
Time Series Database Interface: R ODBC

(TSodbc)

October 28, 2011

1 Introduction

The code from the vignette that generates this guide can be loaded into an
editor with edit(vignette(”TSodbc”)). This uses the default editor, which can be
changed using options(). It should be possible to view the pdf version of the
guide for this package with print(vignette(”TSodbc”)).

WARNING: running these example will overwrite tables in the ODBC ”test”
database on the server.

Once R is started, the functions in this package are made available with

> library("TSodbc")

This will also load required packages TSdbi, DBI, RODBC, methods, and tframe.
Some examples below also require zoo, and tseries.

The ODBC user, password, hostname, etc, should be set in ODBC client
configuration file (/.odbc.ini on Linux/Unix systems) before starting R. An
example of this file is provided in the final section of this vignette. Alterna-
tively, this information can be set with environment variables ODBC USER
and ODBC PASSWD. The variable ODBC HOST does not seem to work for
passing the ODBC connection, so a properly setup ODBC configuration file is
also needed, but the environment variables will override the user and passwd set-
ting in that file. (An environment variable ODBC DATABASE can also be set,
but ”test” is specified below.) Below, the environment variable ODBC USER
is used to determine which of these methods is being used. If this environment
variable is empty then it is assumed the configuration file will be used.

> user <- Sys.getenv("ODBC_USER")

> if ("" != user) {

passwd <- Sys.getenv("ODBC_PASSWD")

if ("" == passwd)

passwd <- NULL

}

1

The next small section of code is necessary to setup database tables that
are used in the examples below. It needs to be done only once for a database
and might typically be done by an administrator setting up the database, rather
than by an end user.

> m <- dbDriver("ODBC")

> con <- if ("" == user) odbcConnect(dsn = "test") else odbcConnect(dsn = "test",

uid = user, pwd = passwd)

> if (con == -1) stop("error establishing ODBC connection.")

> source(system.file("TSsql/CreateTables.TSsql", package = "TSdbi"))

> odbcClose(channel = con)

More detailed description of the instructions for building the database tables
is given in the vignette for the TSdbi package. Those instruction show how to
build the database using database utilites rather than R, which might be the
way a system administrator would build the database.

2 Using the Database - TSdbi Functions

This section gives several simple examples of putting series on and reading them
from the database. (If a large number of series are to be loaded into a database,
one would typically do this with a batch process using the database program’s
utilities for loading data.) The first thing to do is to establish a connection to
the database:

> m <- dbDriver("ODBC")

> con <- if ("" == user) TSconnect(m, dbname = "test") else TSconnect(m,

dbname = "test", uid = user, pwd = passwd)

TSconnect uses odbcConnect from the RODBC package, but checks that the
database has expected tables, and checks for additional features. (It cannot be
used before the tables are created, as done in the previous section.)

This puts a series called vec on the database and then reads is back

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> if (TSexists("vec", con)) TSdelete("vec", con)

> TSput(z, con)

> z <- TSget("vec", con)

If the series is printed it is seen to be a ”ts”time series with some extra attributes.
TSput fails if the series already exists on the con, so the above example

checks and deletes the series if it already exists. TSreplace does not fail if the
series does not yet exist, so examples below use it instead. Several plots below
show original data and the data retrieved after it is written to the database.
One is added to the original data so that both lines are visible.

And now more examples:

2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget("matc1", con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

1 2 3 4 5 6

-0.81715200 -0.31976711 -1.75652567 -0.03997995 0.18486130 1.13913649

7 8 9 10

-0.53550272 -0.05044870 0.23152664 -1.08701693

attr(,"seriesNames")

[1] matc1

attr(,"TSmeta")

serIDs: matc1

from dbname test using TSodbcConnection

> TSget("matc2", con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

1 2 3 4 5 6

0.82524368 -1.36131499 -0.33820451 -1.67010587 -1.03504262 0.30566455

7 8 9 10

-0.07276373 -0.91049138 0.48367013 -1.80047739

attr(,"seriesNames")

[1] matc2

attr(,"TSmeta")

serIDs: matc2

from dbname test using TSodbcConnection

> TSget(c("matc1", "matc2"), con)

Time Series:

Start = 1990

End = 1999

Frequency = 1

matc1 matc2

1990 -0.81715200 0.82524368

1991 -0.31976711 -1.36131499

3

1992 -1.75652567 -0.33820451

1993 -0.03997995 -1.67010587

1994 0.18486130 -1.03504262

1995 1.13913649 0.30566455

1996 -0.53550272 -0.07276373

1997 -0.05044870 -0.91049138

1998 0.23152664 0.48367013

1999 -1.08701693 -1.80047739

attr(,"TSmeta")

serIDs: matc1 matc2

from dbname test using TSodbcConnection

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990 1992 1994 1996 1998

−
2

0
2

m
at

c1

1990 1992 1994 1996 1998

−
2

0
1

2

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> TSget(c("matc1", "matc2"), con)

4

matc1 matc2

1990 Q1 0.52719428 -0.8663926

1990 Q2 -1.11671035 0.6431828

1990 Q3 -1.77345734 -0.2823484

1990 Q4 0.03886459 0.5052189

1991 Q1 -0.32800559 -0.4546721

1991 Q2 -0.53835538 -1.8012959

1991 Q3 0.53088025 -1.0397803

1991 Q4 -2.34760088 0.4252995

1992 Q1 -1.70520225 0.8082009

1992 Q2 0.34564194 -1.6996998

attr(,"TSmeta")

serIDs: matc1 matc2

from dbname test using TSodbcConnection

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990.0 1990.5 1991.0 1991.5 1992.0

−
1.

0
0.

5
2.

0

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
2

0
2

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

5

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1996 1998 2000 2002

−
1

1
3

m
at

2c
1

1996 1998 2000 2002

−
2

0
2

4

m
at

2c
2

The following extract information about the series from the database, al-
though not much information has been added for these examples.

> TSmeta("mat2c1", con)

> TSmeta("vec", con)

> TSdates("vec", con)

> TSdescription("vec", con)

> TSdoc("vec", con)

Below are exampoles that make more use of TSdescription and codeTSdoc.
Often it is convenient to set the default connection:

> options(TSconnection = con)

and then the con specification can be omitted from the function calls unless
another connection is needed. The con can still be specified, and some examples
below do specify it, just to illustrate the alternative syntax.

> z <- TSget("mat2c1")

> TSmeta("mat2c1")

6

serIDs: mat2c1

from dbname test using TSodbcConnection

Data documentation can be in two forms, a description specified by TSde-
scription or longer documentation specified by TSdoc. These can be added to
the time series object, in which case they will be written to the database when
TSput or TSreplace is used to put the series on the database. Alternatively,
they can be specified as arguments to TSput or TSreplace. The description or
documentation will be retrieved as part of the series object with TSget only if
this is specified with the logical arguments TSdescription and TSdoc. They can
also be retrieved directly from the database with the functions TSdescription
and TSdoc.

> z <- ts(matrix(rnorm(10), 10, 1), start = c(1990, 1), frequency = 1)

> TSreplace(z, serIDs = "Series1", con)

[1] TRUE

> zz <- TSget("Series1", con)

> TSreplace(z, serIDs = "Series1", con, TSdescription = "short rnorm series",

TSdoc = "Series created as an example in the vignette.")

[1] TRUE

> zz <- TSget("Series1", con, TSdescription = TRUE, TSdoc = TRUE)

> start(zz)

[1] 1990 1

> end(zz)

[1] 1999 1

> TSdescription(zz)

[1] "short rnorm series"

> TSdoc(zz)

[1] "Series created as an example in the vignette."

> TSdescription("Series1", con)

[1] "short rnorm series"

> TSdoc("Series1", con)

[1] "Series created as an example in the vignette."

7

> z <- ts(rnorm(10), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- "vec"

> TSreplace(z, con)

[1] TRUE

> zz <- TSget("vec", con)

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 1)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

1990 1992 1994 1996 1998

−
1

1
2

m
at

c1

1990 1992 1994 1996 1998

−
1.

0
0.

5
1.

5

m
at

c2

> z <- ts(matrix(rnorm(20), 10, 2), start = c(1990, 1), frequency = 4)

> seriesNames(z) <- c("matc1", "matc2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("matc1", "matc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

8

1990.0 1990.5 1991.0 1991.5 1992.0

−
1.

0
0.

5

m
at

c1

1990.0 1990.5 1991.0 1991.5 1992.0

−
2

0
2

m
at

c2

> z <- ts(matrix(rnorm(200), 100, 2), start = c(1995, 1), frequency = 12)

> seriesNames(z) <- c("mat2c1", "mat2c2")

> TSreplace(z, con)

[1] TRUE

> tfplot(z + 1, TSget(c("mat2c1", "mat2c2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

9

1996 1998 2000 2002

−
2

0
2

m
at

2c
1

1996 1998 2000 2002

−
3

0
2

4

m
at

2c
2

The following examples use dates and times which are not handled by ts, so
the zoo time representation is used.

