
Time Series Database Interface: R SQLite

(TSSQLite)

October 28, 2011

1 Introduction

The code from the vignette that generates this guide can be loaded into an
editor with edit(vignette(”TSSQLite”)). This uses the default editor, which can
be changed using options(). It should be possible to view the pdf version of the
guide for this package with print(vignette(”TSSQLite”)).

WARNING: running these example will overwrite tables in the SQLite ”test”
database on the server.

In SQLite there does not seem to be any need to set user or password infor-
mation, and examples here all use the localhost.

Once R is started, the functions in this package are made available with

> library("TSSQLite")

This will also load required packages TSdbi, DBI, RSQLite, methods, and
tframe. Some examples below also require zoo, and tseries.

The next small section of code is necessary to setup database tables that
are used in the examples below. It needs to be done only once for a database
and might typically be done by an administrator setting up the database, rather
than by an end user.

> m <- dbDriver("SQLite")

> con <- dbConnect(m, dbname = "test")

> source(system.file("TSsql/CreateTables.TSsql", package = "TSdbi"))

> dbDisconnect(con)

More detailed description of the instructions for building the database tables
is given in the vignette for the TSdbi package. Those instruction show how to
build the database using database utilites rather than R, which might be the
way a system administrator would build the database.

1



2 Using the Database - TSdbi Functions

This section gives several simple examples of putting series on and reading them
from the database. (If a large number of series are to be loaded into a database,
one would typically do this with a batch process using the database program’s
utilities for loading data.) The first thing to do is to establish a connection to
the database:

> m <- dbDriver("SQLite")

> con <- TSconnect(m, dbname = "test")

TSconnect uses dbConnect from the DBI package, but checks that the database
has expected tables, and checks for additional features. (It cannot be used before
the tables are created, as done in the previous section.)

This puts a series called vec on the database and then reads is back

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> if (TSexists("vec", con)) TSdelete("vec", con)

> TSput(z, con)

> z <- TSget("vec", con)

If the series is printed it is seen to be a ”ts”time series with some extra attributes.
TSput fails if the series already exists on the con, so the above example

checks and deletes the series if it already exists. TSreplace does not fail if the
series does not yet exist, so examples below use it instead. Several plots below
show original data and the data retrieved after it is written to the database.
One is added to the original data so that both lines are visible.

And now more examples:

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget("matc1", con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

1 2 3 4 5 6

-0.12459003 -0.05105039 -0.80176282 -0.02557299 0.60884833 -0.28063111

7 8 9 10

-0.14985629 -0.10013424 1.45591551 -0.35028459

attr(,"seriesNames")

[1] matc1

2



attr(,"TSrefperiod")

[1] NA

attr(,"TSmeta")

serIDs: matc1

from dbname test using TSSQLiteConnection

> TSget("matc2", con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

1 2 3 4 5 6 7

-1.0367172 -0.1944969 0.4423834 -0.3021637 -1.3536082 0.5318166 -0.1336312

8 9 10

0.3698720 0.5113602 -0.2233490

attr(,"seriesNames")

[1] matc2

attr(,"TSrefperiod")

[1] NA

attr(,"TSmeta")

serIDs: matc2

from dbname test using TSSQLiteConnection

> TSget(c("matc1", "matc2"), con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

matc1 matc2

1990 -0.12459003 -1.0367172

1991 -0.05105039 -0.1944969

1992 -0.80176282 0.4423834

1993 -0.02557299 -0.3021637

1994 0.60884833 -1.3536082

1995 -0.28063111 0.5318166

1996 -0.14985629 -0.1336312

1997 -0.10013424 0.3698720

1998 1.45591551 0.5113602

1999 -0.35028459 -0.2233490

attr(,"TSrefperiod")

[1] NA NA

attr(,"TSmeta")

serIDs: matc1 matc2

from dbname test using TSSQLiteConnection

3



> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990 1992 1994 1996 1998

−
1.

0
0.

5
2.

0

m
at

c1

1990 1992 1994 1996 1998

−
2

0
1

2

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget(c("matc1", "matc2"), con)

matc1 matc2

1990 Q1 -0.09228726 0.1008816

1990 Q2 1.54319067 0.1401304

1990 Q3 0.06527475 -0.5653247

1990 Q4 -0.91842986 -1.5743340

1991 Q1 1.18126116 0.1331621

1991 Q2 0.57209422 0.3068129

1991 Q3 -0.19520570 0.2137919

1991 Q4 0.82888972 0.2651771

1992 Q1 0.51289626 0.3616423

1992 Q2 -0.21127382 -0.3580477

attr(,"TSrefperiod")

4



[1] NA NA

attr(,"TSmeta")

serIDs: matc1 matc2

from dbname test using TSSQLiteConnection

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990.0 1990.5 1991.0 1991.5 1992.0

−
1

1
2

3

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
2

0
2

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

5



1996 1998 2000 2002

−
2

0
2

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

m
at

2c
2

The following extract information about the series from the database, al-
though not much information has been added for these examples.

