand line users can remove “gui” from the start of the function and enter argument values within

the parentheses (e.g., stFirst(staname="DFIE.sta", fnams="DFIE.txt", mul-

tiparticipant=T)). Details on the available arguments can be obtained by consulting the

function’s help documentation, which is called by typing a ? prior to the function name on the

command line (e.g., ?guistFirst or ?stFirst).

Figure 1: GUI window for guista(), which contains a button linking to a customised GUI for

the seven functions available in StateTrace.

3.1. Overview of Functions

The stFirst function performs an initial analysis, first reading in data for one or more participants

from one or more text files, and then making a quick preliminary assessment of the results based

on a limited number of posterior samples. It then creates an object of class sta in the R environ-

ment, which is named by the user. The sta object is used to encapsulate data and the numerical

8 StateTrace: An R Package for State-Trace Analysis

results produced by posterior sampling as well as analyses of the posterior samples. Once stFirst

is complete the sta object can be saved from the R environment to a file in a compressed format

and then restored in a later R session using the R save and load functions respectively.

Three StateTrace functions allow the contents of an sta object to be displayed. The stSummary

and stProbplot functions provide, respectively, tabular and graphical summaries of the Bayesian

analysis. While the stPlot function makes state-trace plots. All three functions will work to some

degree with an sta object just created by stFirst. However, for more accurate results from the

Bayesian analysis, and to access the full range of state-trace plot options, two other functions may

have to be run: stSample and stBootav. These functions perform time-consuming computations

whose results are stored in the sta object. The stSample function collects enough extra posterior

samples to reach a specified level of accuracy in the Bayesian analysis. Some of these extra sam-

ples can also be stored in the sta object so that a line representing the trace or monotonic model

that is best supported by the data can be added to a state-trace plot. Additionally, the stBootav

function must also be run to enable lines representing trace and monotonic models to be added to

state-trace plots averaged over participants.

The main GUI also provides access to the staManage function, which allows users to manage

and export posterior samples stored in an sta object. An sta object is an R list that can be directly

accessed by users, but staManage, and other functions, are designed so this should not be neces-

sary. Samples are stored in an sta object to enable efficient generation of graphical summaries of

uncertainty in estimation (i.e., credible regions, the Bayesian equivalent of confidence intervals).

However, this can sometimes cause an sta object to become so large that it takes a long time to

load and save. Hence, it can be necessary to use staManage to remove samples after the graphics

have been generated. The staManage function also allows users to export a list containing poste-

rior samples with one entry for each participant. Each entry in the list contains samples in a for-

mat (the mcmc.list class) for which coda provides many easy to use analysis methods (e.g.,

plot and summary functions).

3.2. Data Input Formats

StateTrace reads data from text files in two formats, both of which (a) can contain data from ei-

ther one or more participants, (b) have the same number of columns in each row, (c) can contain a

header row and (d) have initial columns containing numbers or character strings indexing the de-

sign cell referred to by that row. They differ in that:

1. Trial data files have a row for each trial ending with a binary response indicator (e.g.,

correct and error responses coded as 1 and 0 respectively)

2. Summary data files have a row for each design cell ending with the summed binary re-

sponse frequencies and number of trials for each cell.

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 9

 (a) (b) (c)

Figures 2a and 2b show our example 2AFC data in trial and summary formats respectively. For

both formats, the first column (P) contains identifiers unique to each participant, which may ei-

ther be a numeric (e.g., 1 : n) or character string (e.g., “MP”, “GH”) value. Where the file has da-

ta for only a single participant, this column is used to assign a participant identifier or it may be

omitted. When omitted participants are given integer identifiers in the order files are read; how-

ever, file names are also stored and can be displayed later using the stSummary function. The

next three columns contain indicators for the levels of the state (S), dimension (D) and trace (T)

factors. Again these levels may be specified as numeric values (e.g., 1:3 for a trace factor defined

by three study duration levels) or as character values (e.g., “F” and “H” for a state factor defined

by the type of stimulus presented, faces and houses). The only restriction for these indicators be-

ing that the trace-factor identifiers within each combination of state and dimension levels must

sort (using R’s sort() function) into the order assumed by the trace model to produce increas-

ing performance.

 (a) (b) (c)

Figure 2: Example 2AFC data files in (a) trial and (b) summary formats and (c) yes-no data in

summary format. In (b) and (c), rows corresponding to one participant’s data have been high-

lighted.

Each of the two formats has a different structure for the remaining columns, with a total of six

columns in summary files and five columns in trial files. For the trial format the final column (C)

contains the response made to each trial. For example, for 2AFC judgements (e.g., Figure 2a) this

column records whether the response was correct (1) or an error (0). In contrast, if the experiment

tested single items and therefore required a yes-no judgement, this column records a yes (1) or no

(0) response choice. For the summary format, the fifth column contains the number of “success-

es” (n) per design cell. This corresponds to the summed number of correct identifications for

2AFC data (e.g., Figure 2b). For yes-no data this column contains the summed frequency for

making a “yes” response (e.g., Figure 2c). In both cases, the sixth column for summary files con-

tains the total number of observations (N) per design cell. For example, in our 2AFC experiment

participants attended three 1hour sessions over which they completed 52 blocks of 18 study im-

ages and 18 test pairs, yielding 78 observations per design cell, as shown in Figure 2b.

For our 2AFC example data in summary format (Figure 2b), there is one row for each of the

2(state: face, house) x 2(dimension: upright, inverted) x 3(trace: study duration) = 12 design cells

per participant. However, the summary yes-no data (Figure 2c) has an additional two rows per

10 StateTrace: An R Package for State-Trace Analysis

participant corresponding to the baseline conditions for each level of the state factor. In this ex-

periment, images of faces and houses were presented either upright or inverted at study and then

all tested upright in a yes-no recognition task. As a yes-no task was used, participants were re-

quired to respond to new items during the test phase and it is the false alarm rates (i.e., incorrect

“yes” judgements; FAR) for the new faces and new houses recorded in the extra rows.1 There-

fore, the yes-no summary data has a total of 2 x 2 x 3 + 2 = 14 rows per participant. This latter

type of design is referred to by Prince, Brown and Heathcote (2011) as a state baseline, or B2,

design. While the former type is referred to as a no baseline, or B0, design. As the baseline condi-

tions do not have corresponding dimension or trace factor levels, these indicators can be left

blank or specified as “NA”. StateTrace uses the presence of such indicators to automatically dis-

tinguish B0 from B2 designs.

Note that no explicit provision is made for designs where accuracy in all conditions is measured

relative to a single baseline. Such data can be treated as coming from either a B0 or B2 design. In

the former case, the baseline data can be omitted (e.g., only the “yes” data is analysed). In the

latter case, the baseline data are included twice. The outcome of state-trace analysis is the same in

both cases, but the B2 treatment may be preferred as it enables accuracy to be displayed in graphs

in terms of a difference between non-baseline and baseline results.

The data for our 2AFC example can be made available with a

> data(DFIE)

command, which will create an object called ‘DFIE’ in the R workspace and can be viewed using

> fix(DFIE)

To demonstrate StateTrace’s data input capabilities, this data needs to be saved in a text file out-

side of the R environment using

> write.table(DFIE, file="DFIE.txt", sep="\t", row.names=F)

which will save the data in a tab-delimited text file called ‘DFIE.txt’ in the current working direc-

tory. Note that the location of the current working directory can be obtained by typing getwd()

on the command line. If the working directory needs to be changed, this can be done with a

setwd() command and including the path of the desired directory within the parentheses (e.g.,

setwd("C:/User/Desktop/statetrace")). Alternatively, on some operating systems

the working directory can be changed by selecting ‘File > Change dir…’ from the R menu

toolbar and navigating to the desired directory.

1 Note that unambiguous inference about dimensionality for yes-no responses requires that accuracy for both

levels of the dimension factor be assessed against a common baseline (i.e., relative to the same new items). This

is achieved in our yes-no example as all items were tested upright.