> require("zoo")

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99)

> seriesNames(z) <- c("zooc1", "zooc2")

> TSreplace(z, con, Table = "D")

[1] TRUE

> tfplot(z + 1, TSget(c("zooc1", "zooc2"), con), lty = c("solid",

"dashed"), col = c("black", "red"))

10

Jan Mar

−
2

0
2

zo
oc

1

Jan Mar

−
3

0
2

4

zo
oc

2

> z <- zoo(matrix(rnorm(200), 100, 2), as.Date("1990-01-01") +

0:99 * 7)

> seriesNames(z) <- c("zooWc1", "zooWc2")

> TSreplace(z, con, Table = "W")

[1] TRUE

> tfplot(z + 1, TSget(c("zooWc1", "zooWc2"), con), col = c("black",

"red"), lty = c("dashed", "solid"))

11

1990 1991

−
3

−
1

1
3

zo
oW

c1

1990 1991

−
2

0
2

zo
oW

c2

> dbDisconnect(con)

3 Examples Using Web Data

This section illustrates fetching data from a web server and loading it into the
database. This would be a very slow way to load a database, but provides exam-
ples of different kinds of time series data. The fetching is done with TShistQuote
which provides a wrapper for get.hist.quote from package tseries to give syntax
consistent with the TSdbi.

Fetching data may fail due to lack of an Interenet connection or delays.
First establish a connection to the database where data will be saved:

> con <- if ("" == user) TSconnect("ODBC", dbname = "test") else TSconnect("ODBC",

dbname = "test", uid = user, pwd = passwd)

Now connect to the web server and fetch data:

> require("TShistQuote")

> Yahoo <- TSconnect("histQuote", dbname = "yahoo")

> x <- TSget("^gspc", quote = "Close", con = Yahoo)

> plot(x)

> tfplot(x)

> TSrefperiod(x)

12

[1] "Close"

> TSdescription(x)

[1] "^gspc Close from yahoo"

> TSdoc(x)

[1] "^gspc Close from yahoo retrieved 2011-10-28 21:39:45"

> TSlabel(x)

[1] "^gspc Close"

Then write the data to the local server, specifying table B for business day
data (using TSreplace in case the series is already there from running this ex-
ample previously):

> TSreplace(x, serIDs = "gspc", Table = "B", con = con)

[1] TRUE

and check the saved version:

> TSrefperiod(TSget(serIDs = "gspc", con = con))

[1] 1

> TSdescription("gspc", con = con)

[1] "^gspc Close from yahoo"

> TSdoc("gspc", con = con)

[1] "^gspc Close from yahoo retrieved 2011-10-28 21:39:45"

> TSlabel("gspc", con = con)

[1] NA

> tfplot(TSget(serIDs = "gspc", con = con))

13

1995 2000 2005 2010

40
0

60
0

80
0

10
00

12
00

14
00

16
00

gs
pc

> x <- TSget("ibm", quote = c("Close", "Vol"), con = Yahoo)

> TSreplace(x, serIDs = c("ibm.Cl", "ibm.Vol"), con = con, Table = "B",

TSdescription. = c("IBM Close", "IBM Volume"), TSdoc. = paste(c("IBM Close retrieved on ",

"IBM Volume retrieved on "), Sys.Date()))

[1] TRUE

> z <- TSget(serIDs = c("ibm.Cl", "ibm.Vol"), TSdescription = TRUE,

TSdoc = TRUE, con = con)

> TSdescription(z)

[1] "IBM Close" "IBM Volume"

> TSdoc(z)

[1] "IBM Close retrieved on 2011-10-28"

[2] "IBM Volume retrieved on 2011-10-28"

> tfplot(z, xlab = TSdoc(z), Title = TSdescription(z))

> tfplot(z, Title = "IBM", start = "2007-01-01")

14

1995 2000 2005 2010

50
15

0
25

0

IBM Close retrieved on 2011−10−28

ib
m

.C
l

IBM Close
IBM Volume

1995 2000 2005 2010

0e
+

00
4e

+
07

IBM Volume retrieved on 2011−10−28

ib
m

.V
ol

Oanda has maximum of 500 days, so the start date is specified here so as to
not exceed that.

