
Time Series Database Interface: R PostgreSQL

(TSPostgreSQL)

October 27, 2011

1 Introduction

The code from the vignette that generates this guide can be loaded into an
editor with edit(vignette(”TSPostgreSQL”)). This uses the default editor, which
can be changed using options(). It should be possible to view the pdf version of
the guide for this package with print(vignette(”TSPostgreSQL”)).

Once R is started, the functions in this package are made available with

> library("TSPostgreSQL")

This will also load required packages TSdbi, DBI, RPostgreSQL, methods, and
tframe. Some examples below also require zoo, and tseries.

WARNING: running these example will overwrite tables in the PostgreSQL
”test” database on the server.

The PostgreSQL user, and password, should be set in PostgreSQL config-
uration file (.pgpass) before starting R. The Postgress documentation suggests
that it should be possible to get the host from the .pgpass file too, but I have
not been able to make that work. The PostgreSQL alternative to the con-
figuration file is to use environment variables PGDATABASE, PGHOST, PG-
PORT, and PGUSER. This package (and CRAN) support another alternatively
to set this information with environment variables POSTGRES USER, POST-
GRES PASSWD and POSTGRES HOST. (An environment variable POST-
GRES DATABASE can also be set, but ”test” is specified below.) Below, the
environment variable POSTGRES USER is used to determine how the user and
password are set. If this environment variable is empty then it is assumed the
PostgreSQL mechanism will be used (i.e. the driver consults the PG* variables
or the configuration file). However, the host is determined by the following logic:

> user <- Sys.getenv("POSTGRES_USER")

> host <- Sys.getenv("POSTGRES_HOST")

> if ("" == host) host <- Sys.getenv("PGHOST")

> if ("" == host) host <- "localhost"

> if ("" != user) {

1



passwd <- Sys.getenv("POSTGRES_PASSWD")

if ("" == passwd)

passwd <- NULL

}

The next small section of code is necessary to setup database tables that
are used in the examples below. It needs to be done only once for a database
and might typically be done by an administrator setting up the database, rather
than by an end user.

> m <- dbDriver("PostgreSQL")

> con <- if ("" == user) dbConnect(m, dbname = "test", host = host) else dbConnect(m,

dbname = "test", user = user, password = passwd, host = host)

> source(system.file("TSsql/CreateTables.TSsql", package = "TSdbi"))

> dbDisconnect(con)

More detailed description of the instructions for building the database tables
is given in the vignette for the TSdbi package. Those instruction show how to
build the database using database utilites rather than R, which might be the
way a system administrator would build the database.

2 Using the Database - TSdbi Functions

This section gives several simple examples of putting series on and reading them
from the database. (If a large number of series are to be loaded into a database,
one would typically do this with a batch process using the database program’s
utilities for loading data.) The first thing to do is to establish a connection to
the database:

> m <- dbDriver("PostgreSQL")

> con <- if ("" == user) TSconnect(m, dbname = "test", host = host) else TSconnect(m,

dbname = "test", user = user, password = passwd, host = host)

TSconnect uses dbConnect from the DBI package, but checks that the database
has expected tables, and checks for additional features. (It cannot be used before
the tables are created, as done in the previous section.)

This puts a series called vec on the database and then reads is back

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> if (TSexists("vec", con)) TSdelete("vec", con)

> TSput(z, con)

> z <- TSget("vec", con)

If the series is printed it is seen to be a ”ts”time series with some extra attributes.
TSput fails if the series already exists on the con, so the above example

checks and deletes the series if it already exists. TSreplace does not fail if the

2



series does not yet exist, so examples below use it instead. Several plots below
show original data and the data retrieved after it is written to the database.
One is added to the original data so that both lines are visible.