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 11

3.3. First Steps

It is important to note that multiple passes of sampling from the data will likely be required,

which will update user specified aspects of the analysis. The stFirst function therefore provides

users with a function specifically designed for commencing the sampling process. stFirst is a

wrapper for several other functions that are called with some arguments fixed at values minimally

sufficient for an initial analysis. The GUI shown in Figure 3 illustrates the remaining arguments

that can be set by the user. For this function (and all other GUIs presented) parameter values that

must be set are marked by a ‘*’. Note also that in all GUIs, parameter descriptions containing the

term “character string” must have their entries enclosed in quotes. Chief among these is the sta

object name, which must not begin with a number or contain any spaces; the stFirst function will

create an sta object with this name in the R environment, overwriting any existing object without

a warning. For this example analysis, we assigned the name “DFIE.sta”. It is not required for the

name of this object to be followed by the extension ‘.sta’ however, we tend to use this naming

convention for ease in distinguishing the sta object from other formats that may have the same

name and be saved in the current workspace.

Figure 3: GUI for stFirst, which is used to read-in the raw data files, create an sta object, perform

an initial pass of sampling, and create preliminary state-trace plots.

The following three stFirst arguments specify different ways of loading data. The first argument,

Character string of directory + file name of data file/s, allows one or more directory and file-

name combinations to be entered as a character vector. If no directory is entered then R’s working

directory is assumed. Otherwise, the R convention of a forward slash, /, should be used when

specifying the path of a file; for example, "datafiles/DFIE.txt" specifies a single file in

the directory ‘datafiles’ below the working directory, or c("DFIE-P1.txt", "DFIE-

P2.txt") specifies two files in the working directory. Alternatively, the next two arguments

enable loading of all files contained in a specified directory (Character string of directory con-

taining data file/s) that have a particular extension (Character string of file extension; by default

*.txt). If all three of these arguments are left blank when stFirst is run, R’s choose.files()

method of selection (through a file list dialog) is invoked for Windows and Mac users. Using this

method, Windows users can specify multiple files by holding the ‘Ctrl’ key when selecting the

12 StateTrace: An R Package for State-Trace Analysis

data files, whereas Mac users may only select one file (note this method is not available on

Linux).

The next five arguments specify the data file format. First, Selected data files each contain data

for multiple participants?, indicates whether the data file(s) contain data for multiple participants

(“T”) or a single participant (“F”). It can also be specified whether the data files contain a header

row by checking either true (“T”) or false (“F”) for the argument Header row in data files? The

next button, File delimiter, is used to indicate what delimits the columns. This value can be speci-

fied by clicking the button and selecting an option (“tab”, “space” or “comma”) from the dis-

played list.

Data files will also often contain more information than required by StateTrace and therefore the

argument, Columns to use from each data file, specifies the relevant columns in the order of par-

ticipant identifier (if included), state, dimension, trace and response columns either by indicating

the column position (as an integer vector) or column name (as a character vector). This can be

done using R’s combine function: c(…), where … are the column numbers or names to be in-

cluded; for example, c(1,2,4,7) could be used for a trial data file that does not have a partici-

pant identifier column but does have additional non-relevant columns to be excluded, or

c(3,1,2,4) could be used for a trial data file with no participant identifier column that had the

state, dimension and trace columns in the incorrect order. The next argument, String for empty

cells in data file/s, allows any non-relevant rows to be excluded from analysis depending on the

contents of the last (C) or second last (n) columns for trial and summary formats respectively. For

example, in a recognition memory task participants may be required to make study-trial responses

that are recorded on separate rows to the test-trial responses, or participants may fail to make a

test response on some trials. Such rows can be excluded by specifying the character or symbol

that identifies them (by default “NA”).

At the end of the initial pass, stFirst will generate a state-trace plot for each individual participant

and for the group average. The final argument, Accuracy based on probabilities?, specifies

whether accuracy measures based on probabilities (“T”) or on the inverse cumulative normal (z)

transformation of probabilities (“F”) should be plotted. For the former option the state-trace plot

will contain an estimate of the proportion of correct responses for B0 designs and the hit rate

(HR; the proportion of correct ‘yes’ responses) minus the false alarm rate (FAR; the proportion of

incorrect ‘yes’ responses) for B2 designs. Although state-trace analysis largely avoids the scale

dependent caveats that can confound bounded response measures, some users may still wish to

normalise their data. The latter option, therefore, specifies z(proportion correct) for B0 designs

and the signal detection theory measure d’ = z(HR) – z(FAR) for B2 designs.

For this example analysis, most of the stFirst arguments can remain at their default values. How-

ever, we assigned “DFIE.sta” as the sta object name, entered the file name “DFIE.txt” for the se-

cond argument value (assuming that the text file is located in the working directory) and specified

that a probability measure should be used when generating the state-trace plot (i.e., the proportion

correct as the example data comes from a B0 design). Clicking the ‘OK’ button will then run

stFirst. Note that when stFirst is executed it may appear that the screen has ‘frozen’ even though

the sampling has begun (the same is also true for stSample). In this situation it is often necessary

to turn off the "buffered output" option in R (select Misc > Buffered output from the R console)

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 13

in order to view the produced output. If this is not done the output will still be printed; however,

the user will have to wait until the stFirst is complete rather than receiving updates and results as

the pass is running.

Before sampling begins, a number of checks are run to ensure the selected data files are compati-

ble with StateTrace (e.g., that the state and dimension factors each have only two levels) and that

multiple data files are compatible with each other (e.g., all have either a B0 or B2 design). If any

of the files are incompatible, an error message will direct the user to the aspect of the data file(s)

that produced that problem. For example, if one participant’s data had three trace levels and an-

other had four trace levels the message “Participants have different numbers of trace levels”

would be printed.

Using the raw data, the initial pass will then create the sta object. This object is essentially a list

of lists, which are empty by default but will hold information about the raw data (e.g., whether

the design is a B0 or B2, as well as the number of and expected order for the trace levels) as well

as the sample counts and prior and posterior estimates (see ?staMake for a detailed breakdown

of the sta object). StateTrace will then complete two “runs” per participants sampling from the

encompassing posterior. This sampling is done for each independent set of design cells; four sets

for B0 designs corresponding to each combination of the state by dimension factor levels and two

sets for B2 designs as there is a baseline condition effectively tying the dimension levels together

for each state level.

For each run, StateTrace draws S = 100,000 samples from the encompassing model assuming no

orders and counts the number of these samples that respect the trace model order sT. It then calcu-

lates the posterior proportion for the trace model (T) relative to the unrestricted (U) encompassing

model using
,

ˆ (1) / (2)T U Ts S    , estimates the 95% credible interval for the posterior esti-

mates and where the precision of the interval is less than 0.0005 marks sampling for a set as being

complete. Otherwise it estimates the time required to get enough samples to narrow the interval

sufficiently, based on the time taken for the initial 100,000 samples and using a line search be-

tween 100,000 and 1014 samples. Note the time estimates are only approximate and will vary if

sampling is completed on a different computer.

Next an order constrained Gibbs sampler (Gelfland, Smith & Lee, 1992) is used to draw two se-

quences of 5,000 MCMC samples (“chains”) from the trace model per participant. For each chain

ST = 5,000 samples are drawn from the trace posterior and StateTrace counts the number of these

samples that have a monotonic order, sM and that are non-overlapping, sNO. The proportion of

trace samples following the no-overlap,
,

ˆ (1) / (2)NO T NO Ts S    , uni-dimensional,

,
ˆ (1) / (2)UD T M NO Ts s S     , and multidimensional,

,
ˆ (1) / (2)MD T T M TS s S    , model

orders are tabulated and the corresponding 95% credible intervals calculated. Next the precision

of these intervals is assessed, with sampling for a participant marked as complete if all intervals

are less than 0.005 and the additional time required estimated otherwise. Note that a smaller in-

terval criterion is used for the encompassing than trace sampling as the encompassing proportion

estimates have greater potential to reduce precision overall because they multiply the trace pro-

portions in the calculation of Bayes factors.