> Oanda <- TSconnect("histQuote", dbname = "oanda")

> x <- TSget("EUR/USD", start = Sys.Date() - 495, con = Oanda)

> TSreplace(x, serIDs = "EUR/USD", Table = "D", con = con)

[1] TRUE

Then check the saved version:

> z <- TSget(serIDs = "EUR/USD", TSlabel = TRUE, TSdescription = TRUE,

con = con)

> tfplot(z, Title = TSdescription(z), ylab = TSlabel(z))

> tfplot(z, Title = "EUR/USD", start = Sys.Date() - 495)

> tfplot(z, Title = "EUR/USD", start = Sys.Date() - 100)

> tfplot(z, Title = "EUR/USD", start = Sys.Date() - 14, end = Sys.Date(),

xlab = format(Sys.Date(), "%Y"))

15

2011

1.
25

1.
30

1.
35

1.
40

1.
45

EUR/USD Close from oanda

> dbDisconnect(con)

> dbDisconnect(Yahoo)

> dbDisconnect(Oanda)

3.1 Examples Using TSdbi with ets

These examples use a database called ”ets” which is available at the Bank of
Canada. This set of examples illustrates how the programs might be used if a
larger database is available. Typically a large database would be installed using
database scripts directly rather than from R with TSput or TSreplace.

The following are wrapped in if (!inherits(conets, ”try-error”)) so that the
vignette will build even when the database is not available. This seems to require
an explicit call to print(), but that is not usually needed to display results below.
Another artifact of this is that results printed in the if block do not display until
the end of the block.

> m <- dbDriver("ODBC")

> conets <- try(if ("" == user) TSconnect(m, dbname = "ets") else TSconnect(m,

dbname = "ets", uid = user, pwd = passwd))

> if (!inherits(conets, "try-error")) {

options(TSconnection = conets)

print(TSmeta(TSget("M.SDR.CCUSMA02.ST")))

16

EXCH.IDs <- t(matrix(c("M.SDR.CCUSMA02.ST", "SDR/USD exchange rate",

"M.CAN.CCUSMA02.ST", "CAN/USD exchange rate", "M.MEX.CCUSMA02.ST",

"MEX/USD exchange rate", "M.JPN.CCUSMA02.ST", "JPN/USD exchange rate",

"M.EMU.CCUSMA02.ST", "Euro/USD exchange rate", "M.OTO.CCUSMA02.ST",

"OECD /USD exchange rate", "M.G7M.CCUSMA02.ST", "G7 /USD exchange rate",

"M.E15.CCUSMA02.ST", "Euro 15. /USD exchange rate"),

2, 8))

print(TSdates(EXCH.IDs[, 1]))

z <- TSdates(EXCH.IDs[, 1])

print(start(z))

print(end(z))

tfplot(TSget(serIDs = "V122646", conets))

}

serIDs: M.SDR.CCUSMA02.ST

from dbname ets using TSodbcConnection

[,1]

[1,] "M.SDR.CCUSMA02.ST from 1960 1 to 2009 2 1 NA "

[2,] "M.CAN.CCUSMA02.ST from 1960 1 to 2009 2 1 NA "

[3,] "M.MEX.CCUSMA02.ST from 1963 1 to 2009 2 1 NA "

[4,] "M.JPN.CCUSMA02.ST from 1960 1 to 2009 2 1 NA "

[5,] "M.EMU.CCUSMA02.ST from 1979 1 to 2009 2 1 NA "

[6,] "M.OTO.CCUSMA02.ST not available"

[7,] "M.G7M.CCUSMA02.ST not available"

[8,] "M.E15.CCUSMA02.ST not available"

[[1]]

[1] 1960 1

[[2]]

[1] 1960 1

[[3]]

[1] 1963 1

[[4]]

[1] 1960 1

[[5]]

[1] 1979 1

[[6]]

[1] NA

[[7]]

[1] NA

17

[[8]]

[1] NA

[[1]]

[1] 2009 2

[[2]]

[1] 2009 2

[[3]]

[1] 2009 2

[[4]]

[1] 2009 2

[[5]]

[1] 2009 2

[[6]]

[1] NA

[[7]]

[1] NA

[[8]]