And now more examples:

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget("matc1", con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

1 2 3 4 5 6 7

1.4425866 -0.7136610 0.4509371 1.8044119 -0.1759813 -0.3365572 -1.0622540

8 9 10

1.0986818 1.2052594 0.8081231

attr(,"seriesNames")

[1] matc1

attr(,"TSrefperiod")

[1] NA

attr(,"TSmeta")

serIDs: matc1

from dbname test using TSPostgreSQLConnection

> TSget("matc2", con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

1 2 3 4 5 6 7

0.1655087 -1.2389493 -1.5731851 0.1184609 -0.3734899 0.7421656 -0.4723029

8 9 10

2.4858792 -0.8235961 -0.2102828

attr(,"seriesNames")

[1] matc2

attr(,"TSrefperiod")

[1] NA

attr(,"TSmeta")

serIDs: matc2

from dbname test using TSPostgreSQLConnection

> TSget(c("matc1", "matc2"), con)

3



Time Series:

Start = 1990

End = 1999

Frequency = 1

matc1 matc2

1990 1.4425866 0.1655087

1991 -0.7136610 -1.2389493

1992 0.4509371 -1.5731851

1993 1.8044119 0.1184609

1994 -0.1759813 -0.3734899

1995 -0.3365572 0.7421656

1996 -1.0622540 -0.4723029

1997 1.0986818 2.4858792

1998 1.2052594 -0.8235961

1999 0.8081231 -0.2102828

attr(,"TSrefperiod")

[1] NA NA

attr(,"TSmeta")

serIDs: matc1 matc2

from dbname test using TSPostgreSQLConnection

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

4



1990 1992 1994 1996 1998

−
1

0
1

2

m
at

c1

1990 1992 1994 1996 1998

−
1

1
3

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget(c("matc1", "matc2"), con)

matc1 matc2

1990 Q1 -0.9023415 0.91482344

1990 Q2 1.8469283 0.50396131

1990 Q3 0.3409156 0.66463531

1990 Q4 -0.3678032 0.56039372

1991 Q1 1.2877172 0.47863461

1991 Q2 1.2577031 -0.57044740

1991 Q3 1.5007864 -1.67569898

1991 Q4 -1.5895321 1.30205278

1992 Q1 -0.8870720 -0.72386851

1992 Q2 -0.1913366 -0.06507924

attr(,"TSrefperiod")

[1] NA NA

attr(,"TSmeta")

5



serIDs: matc1 matc2

from dbname test using TSPostgreSQLConnection

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990.0 1990.5 1991.0 1991.5 1992.0

−
0.

5
1.

0

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
2

0
2

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

6



1996 1998 2000 2002

−
2

0
2

4

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

m
at

2c
2

The following extract information about the series from the database, al-
though not much information has been added for these examples.

> TSmeta("mat2c1", con)

serIDs: mat2c1

from dbname test using TSPostgreSQLConnection

> TSmeta("vec", con)

serIDs: vec

from dbname test using TSPostgreSQLConnection

> TSdates("vec", con)

[,1]

[1,] "vec from 1990 1 to 1999 1 A "

> TSdescription("vec", con)

[1] NA

> TSdoc("vec", con)

[1] NA

7



Below are examples that make more use of TSdescription and codeTSdoc.
Often it is convenient to set the default connection:

> options(TSconnection = con)

and then the con specification can be omitted from the function calls unless
another connection is needed. The con can still be specified, and some examples
below do specify it, just to illustrate the alternative syntax.

> z <- TSget("mat2c1")

> TSmeta("mat2c1")

serIDs: mat2c1

from dbname test using TSPostgreSQLConnection

Data documentation can be in two forms, a description specified by TSde-
scription or longer documentation specified by TSdoc. These can be added to
the time series object, in which case they will be written to the database when
TSput or TSreplace is used to put the series on the database. Alternatively,
they can be specified as arguments to TSput or TSreplace. The description or
documentation will be retrieved as part of the series object with TSget only if
this is specified with the logical arguments TSdescription and TSdoc. They can
also be retrieved directly from the database with the functions TSdescription
and TSdoc.

> z <- ts(matrix(rnorm(10), 10, 1), start = c(1990, 1), frequency = 1)

> TSreplace(z, serIDs = "Series1", con)

[1] TRUE

> zz <- TSget("Series1", con)

> TSreplace(z, serIDs = "Series1", con, TSdescription = "short rnorm series",

TSdoc = "Series created as an example in the vignette.")

[1] TRUE

> zz <- TSget("Series1", con, TSdescription = TRUE, TSdoc = TRUE)

> start(zz)

[1] 1990 1

> end(zz)

[1] 1999 1

> TSdescription(zz)

[1] "short rnorm series"

> TSdoc(zz)

8



[1] "Series created as an example in the vignette."

> TSdescription("Series1", con)

[1] "short rnorm series"

> TSdoc("Series1", con)

[1] "Series created as an example in the vignette."