14 StateTrace: An R Package for State-Trace Analysis

Although all of the above sampling is essentially happening “behind the scenes” StateTrace

prints a number of details in the R console, which allows the progress of the sampling to be moni-

tored. First the data sources of each data file loaded are reported:

If the data files are compatible and compiled to create the sta object, a summary of the design is

then reported:

As seen above, this summary notes that our DFIE example, has “F” and “H” (i.e., faces and hous-

es) as the state factor levels, “I” and “U” (i.e., inverted and upright) are the dimension factor lev-

els, there are three levels for the trace factor and the data has a B0 design.

Next updates are printed relating to the sampling from the encompassing model including (a) the

current precision of the credible interval of the trace posterior proportion for each independent set

as well as the (b) estimated time remaining (in minutes) for each participant:

It should be noted that when sampling from the encompassing posterior the time remaining re-

lates to the appropriate computation time required for the set with the “worst” precision to meet

the specified criterion. For example, for participant 2 above, the time remaining of 0.11minutes at

the end of the first run relates to the third set which has the widest credible interval. These details

are printed for each individual participant, followed by an estimate of the total time remaining at

the end of the first run (here 2.31minutes) and then the individual participant updates are printed

for the second run of sampling from the encompassing posterior.

Similar updates are then printed for the MCMC sampling from the trace posterior including (a)

the current precision of the credible intervals for the no-overlap, uni-dimensional and multidi-

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 15

mensional posterior proportions and (b) the estimated time remaining for all three estimates to

satisfy the required precision criterion:

It can therefore be seen that at the end of the second run participant 2 also requires a further

0.46minutes of computation time for the three estimates to satisfy the precision criterion. Finally,

at the end of the second run of trace sampling, an estimate is reported for the overall time remain-

ing for sampling from the encompassing posterior, the trace posterior as well as all sampling:

For the trace model sampling, initial (burn-in) samples are discarded because it can take some

time for the MCMC process to converge to the target distribution (see Gilks, Richardson & Spie-

gelhalter, 1996). Our experience is that for Prince, Brown and Heathcote’s (2011) method, con-

vergence is very fast and that at most 100 initial samples need to be discarded. However, this may

not be the case in all applications, so StateTrace provides facilities to check. Once the two runs

sampling from the trace model have completed, stFirst automatically calculates one check for

whether the MCMC process has worked properly (i.e., has “converged”) using Gelman’s multi-

variate “R-hat” statistic as provided by Plummer, Best, Cowles and Vine’s (2006) coda package:

The calculation of this statistic requires there to be more than one set, or ‘chain’, of samples.

Therefore, to ensure convergence can always be assessed at the end of stFirst for all participants,

this first pass will force two runs from the trace posterior for all participants (cf. sampling from

the encompassing posterior, where the second run is only completed for those participants where

sampling is not complete). As seen above, the first row of the output corresponds to the partici-

pant number and the second row is Gelman’s R-hat statistic, where values close to one indicate

good convergence.

In the final stage of computation stFirst draws 10,000 bootstrap average samples and uses the

two-dimensional density estimator provided by Wand and Ripley’s (2009) KernSmooth package

16 StateTrace: An R Package for State-Trace Analysis

(with its default parameters) to calculate the posterior modes (measures of central tendency) and

68% credible regions around the modes:

These calculations are used to display an average state-trace plot, which provides the user with an

immediate view of results averaged over participants, as well as state-trace plots for each individ-

ual participant. Additionally the corresponding posterior mode estimates are output in a tabular

form to the R console; for example:

Once the first pass has completed, stFirst suggests directions for the next stage of analysis:

Note also that stFirst can be called repeatedly to add additional participants to the sta object; it

should just be ensured that the argument sta object name is provided with the name of the exist-

ing object to which the additional data should be appended to. A warning will be issued if dupli-

cate data sources are mistakenly specified however, this data will still be added to the object

without replacing the old entries.

3.4. Saving and Loading sta Objects

Before running any subsequent passes, the user may wish to save the sta object to the current

stage of analysis. This can be done by typing

> save.image()

which will save the sta object (and everything else in the environment) in the current R work-

space. However, there may be times where it is more appropriate to save the sta object outside the

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 17

R workspace. This can be done using the save() command by providing the name of the object

to be saved and assigning a file name within the parentheses. For example, typing

> save(DFIE.sta, file="DFIE.sta")

will save the example sta object as a compressed file called “DFIE.sta” in the working directory.

Note this command behaves in much the same way as ‘zipping’ a file and so can also be used to

save multiple sta objects to a single external file (e.g., save(c(DFIE1.sta, DFIE2.sta),

file="sta objects")).

When saved as an external file, the load() command can be used to load the sta objects into

any R workspace. If the file has been copied to the new working directory, then simply including

the file name within the parentheses will direct R to the file to load; for example

> load("DFIE.sta")

Similarly, load("sta objects") will ‘unzip’ and load both of the sta objects. Alternative-

ly, if the file is not located in the working directory, typing

> load(choose.files())

will open a file list dialog from which the user can navigate to and select the file to load.

3.5. Refining Estimates

Further sampling may be required if the analysis did not reach completion during the initial pass

or the user wishes to alter the credible interval and precision criteria from those used by stFirst.

This is achieved using stSample (see Figure 4), which allows fine-grained control over the de-

faults used by stFirst. The only required input (* sta object name(character string)) is the name

of an existing sta object (e.g., “DFIE.sta”). Because obtaining enough samples to fulfil stricter

criteria can be time consuming, stSample has a ‘refresh’ mode (Refresh sta object calculations =

T), which allows the predicted time to completion to be calculated for different criteria; that is, it

will re-assess the observed credible interval and corresponding precision against the new criteria

and then estimates how much more computation time is required. This refresh mode is fast to run

as no actual sampling is done, unless none has been done yet, in which case a single pass is com-

pleted to get the necessary timing information. Note that as this timing information will vary de-

pending on the computer used, if the most recent pass (e.g., running stFirst) was run on a differ-

ent computer it is useful to turn off the refresh mode but leave the maximum run time at zero,

which will cause a single pass to be run and update the timing information for the new computer.

18 StateTrace: An R Package for State-Trace Analysis

Figure 4: GUI for the stSample function, which is used to refine the posterior estimates and sam-

pling parameters used.

Once a sampling plan is determined the refresh mode can be turned off, a suitable maximum run

time entered and sampling initiated. The Maximum run time (hours) can be set to any feasible

number of hours by entering an integer value in the text box. As noted above, by leaving this ar-

gument at the default ‘0’ value, stSample will complete a single pass of sampling per participant.

Alternatively, the timing estimated provided by stFirst can be used to inform this parameter val-

ue. For example, the output from the initial pass of the DFIE data estimated that a further

8.49minutes of computation time was required; hence the maximum run time could be set to

0.14hours. However, given that this value is only an estimate that may fluctuate as the sampling

progresses, it is typically wiser to set a larger value if it is desired for the sampling to run to com-

pletion (when there are a large number of participants we have found overnight runs to be a good

solution; i.e., maximum run time = 8hours).

stSample will divide the maximum time allowed between the types of sampling (from the en-

compassing and/or trace model) and then further between each participant that has not been com-

pleted. Note however, that sampling will terminate when the precision criteria are satisfied, and

so stSample may complete before the maximum run time has elapsed and one type of sampling

may complete before the other. The progress of this sampling can be monitored using the final

stSample argument (verbose), which controls information printed to the R console during sam-

pling. The slider for this argument can either be dragged along the width of the bar or a numeric

value (0, 1, 2) entered in the adjacent text box: 0 is silent, 1 prints the estimated total time remain-

ing after each run for all participants and 2 adds estimated timings per participant (the stFirst

output is provided by a verbose value of 2).