> TSmeta("mat2c1", con)

> TSmeta("vec", con)

> TSdates("vec", con)

> TSdescription("vec", con)

> TSdoc("vec", con)

Below are exampoles that make more use of TSdescription and codeTSdoc.
Often it is convenient to set the default connection:

> options(TSconnection = con)

and then the con specification can be omitted from the function calls unless
another connection is needed. The con can still be specified, and some examples
below do specify it, just to illustrate the alternative syntax.

> z <- TSget("mat2c1")

> TSmeta("mat2c1")

serIDs: mat2c1

from dbname test using TSSQLiteConnection

6



Data documentation can be in two forms, a description specified by TSde-
scription or longer documentation specified by TSdoc. These can be added to
the time series object, in which case they will be written to the database when
TSput or TSreplace is used to put the series on the database. Alternatively,
they can be specified as arguments to TSput or TSreplace. The description or
documentation will be retrieved as part of the series object with TSget only if
this is specified with the logical arguments TSdescription and TSdoc. They can
also be retrieved directly from the database with the functions TSdescription
and TSdoc.

> z <- ts(matrix(rnorm(10), 10, 1), start = c(1990, 1), frequency = 1)

> TSreplace(z, serIDs = "Series1", con)

[1] TRUE

> zz <- TSget("Series1", con)

> TSreplace(z, serIDs = "Series1", con, TSdescription = "short rnorm series",

TSdoc = "Series created as an example in the vignette.")

[1] TRUE

> zz <- TSget("Series1", con, TSdescription = TRUE, TSdoc = TRUE)

> start(zz)

[1] 1990 1

> end(zz)

[1] 1999 1

> TSdescription(zz)

[1] "short rnorm series"

> TSdoc(zz)

[1] "Series created as an example in the vignette."

> TSdescription("Series1", con)

[1] "short rnorm series"

> TSdoc("Series1", con)

[1] "Series created as an example in the vignette."

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> TSreplace(z, con)

7



[1] TRUE

> zz <- TSget("vec", con)

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990 1992 1994 1996 1998

−
1

1
2

m
at

c1

1990 1992 1994 1996 1998

−
1

1
2

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

8



1990.0 1990.5 1991.0 1991.5 1992.0

−
1

1
2

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
1.

0
0.

5
2.

0

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

9



1996 1998 2000 2002

−
2

0
2

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

m
at

2c
2

The following examples use dates and times which are not handled by ts, so
the zoo time representation is used.

> require("zoo")

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99)

> seriesNames(z) <- c("zooc1", "zooc2")

> TSreplace(z, con, Table = "D")

[1] TRUE

> tfplot(z + 1, TSget(c("zooc1", "zooc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

10



Jan Mar

−
2

0
2

zo
oc

1

Jan Mar

−
2

0
2

zo
oc

2

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99 * 7)

> seriesNames(z) <- c("zooWc1", "zooWc2")

> TSreplace(z, con, Table = "W")

[1] TRUE

> tfplot(z + 1, TSget(c("zooWc1", "zooWc2"), con), col = c("black",

"red"), lty = c("dashed", "solid"))

11



1990 1991

−
2

0
2

zo
oW

c1

1990 1991

−
3

−
1

1
3

zo
oW

c2

> dbDisconnect(con)

3 Examples Using Web Data

This section illustrates fetching data from a web server and loading it into the
database. This would be a very slow way to load a database, but provides exam-
ples of different kinds of time series data. The fetching is done with TShistQuote
which provides a wrapper for get.hist.quote from package tseries to give syntax
consistent with the TSdbi.