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> TSreplace(z, con)

[1] TRUE

> zz <- TSget("vec", con)

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990 1992 1994 1996 1998

−
3

−
1

1

m
at

c1

1990 1992 1994 1996 1998

−
1.

0
0.

5
2.

0

m
at

c2

9



> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990.0 1990.5 1991.0 1991.5 1992.0

−
2.

0
0.

0
1.

5

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
2

0
1

2

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

10



1996 1998 2000 2002

−
2

0
2

4

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

m
at

2c
2

The following examples use dates and times which are not handled by ts, so
the zoo time representation is used.

> require("zoo")

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99)

> seriesNames(z) <- c("zooc1", "zooc2")

> TSreplace(z, con, Table = "D")

[1] TRUE

> tfplot(z + 1, TSget(c("zooc1", "zooc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

11



Jan Mar

−
2

0
2

zo
oc

1

Jan Mar

−
2

0
2

4

zo
oc

2

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99 * 7)

> seriesNames(z) <- c("zooWc1", "zooWc2")

> TSreplace(z, con, Table = "W")

[1] TRUE

> tfplot(z + 1, TSget(c("zooWc1", "zooWc2"), con), col = c("black",

"red"), lty = c("dashed", "solid"))

12



1990 1991

−
3

−
1

1
3

zo
oW

c1

1990 1991

−
2

0
2

zo
oW

c2

> dbDisconnect(con)

3 Examples Using Web Data

This section illustrates fetching data from a web server and loading it into the
database. This would be a very slow way to load a database, but provides exam-
ples of different kinds of time series data. The fetching is done with TShistQuote
which provides a wrapper for get.hist.quote from package tseries to give syntax
consistent with the TSdbi.

Fetching data may fail due to lack of an Interenet connection or delays.
First establish a connection to the database where data will be saved:

> con <- if ("" == user) TSconnect("PostgreSQL", dbname = "test",

host = host) else TSconnect("PostgreSQL", dbname = "test",

user = user, password = passwd, host = host)

Now connect to the web server and fetch data:

> require("TShistQuote")

> Yahoo <- TSconnect("histQuote", dbname = "yahoo")

> x <- TSget("^gspc", quote = "Close", con = Yahoo)

> plot(x)

13



> tfplot(x)

> TSrefperiod(x)

[1] "Close"

> TSdescription(x)

[1] "^gspc Close from yahoo"

> TSdoc(x)

[1] "^gspc Close from yahoo retrieved 2011-10-27 20:49:29"

> TSlabel(x)

[1] "^gspc Close"

> TSsource(x)

[1] "yahoo"

Then write the data to the local server, specifying table B for business day
data (using TSreplace in case the series is already there from running this ex-
ample previously):

> TSreplace(x, serIDs = "gspc", Table = "B", con = con)

[1] TRUE

and check the saved version:

> TSrefperiod(TSget(serIDs = "gspc", con = con))

[1] "Close"

> TSdescription("gspc", con = con)

[1] "^gspc Close from yahoo"

> TSdoc("gspc", con = con)

[1] "^gspc Close from yahoo retrieved 2011-10-27 20:49:29"

> TSlabel("gspc", con = con)

[1] NA

> tfplot(TSget(serIDs = "gspc", con = con))

14



1995 2000 2005 2010

40
0

60
0

80
0

10
00

12
00

14
00

16
00

gs
pc

> x <- TSget("ibm", quote = c("Close", "Vol"), con = Yahoo)

> TSreplace(x, serIDs = c("ibm.Cl", "ibm.Vol"), con = con, Table = "B",

TSdescription. = c("IBM Close", "IBM Volume"), TSdoc. = paste(c("IBM Close retrieved on ",

"IBM Volume retrieved on "), Sys.Date()))

[1] TRUE

> z <- TSget(serIDs = c("ibm.Cl", "ibm.Vol"), TSdescription = TRUE,

TSdoc = TRUE, con = con)

> TSdescription(z)

[1] "IBM Close" "IBM Volume"

> TSdoc(z)

[1] "IBM Close retrieved on 2011-10-27"

[2] "IBM Volume retrieved on 2011-10-27"

> tfplot(z, xlab = TSdoc(z), Title = TSdescription(z))

> tfplot(z, Title = "IBM", start = "2007-01-01")

15



1995 2000 2005 2010

50
15

0
25

0

IBM  Close   retrieved on  2011−10−27

ib
m

.C
l

IBM Close
IBM  Volume

1995 2000 2005 2010

0e
+

00
4e

+
07

IBM  Volume retrieved  on  2011−10−27

ib
m

.V
ol

Oanda has maximum of 500 days, so the start date is specified here so as to
not exceed that.