Sampling is completed in a series of runs, and users may choose to sample only from the encom-

passing model (Run encompassing model), the trace model (Run trace model) or both. The num-

ber of samples for each run of each type of sampling (Samples per run for encompassing model

and Samples per run for trace model) is chosen to satisfy a trade-off between optimising compu-

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 19

tational speed and obtaining a sufficient number of samples to count those respecting a model’s

order. Although fast, small values inherit a small cost in housekeeping between runs and initial

burn-in samples on each trace model run are lost (Number of burn-in samples). In contrast, large

values cost more in memory and can result in more samples being taken than is necessary to

achieve the required precision. A larger value is advisable for encompassing than trace model

sampling, as encompassing sampling is usually an order of magnitude faster. In our applications

we have found the defaults work well (100,000 samples per run for the encompassing model and

5,000 per run for the trace model sampling with 100 burn-in samples) and that little is gained in

particular cases by altering them. Nevertheless, these values can be modified by entering a differ-

ent integer value in the appropriate text box.

Similarly the accuracy criteria (Credible interval (0-100%), as well as Credible interval precision

for encompassing samples (0-1) and Credible interval precision for trace samples (0-1)) can be

set by altering the integer value in the appropriate text box. Again we have found the default cri-

teria (95% credible interval and precision of 0.0005 for encompassing samples and 0.005 for

trace samples) strike an appropriate balance between computation time and the accuracy of Bayes

factor and posterior model probability estimates.

A second reason for running stSample is to collect samples that can be used in visualising each

model; that is, samples that follow the order(s) dictated by a model. We have found the default

value of 10,000 encompassing samples (Number of encompassing model samples to keep for plot-

ting), which were collected by stFirst, are sufficient for accurate visualisation of central tenden-

cies and credible regions, although large regions (which require estimation of distribution tails)

can require more. The 10,000 trace samples (Number of trace model samples to keep for plotting)

collected by stFirst are also usually more than sufficient given they are only used to estimate

central tendency. The stSample function also collects a particular type of trace sample, monoton-

ic model samples (Number of monotonic model samples to keep for plotting), which may be rela-

tively rare, especially when the data are far from monotonic. Monotonic samples are used to plot

the central tendencies of the uni-dimensional or no-overlap models, with the latter type of sample

often being extremely rare unless the data are strongly non-overlapping. Given this, by default

stSample keeps all (i.e., Inf) monotonic samples.

As for stFirst once the desired parameters have been set, clicking ‘OK’ will initiate stSample;

for the current example all defaults were used except the refresh mode was turned off and the

maximum run time set to ‘8’ (although sampling was complete within 20minutes). This process

of running a subsequent pass can be repeated as many times as is necessary. When all sampling is

complete, the overall time remaining for both the encompassing and trace models will be record-

ed as ‘0’.

3.6. Managing the sta Object

Storing large sets of samples for each participant can greatly increase the size of sta objects. The

stSample defaults (assuming stored monotonic samples are not allowed to grow too large) do not

cause problems, but if an object contains data from a large number of participants, issues may

arise, such as very slow loading and saving times for sta objects. The staManage function (see

Figure 5) can be used to reduce the number of stored samples in such cases (Number of encom-

20 StateTrace: An R Package for State-Trace Analysis

passing model samples to keep, Number of trace model samples to keep and Number of monoton-

ic model samples to keep). It also includes the option to keep only samples for the “best” (i.e.,

most frequently occurring, and hence most probable) monotonic order rather than all samples

with monotonic orders (Keep only samples for the best monotonic model?).

Figure 5: GUI for the staManage function, which can be used to combine sta objects, check the

convergence of MCMC trace chains and reduce the number of stored samples.

As stSample can add extra stored samples staManage also allows for Gelman’s multivariate

convergence analysis to be run on the expanded sets (Check convergence of trace model MCMC

chains?). However, as stSample also provides the option of modifying the number of trace sam-

ples drawn per chain, the Length of each MCMC chain must be specified; this value must be

some multiple of the total number of trace samples and result in there being at least two chains.

staManage also allows the expanded sample sets to be exported as a list of mcmc.list objects2

by specifying a name for the object (Name of saved MCMC samples; e.g., “DFIE.mcmc”). Ex-

porting this object allows the user to run further convergence checks provided by Plummer et

al.’s (2006) coda package (see the package documentation for details). For example, visual in-

spection of the chain convergence can be assessed using

> plot(DFIE.mcmc[[1]])

which will plot the results for the first participant. If the chains have converged then this plot

should look like a “fat hairy caterpillar” and the separate chains should not be distinguishable

from each other (see also summary(DFIE.mcmc[[1]]) to obtain additional summary statis-

tics from coda).

Finally, staManage can be used to bind multiple sta objects. In contrast to the previous functions

the required input of an sta object name (* sta object name/s (character string)) may either speci-

fy a single character name, in which case the stored samples are managed, or a vector of character

names, in which case the objects are joined and saved to a new object. For example, it can be

2 The mcmc.list format requires equal chain lengths for all of the chains it contains. This may not be the case

if stSample is not run with the default value for Samples per run of the trace model used by stFirst (i.e., 5,000).

In this case it is best to use staManage to remove the trace-model samples stored by stFirst before running

stSample with new parameter values.

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 21

computationally efficient to divide a very large sample and run the sampling for sub-groups of

participants on separate machines. Once completed these sta objects can be combined to examine

the group aggregate results. By default, the combined object is saved back into the first element

of the * sta object name/s (character string) value. However, a new object will be created if an

alternate character name is entered for the New name for sta object (optional, character string)

argument.

3.7. Extracting Results

The stSummary and stProbplot functions display model selection results, and the stPlot func-

tion creates state-trace plots. The stSummary function also provides information about the status

of sampling for an sta object (i.e., whether it is complete or if not how much more computation

time is required according to the criteria stored in the object). All three functions may be run as

soon as stFirst is complete, but stSample should also be run to completion when final results are

required. The stBootav function must also be run in order to calculate averages based on samples

stored by stSample before making participant-average state-trace plots. The stFirst function runs

stBootav on encompassing model samples, but stBootav must be run separately to plot partici-

pant averages for other models.

3.7.1. Model Selection Results

The stSummary GUI (Figure 6) controls output of tabular model-selection results to the R con-

sole. The only required argument for this function is the name of an sta object (* sta object name

(character string)). Results can be output in terms of Bayes factors or posterior model probabili-

ties using the first true/false argument, Report Bayes Factors (T) or probabilities (F). For the lat-

ter option, the next argument, Use Trace-true (T) or Exhaustive (F) strategy for probabilities, can

specify if the probabilities are calculated based on all four models (i.e., an exhaustive selection

strategy) or by excluding the non-trace model from the set (i.e., the trace-true strategy). By de-

fault, stSummary reports results summarised over participants based on group Bayes factors,

which are the product of each participants’ Bayes factors and assume each participant contributes

independent evidence (see Prince, Brown & Heathcote, 2011). Note these group results are not

obtained by averaging data over participants, as Prince, Brown and Heathcote showed that neither

monotonicity nor non-monotonicity are necessarily preserved by averaging.

However, in some cases the group results can be inappropriately influenced by outlying individu-

al participant results (e.g., most participants are uni-dimensional but a few strongly multi-

dimensional participants dominate the group results). We therefore, recommend that users always

output individual participant results in order to check this possibility using the Display values for

individual participants option supplied in the stSummary GUI. When outliers occur the corre-

sponding participant’s integer or character identifier can be entered for the argument Participants

to exclude, to exclude them from the calculation of group results; for example, to exclude the

third and seventh participant we would type 3 7 in the text box. For readability the number of

decimal places printed (Round to how many decimal places?) and different ways of sorting indi-

vidual participant results (based on results for a particular model; Sort values for individual par-

ticipants by model) can also be specified.