Fetching data may fail due to lack of an Interenet connection or delays.
First establish a connection to the database where data will be saved:

> con <- TSconnect("SQLite", dbname = "test")

Now connect to the web server and fetch data:

> require("TShistQuote")

> Yahoo <- TSconnect("histQuote", dbname = "yahoo")

> x <- TSget("^gspc", quote = "Close", con = Yahoo)

> plot(x)

> tfplot(x)

> TSrefperiod(x)

12



[1] "Close"

> TSdescription(x)

[1] "^gspc Close from yahoo"

> TSdoc(x)

[1] "^gspc Close from yahoo retrieved 2011-10-28 06:47:03"

> TSlabel(x)

[1] "^gspc Close"

Then write the data to the local server, specifying table B for business day
data (using TSreplace in case the series is already there from running this ex-
ample previously):

> TSreplace(x, serIDs = "gspc", Table = "B", con = con)

[1] TRUE

and check the saved version:

> TSrefperiod(TSget(serIDs = "gspc", con = con))

[1] "Close"

> TSdescription("gspc", con = con)

[1] "^gspc Close from yahoo"

> TSdoc("gspc", con = con)

[1] "^gspc Close from yahoo retrieved 2011-10-28 06:47:03"

> TSlabel("gspc", con = con)

[1] NA

> tfplot(TSget(serIDs = "gspc", con = con))

13



1995 2000 2005 2010

40
0

60
0

80
0

10
00

12
00

14
00

16
00

gs
pc

> x <- TSget("ibm", quote = c("Close", "Vol"), con = Yahoo)

> TSreplace(x, serIDs = c("ibm.Cl", "ibm.Vol"), con = con, Table = "B",

TSdescription. = c("IBM Close", "IBM Volume"), TSdoc. = paste(c("IBM Close retrieved on ",

"IBM Volume retrieved on "), Sys.Date()))

[1] TRUE

> z <- TSget(serIDs = c("ibm.Cl", "ibm.Vol"), TSdescription = TRUE,

TSdoc = TRUE, con = con)

> TSdescription(z)

[1] "IBM Close" "IBM Volume"

> TSdoc(z)

[1] "IBM Close retrieved on 2011-10-28"

[2] "IBM Volume retrieved on 2011-10-28"

> tfplot(z, xlab = TSdoc(z), Title = TSdescription(z))

> tfplot(z, Title = "IBM", start = "2007-01-01")

14



1995 2000 2005 2010

50
15

0
25

0

IBM  Close   retrieved on  2011−10−28

ib
m

.C
l

IBM Close
IBM  Volume

1995 2000 2005 2010

0e
+

00
4e

+
07

IBM  Volume retrieved  on  2011−10−28

ib
m

.V
ol

Oanda has maximum of 500 days, so the start date is specified here so as to
not exceed that.

> Oanda <- TSconnect("histQuote", dbname = "oanda")

> x <- TSget("EUR/USD", start = Sys.Date() - 495, con = Oanda)

> TSreplace(x, serIDs = "EUR/USD", Table = "D", con = con)

[1] TRUE

Then check the saved version:

> z <- TSget(serIDs = "EUR/USD", TSlabel = TRUE, TSdescription = TRUE,

con = con)

> tfplot(z, Title = TSdescription(z), ylab = TSlabel(z))

> tfplot(z, Title = "EUR/USD", start = "2007-01-01")

> tfplot(z, Title = "EUR/USD", start = "2007-03-01")

> tfplot(z, Title = "EUR/USD", start = Sys.Date() - 14, end = Sys.Date(),

xlab = format(Sys.Date(), "%Y"))

15



2011

1.
25

1.
30

1.
35

1.
40

1.
45

EUR/USD Close  from  oanda

> dbDisconnect(con)

> dbDisconnect(Yahoo)

> dbDisconnect(Oanda)

3.1 Examples Using TSdbi with ets

The database called ”ets” is available at the Bank of Canada. These exam-
ples are illustrated in the TSMySQL and TSpadi packages, but ets is not yet
implemented under TSSQLite.

4 Examples Using DBI and direct SQL Queries

The following examples are queries using the underlying ”DBI” functions. They
should not often be needed to access time series, but may be useful to get at
more detailed information, or formulate special queries.

> m <- dbDriver("SQLite")

> con <- TSconnect(m, dbname = "test")

> options(TSconnection = con)

> dbListTables(con)

16



[1] "A" "B" "D" "I" "M" "Meta" "Q" "S" "T" "U"

[11] "W"

If schema queries are supported then table information can be obtained
in a (almost) generic SQL way. On some systems this will fail because users
do not have read priveleges on the INFORMATION SCHEMA table. This
does not seem to be an issue in SQLite, but I have not figured out the SQLite
implementation so the following are wrapped in try().

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.Columns ",

" WHERE TABLE_SCHEMA='test' AND table_name='A' ;")))

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,",

"CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='A' ;")))

> try(dbGetQuery(con, paste("SELECT COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='M';")))

Finally, to disconnect gracefully, one should

> dbDisconnect(options()$TSconnection)

> options(TSconnection = NULL)

17