> Oanda <- TSconnect("histQuote", dbname = "oanda")

> x <- TSget("EUR/USD", start = Sys.Date() - 495, con = Oanda)

> TSreplace(x, serIDs = "EUR/USD", Table = "D", con = con)

[1] TRUE

Then check the saved version:

> z <- TSget(serIDs = "EUR/USD", TSlabel = TRUE, TSdescription = TRUE,

con = con)

> tfplot(z, Title = TSdescription(z), ylab = TSlabel(z))

> tfplot(z, Title = "EUR/USD", start = "2007-01-01")

> tfplot(z, Title = "EUR/USD", start = "2007-03-01")

> tfplot(z, Title = "EUR/USD", start = Sys.Date() - 14, end = Sys.Date(),

xlab = format(Sys.Date(), "%Y"))

16



2011

1.
25

1.
30

1.
35

1.
40

1.
45

EUR/USD Close  from  oanda

> dbDisconnect(con)

> dbDisconnect(Yahoo)

> dbDisconnect(Oanda)

3.1 Examples Using TSdbi with ets

These examples use a database called ”ets” which is available at the Bank of
Canada. This set of examples illustrates how the programs might be used if a
larger database is available. Typically a large database would be installed using
database scripts directly rather than from R with TSput or TSreplace.

The following are wrapped in if (!inherits(conets, ”try-error”)) so that the
vignette will build even when the database is not available. This seems to require
an explicit call to print(), but that is not usually needed to display results below.
Another artifact of this is that results printed in the if block do not display until
the end of the block.

> m <- dbDriver("PostgreSQL")

> conets <- try(if ("" == user) TSconnect(m, dbname = "ets", host = host) else TSconnect(m,

dbname = "ets", user = user, password = passwd, host = host))

> if (!inherits(conets, "try-error")) {

options(TSconnection = conets)

print(TSmeta("M.SDR.CCUSMA02.ST"))

17



EXCH.IDs <- t(matrix(c("M.SDR.CCUSMA02.ST", "SDR/USD exchange rate",

"M.CAN.CCUSMA02.ST", "CAN/USD exchange rate", "M.MEX.CCUSMA02.ST",

"MEX/USD exchange rate", "M.JPN.CCUSMA02.ST", "JPN/USD exchange rate",

"M.EMU.CCUSMA02.ST", "Euro/USD exchange rate", "M.OTO.CCUSMA02.ST",

"OECD /USD exchange rate", "M.G7M.CCUSMA02.ST", "G7 /USD exchange rate",

"M.E15.CCUSMA02.ST", "Euro 15. /USD exchange rate"),

2, 8))

print(TSdates(EXCH.IDs[, 1]))

z <- TSdates(EXCH.IDs[, 1])

print(start(z))

print(end(z))

tfplot(TSget(serIDs = "V122646", conets))

}

serIDs: M.SDR.CCUSMA02.ST

from dbname ets using TSPostgreSQLConnection

description: Special Drawing Right---Currency Conversions/US$ exchange rate/Average of daily rates/National currency:USD---SDR SDR/USD exchange rate monthly average / Quantum (non-additive or stock figures) ---// UNITS = SDR/USD //

documentaion: Special Drawing Right---Currency Conversions/US$ exchange rate/Average of daily rates/National currency:USD---SDR SDR/USD exchange rate monthly average / Quantum (non-additive or stock figures) ---// UNITS = SDR/USD //

[,1]

[1,] "M.SDR.CCUSMA02.ST from 1960 1 to 2009 2 M NA "

[2,] "M.CAN.CCUSMA02.ST from 1960 1 to 2009 2 M NA "

[3,] "M.MEX.CCUSMA02.ST from 1963 1 to 2009 2 M NA "

[4,] "M.JPN.CCUSMA02.ST from 1960 1 to 2009 2 M NA "

[5,] "M.EMU.CCUSMA02.ST from 1979 1 to 2009 2 M NA "