22 StateTrace: An R Package for State-Trace Analysis

 (a) (b)

Figure 6: (a) GUI for the stSummary function and further customisations that are available by

clicking the (b) “Select additional results to display” button.

Users may also output a large range of additional results, using a multi-option list GUI (Figure

6b) that opens after pressing the Select additional results to display button shown in Figure 6a.

When each participant’s data were read from a separate file the “Data Sources” option outputs the

file names, which can be useful in linking this information to the participant identifiers used by

StateTrace. The remaining options output prior probabilities for each model (calculated analyti-

cally; see Prince, Brown & Heathcote, 2011), as well as the total number of encompassing and

trace model samples and raw counts of the number of times the orders specified by each model

were sampled. The latter results can be used to instantiate different model selection strategies

without obtaining new samples (see Prince, Brown & Heathcote for details; a brief example is

also provided below).

When the desired parameters have been set, clicking ‘OK’ will execute the stSummary function

and the appropriate output will be printed to the R console. For our example analysis, we asked

stSummary to output posterior probabilities using the exhaustive model selection strategy, and to

include the individual participant results. We also asked for stSummary to output the prior prob-

ability for the trace model as well as the total number of samples from the encompassing model

and the number of these samples that respected the order of the non-trace model.

The stSummary output first prints whether the sampling is complete and the accuracy criteria

used, as well as the number of participants included in the group level results. Below we can see

that for our DFIE example sampling is complete using a 95% credible interval and precision of

0.0005 and 0.005 for encompassing and trace model sampling respectively. Moreover, all 18 par-

ticipants have been included in the group results:

If however, sampling were incomplete, stSummary would print the accuracy criteria specified as

well as the estimated computation time remaining.

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 23

Next stSummary outputs the group followed by individual participant results and in both cases

records that the posterior model probabilities are presented:

For our DFIE example we see that with the exception of participant “10”, no participants showed

positive support favouring the non-trace model, which is consistent with the group result, gpNT,U <

.001. Therefore our manipulation of study duration was largely successful in producing a mono-

tonic effect on performance. Similarly, no support was found for the no-overlap model, gpNO,U <

.001, suggesting that our use of longer study durations for inverted than upright presentations

achieved strong overlap of the data traces and hence a diagnostic design. The final two models

can inform us of the underlying latent dimensionality. For our DFIE data we see that the multi-

dimensional model received very strong support, gpMD,U > .999, while the uni-dimensional model

received little support, gpUD,U < .001. However, the individual participant results were not always

as decisive in their evidence favouring either a multi-dimensional or uni-dimensional account.

Following the model selection results, stSummary outputs any additional results that were speci-

fied; here we asked for the trace model prior probability, the number of encompassing samples

that respected the non-trace model and the total number of samples drawn from the encompassing

model:

24 StateTrace: An R Package for State-Trace Analysis

Although the latter two sample counts are reported for each independent chain, note that State-

Trace is not interested in the probability that the non-trace model is true for ‘chain one’ but not

‘chain two’ and so on, but rather the probability that it is true for all chains. Therefore, the poste-

rior proportions are first calculated for the trace model at the level of the independent chains and

then combined to calculate the posterior proportion for the complementary non-trace model. For

example, consider participant “1”: the posterior proportion of the trace model for chain one is

(1),
ˆ (8,400,000 1,358,738 1) / (8,400,000 2) 0.8382T U      , and the combined trace posterior

proportion is
,

ˆ 0.8382 0.3610 0.6572 0.3698 0.0735T U      . The complementary non-trace

model posterior proportion is therefore,
,

ˆ 1 0.0735 0.9265NT U    , and the non-trace Bayes

factor is BFNT,U = 0.9265 / (1-0.00077) = 0.927.

As noted above these expensive computations (sampling and counting orders) can be re-used to

assess many other model selection strategies. For example, Prince, Brown and Heathcote (2011)

also suggested a sequential strategy, which first compares the trace and non-trace models. Here a

Bayes factor would be calculated for both the trace model (BFT,U = 0.0735 / 0.00077 = 95.45, for

participant “1”) and the non-trace model (BFNT,U = 0.927), and then the non-trace posterior model

probability calculated, pNT,{NT,T} = BFNT,U / (BFNT,U + BFT,U) = 0.0096. Given that the non-trace

model is not supported, a similar comparison could then be made between the multi-dimensional

and monotonic models and then (if warranted) between the uni-dimensional and no-overlap mod-

els (see Prince, Brown & Heathcote, for further details).

In addition to the tabular output of stSummary, the stProbplot GUI (Figure 7) allows the distri-

bution over participants of posterior probabilities for each model to be inspected graphically.

Again the only required input for this function is the name of the sta object (*sta object name

(character string)) and outlying participants can be excluded using the Participants to exclude

parameter. stProbplot also allows the annotation within the plots to be extensively customised. A

title can be added above each panel using the next four arguments (Non-Trace title, No-Overlap

title, Uni-dimensional title, Multi-dimensional title), while the following five text-box arguments

can customise the labels for y-axes (Non-Trace y axis label, No-Overlap y axis label, Uni-

dimensional y axis label, Multi-dimensional y axis label) and for the x-axis (x axis label), which

is common to all four panels. Note that if no label is desired, the default text should be replaced

with a pair of double quotation marks. The Select plotting symbols button will link to a multi-

option list GUI, which contains a range of filled and unfilled shapes, participant numbers and let-

ters that can be used to denote each participant’s value.

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 25

 Figure 7: GUI for the stProbplot function, which creates a graphical display of posterior model

probabilities.

Dotted horizontal lines corresponding to the evidence categories in Table 1 can be customised

using the next two true/false arguments, with Insert dashed lines at p(0.05, 0.25, 0.5, 0.75, 0.95)

including the criteria for equivocal, positive and strong evidence and Insert dashed lines at

p(0.01, 0.99) including the criterion for very strong evidence. The posterior probability for the

group (based on the group Bayes factors) can also be displayed as a heavy dashed line on the plot

(Insert line at group posterior probability) and as a numeric value in the title (Insert group poste-

rior probability in title). Finally the range of values on the y-axis can be modified by dragging the

slider bars corresponding to the Minimum y axis value and Maximum y axis value arguments.

Unlike the GUIs for non-graphical functions, the stProbplot GUI does not close after ‘OK’ is

clicked. This allows the user to progressively customise the plots without re-calling the function

and re-entering the parameter values each time3. However, it is important to note that each time

the plot is generated, the new plot will over-write the previous unless it is specified that R should

record all of the plots generated in the graphics device, which is done by selecting History > Re-

cording from the R console. Clicking the ‘Cancel’ button will dismiss the stProbplot GUI but

does not “cancel” the most recent parameter values assigned or output produced.

As shown by the output for the example DFIE data in Figure 8, the stProbplot plot includes a

panel for each model. Participants in each panel are sorted by their results, allowing those with

extreme values to be easily identified. Figure 8 was made using the default values, which produc-

es appropriate annotation in most cases, and by choosing the option to use integer plot symbols in

order to easily identify each participant’s result.

3 Mac users please note that there is a known issue in the GUI version of both plotting functions (stProbplot

and stPlot) that does not allow for this progressive customisation to always work. Three work-around options

are described in the help documentation for these functions (e.g., ?stProbplot or ?stPlot).

26 StateTrace: An R Package for State-Trace Analysis

Figure 8: Posterior model probabilities for each participant (denoted by their participant number)

for the DFIE example data for each of the four diagnostic models (panels). Group posterior model

probabilities for each model are indicated in panel titles and plotted as a heavy dashed line. With-

in each panel, participant results are sorted in ascending order of their probability estimates and

faint dashed lines demarcate the categories in Table 1.