[1] NA

18

1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

V
12

26
46

> if (!inherits(conets, "try-error")) {

print(TSdescription(TSget("V122646", TSdescription = TRUE)))

print(TSdescription("V122646"))

print(TSdoc(TSget("V122646", TSdoc = TRUE)))

print(TSdoc("V122646"))

tfplot(TSget("V122646", names = "V122646", conets))

}

[1] "Total short-term business credit, Seasonally adjusted, average of month-end"

[1] "Total short-term business credit, Seasonally adjusted, average of month-end"

[1] "Same as B171"

[1] "Same as B171"

19

1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

V
12

26
46

> if (!inherits(conets, "try-error")) {

z <- TSget("V122646", TSdescription = TRUE)

tfplot(z, Title = strsplit(TSdescription(z), ","))

}

20

1970 1980 1990 2000 2010

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

V
12

26
46

Total short−term business credit
 Seasonally adjusted

 average of month−end

> if (!inherits(conets, "try-error")) {

z <- TSget("SDSP500", TSdescription = TRUE)

tfplot(z, Title = TSdescription(z))

plot(z)

}

21

1980 1990 2000 2010

0
20

40
60

80

S
D

S
P

50
0

S&P/TSX Volatility

> if (!inherits(conets, "try-error")) {

z <- TSget(c("DSP500", "SDSP500"), TSdescription = TRUE)

tfplot(z, xlab = TSdescription(z))

}

22

1980 1990 2000 2010

−
0.

05
0.

05

D
S

P
50

0

1980 1990 2000 2010

0
40

80

S&P/TSX Volatility

S
D

S
P

50
0

> if (!inherits(conets, "try-error")) {

plot(z)

}

23

−
0.

05
0.

00
0.

05

D
S

P
50

0

1980 1990 2000 2010

Index

0
20

40
60

80

S
D

S
P

50
0

z

> if (!inherits(conets, "try-error")) {

ETSgdp <- annualizedGrowth(aggregate(TSget("V1992067"), nfrequency = 4,

FUN = mean), lag = 4, names = "GDP Y/Y Growth")

tfplot(ETSgdp)

}

24

1970 1980 1990 2000 2010

−
4

−
2

0
2

4
6

8

G
D

P
 Y

/Y
 G

ro
w

th

> if (!inherits(conets, "try-error")) {

dbDisconnect(options()$TSconnection)

options(TSconnection = NULL)

}

4 Examples Using DBI and direct SQL Queries

The following examples are queries using direct SQL queries. They should not
often be needed to access time series, but may be useful to get at more detailed
information, or formulate special queries. Some databases support special calls
to access database or table information, but the following try to use generic
SQL.

> m <- dbDriver("ODBC")

> con <- if ("" == user) TSconnect(m, dbname = "test") else TSconnect(m,

dbname = "test", uid = user, pwd = passwd)

> options(TSconnection = con)

> dbListTables(con)

[1] "a" "b" "d" "i" "m" "meta" "q" "s" "t" "u"

[11] "w"

25

If schema queries are supported then table information can be obtained in a
generic SQL way, but on some systems this will fail because users do not have
read priveleges on the INFORMATION SCHEMA table, so the following are
wrapped in tryCatch(). (SQLite does not seem to support this at all.)

> tryCatch(dbGetQuery(con, paste("SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.Columns ",

" WHERE TABLE_SCHEMA='test' AND table_name='A' ;")))

NULL

> tryCatch(dbGetQuery(con, paste("SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,",

"CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='A' ;")))

NULL

> tryCatch(dbGetQuery(con, paste("SELECT COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='M';")))

NULL

Finally, to disconnect gracefully, one should

> dbDisconnect(con)

> options(TSconnection = NULL)

> odbcCloseAll()

> dbUnloadDriver(m)

5 Example ODBC configuration file

Following is an example ODBC configuration file I use in Linux (so the file is in
my home directory and called ”.odbc.ini”) to connect to a remote PostgreSQL
server:

[test]

Description = test DB (Postgresql)

Driver = Postgresql

Trace = No

TraceFile = /tmp/test_odbc.log

Database = test

Servername = some.host

UserName = paul

Password = mySecret

Port = 5432

Protocol = 6.4

ReadOnly = No

26

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

[ets]

Description = ets DB (Postgresql)

Driver = Postgresql

Trace = No

TraceFile = /tmp/test_odbc.log

Database = ets

Servername = some.host

UserName = paul

Password = mySecret

Port = 5432

Protocol = 6.4

ReadOnly = No

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

27