[6,] "M.OTO.CCUSMA02.ST not available"

[7,] "M.G7M.CCUSMA02.ST not available"

[8,] "M.E15.CCUSMA02.ST not available"

[[1]]

[1] 1960 1

[[2]]

[1] 1960 1

[[3]]

[1] 1963 1

[[4]]

[1] 1960 1

[[5]]

[1] 1979 1

[[6]]

[1] NA

[[7]]

18



[1] NA

[[8]]

[1] NA

[[1]]

[1] 2009 2

[[2]]

[1] 2009 2

[[3]]

[1] 2009 2

[[4]]

[1] 2009 2

[[5]]

[1] 2009 2

[[6]]

[1] NA

[[7]]

[1] NA

[[8]]

[1] NA

19



1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

V
12

26
46

> if (!inherits(conets, "try-error")) {

print(TSdescription(TSget("V122646", TSdescription = TRUE)))

print(TSdescription("V122646"))

print(TSdoc(TSget("V122646", TSdoc = TRUE)))

print(TSdoc("V122646"))

tfplot(TSget("V122646", names = "V122646", conets))

}

[1] "Total short-term business credit, Seasonally adjusted, average of month-end"

[1] "Total short-term business credit, Seasonally adjusted, average of month-end"

[1] "Same as B171"

[1] "Same as B171"

20



1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

V
12

26
46

> if (!inherits(conets, "try-error")) {

z <- TSget("V122646", TSdescription = TRUE)

tfplot(z, Title = strsplit(TSdescription(z), ","))

}

21



1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

V
12

26
46

Total short−term business credit
 Seasonally adjusted

 average of month−end

> if (!inherits(conets, "try-error")) {

z <- TSget("SDSP500", TSdescription = TRUE)

tfplot(z, Title = TSdescription(z))

plot(z)

}

22



1980 1990 2000 2010

0
20

40
60

80

S
D

S
P

50
0

S&P/TSX Volatility

> if (!inherits(conets, "try-error")) {

z <- TSget(c("DSP500", "SDSP500"), TSdescription = TRUE)

tfplot(z, xlab = TSdescription(z))

}

23



1980 1990 2000 2010

−
0.

05
0.

05

D
S

P
50

0

1980 1990 2000 2010

0
40

80

S&P/TSX Volatility

S
D

S
P

50
0

> if (!inherits(conets, "try-error")) {

plot(z)

}

24



−
0.

05
0.

00
0.

05

D
S

P
50

0

1980 1990 2000 2010

Index

0
20

40
60

80

S
D

S
P

50
0

z

> if (!inherits(conets, "try-error")) {

ETSgdp <- annualizedGrowth(aggregate(TSget("V1992067"), nfrequency = 4,

FUN = mean), lag = 4, names = "GDP Y/Y Growth")

tfplot(ETSgdp)

}

25



1970 1980 1990 2000 2010

−
4

−
2

0
2

4
6

8

G
D

P
 Y

/Y
 G

ro
w

th

> if (!inherits(conets, "try-error")) {

dbDisconnect(options()$TSconnection)

options(TSconnection = NULL)

}

4 Examples Using DBI and direct SQL Queries

The following examples are queries using the underlying ”DBI” functions. They
should not often be needed to access time series, but may be useful to get at
more detailed information, or formulate special queries.

> m <- dbDriver("PostgreSQL")

> con <- if ("" == user) TSconnect(m, dbname = "test", host = host) else TSconnect(m,

dbname = "test", user = user, password = passwd, host = host)

> options(TSconnection = con)

> dbListTables(con)

[1] "meta" "a" "b" "d" "m" "u" "q" "s" "w" "i"

[11] "t"

If schema queries are supported then table information can be found in a
generic SQL way, but on some systems this will fail because users do not have

26



read priveleges on the INFORMATION SCHEMA table, so the following are
wrapped in try(). (SQLite does not seem to support this at all.)

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.Columns ",

" WHERE TABLE_SCHEMA='test' AND table_name='A' ;")))

data frame with 0 columns and 0 rows

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,",

"CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='A' ;")))

data frame with 0 columns and 0 rows

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='M';")))

data frame with 0 columns and 0 rows

Finally, to disconnect gracefully, one should

> dbDisconnect(con)

> dbDisconnect(options()$TSconnection)

> options(TSconnection = NULL)

27