For example, Figure 8 clearly suggests that participant “10” provides an outlying result in favour

of the non-trace model, as was also noted from the stSummary output. However, follow-up anal-

ysis excluding participant “10” revealed little influence on the group posterior model probability

(gp in the panel titles). As previously noted, overall these results show positive or greater evi-

dence for the trace model and for data-trace overlap (i.e., low posterior probabilities for the non-

trace and no-overlap models). Evidence is weaker and individual variability greater in relation to

the dimensionality results, but the group evidence clearly supports a multi-dimensional outcome.

With respect to individual variability in dimensionality, the stProbplot plots can also easily re-

veal a potential mixture of uni-dimensional and multi-dimensional sub-groups, but this is not in-

dicated in Figure 8.

3.7.2. The State-Trace Plot

Figure 9 shows examples of state-trace plots produced using the stPlot GUI. Although we could

create state-trace plots using the current example sta object, which has now been run to

11 1 71516813 9186 5 317

214

12
4

10
0
.0

5
0
.2

5
0
.5

0
0
.7

5
0
.9

5

Sorted Participants

p
(N

o
n
-T

ra
c
e
)

gp(Non-Trace) = 0

1117129 3 810165186 4
15

7
14

1
2

13

0
.0

5
0
.2

5
0
.5

0
0
.7

5
0
.9

5

Sorted Participants

p
(N

o
-O

v
e
rl

a
p
)

gp(No-Overlap) = 0

1218

1013158 6 3 414
2 7

16
1

11
9

17
5

0
.0

5
0
.2

5
0
.5

0
0
.7

5
0
.9

5

Sorted Participants

p
(U

n
i-

d
im

e
n
s
io

n
a
l)

gp(Uni-dimensional) = 0

10

2
1135 41417

9

711
16

1215
6 3

8

18

0
.0

5
0
.2

5
0
.5

0
0
.7

5
0
.9

5

Sorted Participants

p
(M

u
lt
i-

d
im

e
n
s
io

n
a
l)

gp(Multi-dimensional) = 1

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 27

 (a) (b)

 (c) (d)

Figure 9: Accuracy state-trace plots showing modes of the posterior estimates from the encom-

passing model (large symbols) for the 2AFC DFIE data set for (a) participant 10, (b) participant

18, and (c) on average, as well as (d) on average for the yes-no data set. Accuracy is indicated by

plotting the hit rate (HR) for the 2AFC DFIE data and d’ (i.e., z(HR) – z(FAR), where FAR is the

false alarm rate) for the yes-no example. For (a) and (b) lines are data traces, joining the posterior

modes of the encompassing model samples, and ellipses represent 50% credible regions. For (c)

lines with small symbols join posterior modes of the trace model and for (d) they join the highest

posterior probability (i.e., most frequently sampled) monotonic model. The ellipses in (c) and (d)

represent 68% credible regions.

28 StateTrace: An R Package for State-Trace Analysis

completion using stSample, in order to illustrate the full range of state-trace plot options

stBootav should also be run to obtain bootstrap averages. Again the only required input for the

stBootav GUI (Figure 10) is the name of the sta object (*sta object name (character string)) and

the option is also provided to exclude participants from the bootstrap averages (Participants to

exclude). The stBootav GUI allows users to choose to calculate bootstrap averages (based on the

stored posterior samples for each participant) for one or more of the encompassing, trace and

monotonic models (Generate bootstrap average for encompassing model, Generate bootstrap

average for trace model, and Generate bootstrap average for monotonic model respectively).

Note the bootstrap average for the encompassing model is calculated at the end of stFirst, which

enables preliminary state-trace plots to be generated prior to running stBootav.

Figure 10: GUI for the stBootav function, which is used to obtain the bootstrap participant aver-

ages.

A set of bootstrap averages is created by repeatedly randomly selecting with replacement one

sample from each participant’s set of posterior samples for a given model and taking their mean.

By default, these averages are based on 10,000 bootstrap samples (Number of bootstrap samples

to draw). Each time stBootav is invoked it can compute averages for only one type of accuracy

measure (i.e., based on probabilities (“T”) or z-transformed probabilities (“F”); Accuracy based

on probabilities?). Finally, the stBootav function also allows participants to be selected at ran-

dom with replacement on each bootstrap repetition (Resample participants = “T”); this produces

a set of averages with the same central tendency but greater variability that is appropriate when

the participants are treated as a sample from a population.

For our DFIE example, stBootav was run using the default values, with the exception of setting

the Resample participants argument to “F”. Once executed, stBootav prints a number of updates

in the R console, including the participant identifiers for those included in the bootstrap average

and a record of the models for which the bootstrap averages were calculated:

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 29

Note that monotonic samples may be relatively rare for some data, and so the averages can be

unreliable; to alert users to this possibility, when asked to calculate the bootstrap average for the

monotonic model, stBootav also reports the number of participants who have less than 100 sam-

ples:

A participant with no monotonic samples is excluded from the average. The problem of a lack of

monotonic samples might be addressed by calling stSample again with a stricter criterion, but

usually a lack of monotonic samples indicates the monotonic model is not appropriate for the data

and so there is no point plotting it (e.g., monotonic samples may be rare for our DFIE data as it is

non-monotonic).

The stPlot GUI (Figure 11) operates much like the stProbplot GUI. The name of an sta object

(*sta object name (character string)) must be provided and participants may again be excluded

from the generated plots by specifying the corresponding participant identifiers (Participants to

exclude). Note that this latter value must match the participants excluded when stBootav was run,

as must the accuracy measure to use in the state-trace plots (Accuracy based on probabilities?).

Figure 11: GUI for the stPlot function used to generate state-trace plots.

stPlot also allows for extensive customisation of the annotation in the state-trace plots. A title can

be included above the state-trace plot (Main title) and labels can be specified for each level of the

state factor (x axis label and y axis label) as well as for each level of the dimension factor (Di-

mension 1 label and Dimension 2 label), which correspond to the axes and legend entries respec-

tively. By default, stPlot will fill these latter four values with the appropriate level obtained from

the raw data files (e.g., ‘F’, ‘H’, ‘I’, and ‘U’ respectively for the DFIE data as shown in Figure 2).

30 StateTrace: An R Package for State-Trace Analysis

However, alternate labels that are more informative of the experimental design can be specified

by modifying the value in the appropriate text box (e.g., for the DFIE plots in Figure 9, we en-

tered ‘Faces’, ‘Houses’, ‘Inverted’ and ‘Upright’ in the four text boxes respectively). Note also

that the accuracy measure specified will automatically be included in parentheses after the axis

label (e.g., HR or zHR for 2AFC data and HR – FAR or zHR – zFAR for yes-no data).

Additionally, the symbols used to represent each level of the dimension factor can be specified

using the buttons Plot symbols for dimension 1 and Plot symbols for dimension 2. Note there is no

option to use a filled symbol as stPlot will include a numeric value within each shape to identify

the corresponding trace levels. The range of values for the x and y axes can also be modified by

entering a value in the text boxes corresponding to the arguments Minimum x axis value, Maxi-

mum x axis value, Minimum y axis value and Maximum y axis value. However, leaving these val-

ues as the default “NA”, stPlot will automatically scale the axes to fit the data and credible re-

gions.

The stPlot function represents accuracy data using any one of three measures of central tendency

(the mode, mean or median) applied to posterior samples from the encompassing model (Statistic

to use for model plotting). As the encompassing model makes no order assumptions these central

tendency measures (the large symbols in Figure 9) provide a model-free estimate of the observed

data. The default choice used to create Figure 9 (the mode) produces estimates that are usually

equivalent to the familiar maximum-likelihood formula (e.g., n / N for the 2AFC hit rate, where n

is the number of correct in N trials).

The other central tendency measures usually produce similar results, at least for reasonable sam-

ple sizes not subject to floor or ceiling effects. For example, for the hit rate and uniform prior

used by StateTrace, the mean of a large sample from the encompassing posterior is equivalent to

(n + 1) / (N + 1). For other accuracy measures such simple formulae are not available. This is also

the case for any accuracy measures for any of the order restricted models. Hence, estimates based

on posterior samples have the advantage of providing an easily applied and general approach.

The stPlot function uses the same approach to display the degree of uncertainty in central tenden-

cy estimates, by drawing contours around regions containing a specified percentage of the poste-

rior encompassing-model samples (Plot credible p regions). Estimating Bayesian credible regions

in this way works with all accuracy measures in a way that takes account of any floor and ceiling

effects, which can be very influential when contours are near bounds in an accuracy measure. The

regions, and modes, are estimated using the bkde2D function in Wand and Ripley’s (2009)

KernSmooth package, which is included by default in R.

The stPlot GUI allows users to choose the percentage contained by the regions (Width of credible

p regions) and the degree of smoothing (Smoothing factor for p regions), as a multiple of the

maximum over data points of the values provided by the dpik function: this KernSmooth func-

tion, and bkde2D, are called with default values. The default multiplier of five used by stPlot

was chosen to produce very smooth contours even for large regions, which are otherwise often

irregular because they require estimation of the tails of the posterior distributions; users are en-

couraged to experiment with the multiplier in their application.

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 31

Users are also able to create either an average state-trace plot or a plot for each individual partici-

pant (Plot average (T) or each participant (F)). Figure 9a and 9b were generated by setting this

argument to “F” and plot the results for participant “10”, who had the strongest evidence for a

violation of the trace model in Figure 8, as well as participant “18”, who had the strongest evi-

dence for the multi-dimensional model; both state-trace plots are clearly consistent with the mod-

el-selection analyses. Individual participant data are typically quite noisy, so for clarity the credi-

ble regions in these plots contain only 50% of the posterior samples. The lines in these plots are

data traces (the default Line type value), which join points with the same dimension factor level

(upright or inverted; NB., the weight of the plot lines can be specified using Width of plot line/s).

Both data sets display strong data-trace overlap, consistent with the results for the no-overlap

model in Figure 8. Note that plots such as 9a and 9b can be made as soon as stFirst is run, as

stFirst stores sufficient samples from the encompassing model for each participant (10,000 for

each) and runs the stBootav function necessary to produce averages.

Figure 9c was generated by setting the Plot average (T) or each participant (F) argument to “T”

and is a state-trace plot of the average over all participants in the example DFIE data. Data points

in average plots represent the central tendency of the set of bootstrap averages. Variability among

the averages is used to construct credible regions in the same way as for individual participants.

These credible regions reflect uncertainty in the estimated average over the particular set of par-

ticipants in an experiment. Reflecting the reduction in uncertainty associated with an average, the

credible regions are much smaller in Figure 9c, even though they contain the default value of

68% of the posterior samples (corresponding to the proportion of a normal distribution contained

by conventional standard error bars).

The lines in Figure 9c join the modes of the average of samples from the trace model. The points

joined by the lines (Place points on plot line/s = “T”) are different from the large symbols, which

are estimated based on encompassing model samples, as the encompassing model admits samples

that violate the trace model. However, in this case the difference is not large, reflecting the fact

that for most participants the trace model provides an excellent description of this data.

Figure 9d plots average results for the yes-no experiment using the signal-detection theory d’

measure of accuracy (i.e., z(HR) – z(FAR)). The lines in Figure 9d join the modes of the most

commonly occurring order4 for monotonic MCMC samples (the best monotonic model); that is,

MCMC samples from either the uni-dimensional or no-overlap models. Because this data is well

described by a uni-dimensional model the difference between the best monotonic model and en-

compassing model modes is relatively small. The order in which the points are joined, according

with increasing trace factor levels, reflects almost perfect overlap between data traces in the aver-

age data. Note that Figures 9c and 9d were created after first running stSample to the default cri-

terion then stBootav to average the trace and monotonic samples stored by stSample.

4 It is important to note that the best order may differ between participants. Before interpreting the best (most

frequently occurring) monotonic model in the average, such as is plotted in Figure 9d, it is advisable to use

stSummary to examine the degree of variability in the best orders over participants, as strong individual differ-

ence may mean that taking an average is not sensible

32 StateTrace: An R Package for State-Trace Analysis

4. Summary and Conclusions

The question of latent dimensionality (i.e., whether a single latent variable mediates the relation-

ship between the effect of two experimental factors) has pervaded not only basic research in areas

of memory, perception and categorisation but it is also an important consideration in applied set-

tings such as clinical psychology, human factors, aging and development (see Prince, Brown &

Heathcote, 2011). Traditionally, this question is addressed using an ANOVA interaction test, with

any one-dimensional account rejected when a significant interaction is observed. However, it is

widely known that this approach requires strong assumptions to be made that are difficult or im-

possible to test.

In contrast, state-trace analysis provides a graphical method for addressing latent dimensionality,

which makes only ordinal assumptions and so avoids confounds from range effects that can dis-

tort other methods of assessing latent dimensionality when performance is measured on a bound-

ed scale. Although state-trace analysis requires researchers to consider different methodological

issues, Prince, Brown and Heathcote (2011) have provided detailed guidance to help develop and

refine a state-trace experiment. Furthermore, they proposed an inferential method for state-trace

data, based on Klugkist, Kato and Hoijtink’s (2005) and Klugkist, Laudy and Hoijtink’s (2005)

encompassing prior method for estimating Bayes factors. These inferential tests can be used to

not only assess dimensionality (i.e., to estimate the probability that a one-dimensional or multi-

dimensional model is best able to account for the data) but also to help refine experimental meth-

odology and to check the validity of the dimensionality assessment.

A Bayesian approach is particularly suited to state-trace analysis for two main reasons. First, the

four models proposed by Prince, Brown and Heathcote (2011; the non-trace, no-overlap, uni-

dimensional and multi-dimensional models) differ tremendously in their ability to fit data by

chance. The Bayes factor compensates for these differences, and so does not inappropriately fa-

vour more flexible models. Second, in contrast to null hypothesis statistical testing, a Bayesian

analysis can quantify evidence in favour of a simpler “null” model (e.g., a one-dimensional ac-

count) as well as evidence against it. This feature of the Bayesian approach is ideally suited to

state-trace analysis because, as Loftus (2002) notes, state-trace analysis is an example of a class

“equivalence” method that treat simplicity (i.e., invariances) and differences as equally important.

This even-handed approach has proven fruitful in many other areas of science, and stands in stark

contrast to the focus on often inconsequential “significant” differences (i.e., Meehl’s, 1990, “crud

factors”) encouraged by the widely acknowledged limitations of null hypothesis testing.

However, these Bayesian procedures have the potential to narrow the focus of state-trace applica-

tions to only researchers that are familiar with the sampling and estimation techniques required

for calculating Bayes factors and corresponding posterior model probabilities. In this paper we

have, therefore, provided users with a software package, StateTrace, to aid the broader adoption

of these methods. In particular, we provide a GUI for each of the functions in order to make these

procedures more user-friendly for those who are also not familiar with the R language. Each of

the available GUIs provides users with a description of the arguments and allows argument val-

ues to be entered via widgets including text boxes, slider bars, true/false check boxes and multi-

option lists. Moreover, most functions require very minimal input (often just the name of the sta

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 33

object) in order to execute a function and still obtain meaningful results. The other arguments

then enable users to customise parameter values for their own needs.

The StateTrace package offers very general purpose data input capabilities, such that very little

parsing should be required of a raw data file before it is ready for analysis. The stFirst function

allows users to specify the relevant columns from a data file, the order in which columns should

be read-in, and any non-relevant rows that should be excluded. Moreover, stFirst is customised

for initiating an analysis and so will also perform the necessary procedures to allow for a prelimi-

nary examination of results; including calculating posterior proportions for the four models and

estimating how much additional computation time may be required, as well as checking the con-

vergence of the MCMC trace chains and generating preliminary state-trace plots for the individu-

al participants and group average.

All of the relevant information (sample counts and posterior estimates) required for a range of

model selection strategies is stored in the sta object. However, StateTrace also provides users

with a number of summary functions that will not only extract this information but also allow for

a customised presentation of the results. The stSummary function for example, can output tabu-

lar model selection results as Bayes factors or posterior model probabilities, and if probabilities

are selected can use an exhaustive or trace-true model selection strategy. stSummary can also

simply print the raw sample counts and prior probabilities if the user desires to explore other

model selection strategies (e.g., sequential model selection strategy). Alternatively, stProbplot

provides a graphical display of the posterior model probabilities and can also plot lines at the crit-

ical p values to aid visual assessment of these results. Similarly, for researchers who prefer a

graphical approach over inference, the stPlot function can be used to create a customised state-

trace plot; including drawing a line to represent the best trace or monotonic model to visually ex-

amine a model’s fit to the data. The GUIs for these two plotting functions are particularly user-

friendly as they do not close on execution. This allows the user to go back and forth between

modifying parameter values and generating a plot as many times as is necessary.

The Bayesian analyses we describe here can be applied to other types of state-trace analysis, such

as “dependent-variable state-trace analysis”, which examines pairs of different types of dependent

measurements (e.g., 2AFC judgements and confidence ratings) to determine whether they are

mediated by a common latent variable. However, at present StateTrace is limited to binary

measurements. It is also limited to designs in which all factors are repeated measurements, which

enable analyses to be applied to each participant’s data separately. Analyses of data averaged

over participants are avoided as Prince, Brown and Heathcote (2011) showed they are potentially

misleading. In future releases we intend to extend the StateTrace package to address responses

with more than two alternatives, state and dimension factors with more than two levels, and de-

signs with between-subjects factors.

34 StateTrace: An R Package for State-Trace Analysis

5. References

Bamber, D. (1979). State-trace analysis: A method of testing simple theories of causation. Jour-

nal of Mathematical Psychology, 19, 137-181.

Bogartz, R.S. (1976). On the meaning of statistical interactions. Journal of Experimental Child

Psychology, 22, 178-183.

Busemeyer, J.R., & Jones, L.E. (1983). Analysis of multiplicative combination rules when the

causal variables are measured with error. Psychological Bulletin, 93, 549-562.

Dunn, J.C. (2003). The elusive dissociation. Cortex, 39, 177-197.

Dunn, J.C. (2004). Remember-know: A matter of confidence. Psychological Review, 111, 524-

542.

Dunn, J.C. (2008). The dimensionality of the remember-know task: A state-trace analysis. Psy-

chological Review, 115, 426-446.

Dunn, J.C., & Kirsner, K. (1988). Discovering functionally independent mental processes: The

principle of reversed association. Psychological Review, 95, 91-101.

Gelfland, A.E., Smith, A.F.M., & Lee, R.-M. (1992). Bayesian analysis of constrained parameter

and truncated data problems. Journal of the American Statistical Association, 87, 523-532.

Gilks, W.R., Richardson, S., & Spiegelhalter, D.R. (Eds.) (1996). Markov Chain Monte Carlo in

Practice. Boca Raton, F.L.: Chapman & Hall/CRC.

Glanzer, M., & Cunitz, A.R. (1966). Two storage mechanisms in free recall. Journal of Verbal

Learning and Verbal Behaviour, 5, 351-360.

Henson, R. (2006). Forward inference using functional neuroimaging: Dissociations versus asso-

ciations. Trends in Cognitive Sciences, 10, 64-69.

Hoffman, T.J., & Laird, N.M. (2009). Fgui: A method for automatically creating graphical user

interfaces for command-line R packages. Journal of Statistical Software, 30, 114. URL

http://www.jstatsoft.org/v30/i02/.

Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of American Statistical Association,

90, 773-795.

Klugkist, I., Kato, B., & Hoijtink, H. (2005). Bayesian model selection using encompassing pri-

ors. Statistica Neerlandica, 59, 57-69.

Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis of variance: A

Bayesian approach. Psychological Methods, 10, 477-493.

Loftus, G.R. (1978). On interpretation of interactions. Memory & Cognition, 6, 312-319.

http://www.jstatsoft.org/v30/i02/

 M. Prince, G. Hawkins, J. Love, & A. Heathcote 35

Loftus, G.R. (1996). Psychology will be a much better science when we change the way we ana-

lyse data. Current Directions in Psychological Science, 5, 161-171.

Loftus, G.R. (2002). Analysis, interpretation, and visual presentation of experimental data. In H.

Pashler (ED.), Stevens’ handbook of experimental psychology (Vol. 4, pp. 339-390). New

York: John Wiley and Sons.

Loftus, G.R., Oberg, M.A., & Dillon, A.M. (2004). Linear theory, dimensional theory, and the

face-inversion effect. Psychological Review, 111, 835-863.

Maurer, D., LeGrand, R., & Mondloch, C.J. (2002). The many faces of configural processing.

Trends in Cognitive Sciences, 6, 255-260.

Meehl, P.E. (1990). Why summaries of research on psychological theories are often uninterpreta-

ble. Psychological Reports, 66, 195-244.

Newell, B.R., & Dunn, J.C. (2008). Dimensions in data: Testing psychological models using

state-trace analysis. Trends in Cognitive Sciences, 12, 285-290.

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and out-

put analysis for MCMC. R News, 6, 7-11.

Poldrack, R.A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in

Cognitive Sciences, 10, 64-69.

Prince, M., Brown, S., & Heathcote, A. (2011). The design and analysis of state-trace experi-

ments. Psychological Methods. Advanced online publication.

Prince, M., Hawkins, G., Love, J., & Heathcote, A. (submitted). An R package for state-trace

analysis. Behavioural Research Methods.

R Development Core Team (2007). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

http://www.r-project.org.

Raftery, A.E. (1995). Bayesian model selection in social research. Sociological Methodology, 25,

111-163.

Rakover, S.S. (2002). Featural vs. configurational information in faces: A conceptual and empiri-

cal analysis. British Journal of Psychology, 93, 1-30.

Rock, I. (1974). The perception of disoriented figures. Scientific American, 230, 78-85.

Shallice, T. (1988). From Neuropsychology to Mental Structure. New York: Cambridge Universi-

ty Press.

Teuber, H-L. (1955). Physiological psychology. Annual Review of Psychology, 6, 267-296.

http://www.r-project.org/

36 StateTrace: An R Package for State-Trace Analysis

Valentine, T. (1988). Upside-down faces: A review of the effect of inversion upon face recogni-

tion. Journal of British Psychology, 79, 471-491.

Wand, M., & Ripley, B. (2009). KernSmooth: Functions for kernel smoothing for Wand and

Jones (1995) “Kernel Smoothing”. R package. http://cran.r-project.org.

Yin, R.K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141-

145.

6. Acknowledgements

Thanks to Cassandra Barrett, Amanda Brown, Christopher Brown, Sara Buller, Anna Charley,

Nekia Dalley, Stuart Donaldson, Katie Foster, Jessica Gordon, Alice Grady, Tonelle Handley,

Georgia Kelaher, Elaine Yheng Ching Loke, Katherine Moore, Soo Li Quah, Kate Smith, Evelyn

Tan and Lucy West for assistance with stimulus preparation and running of participants for the

example data.

http://cran.r-project.org/

	StateTrace: An R Package for State-Trace Analysis
	1. Introduction
	2. State-Trace Analysis
	2.1. Quantifying Evidence
	2.2. Computing Bayes Factors

	3. Using StateTrace: An Example Analysis
	3.1. Overview of Functions
	3.2. Data Input Formats
	3.3. First Steps
	3.4. Saving and Loading sta Objects
	3.5. Refining Estimates
	3.6. Managing the sta Object
	3.7. Extracting Results
	3.7.1. Model Selection Results
	3.7.2. The State-Trace Plot

	4. Summary and Conclusions
	5. References
	6. Acknowledgements

