
We assume that we are in a hierarchical model setting with “fixed” and “random” effects, the fixed effects
not being explicitly modeled while the random effects are given a distribution.

For the following, there are N total observations. In addition, there are K “levels” or “grouping factors” in
the hierarchy, not necessarily nested. At each of the k = 1, . . . ,K levels, there are Jk different groups, any
one of which each of the i = 1, . . . , N observations can belong. Also at each level, there are Qk different
parameters modeled with one vector of that length for each of the j = 1, . . . , Jk groups. Finally, there are P
unmodeled coefficients that also need to be estimated.

For each observation, associated with the unmodeled parameters is a vector of covariates, xi. For each
pair of an observation and level there is a vector associated with the the modeled parameters, zik.

If gk(i) : {1, . . . , N} → {1, . . . , Jk} is a function that maps the ith observation to its group at the kth
level, then our model is:

yi | θ′, β, σ2 ind∼ N

(
x>i β +

K∑
k=1

z>ikθ
′
gk(i)k

, σ2

)
, i = 1, . . . , N,

θ′jk | Σk, σ2 iid∼ N(0, σ2Σk), j = 1, . . . , Jk, k = 1, . . . ,K.

Furthermore, it is also assumed that the various values of θ′ are independent between different levels.

We can write the above more simply in matrix notation:

Y | θ′, β, σ2 ∼ N(Xβ + Zθ′, σ2IN ),

θ′ | Σ, σ2 ∼ N(0, σ2Σ).

To build the necessary matrices, we call “vec” the vertical concatenation of a sequence of column vectors,
“cat” the horizontal concatenation, and “diag” the block diagonal matrix composed of its arguments. Then,

θ′ = vecKk=1vecJkj=1(θ′jk),Σ = diagKk=1(IQk
⊗ Σk),Z = catKk=1catJkj=1vecNi=1(zT

ikI{gk(i) = j}),

and X is the standard regression design matrix obtained by vertically stacking each xT
i . Let

∑K
k=1 JkQk = Q.

We then have dim(X) = N ×P,dim(β) = P × 1,dim(Z) = N ×
∑K
k=1 JkQk = N ×Q, and dim(θ′) = Q× 1.

The final modification that we make is to define ΛΛ> = Σ as the Cholesky factorization of the (unscaled)
covariance matrix of the unmodeled coefficients. Note that we can actually compute this for each Σk and
the same procedure that combines those matrices into Σ can be used on all of the Λks to produce Λ. With
this, θ = Λ−1θ′ has a spherical distribution.

We can write the joint density of the modeled coefficients and the observations as:

p(Y, θ | Λ, β, σ2) ∝ (σ2)−(N+Q)/2 exp

{
− 1

2σ2

[
‖Y −Xβ − ZΛθ‖2 + ‖θ‖2

]}
,

= (σ2)−(N+Q)/2 exp

{
− 1

2σ2

∥∥∥∥[Y0
]
−
[
ZΛ X
I 0

] [
θ
β

]∥∥∥∥2
}

In this sense, the joint density can be seen as a single Gaussian with diagonal covariance. If the design

matrix is A, then the mode would be given by
(
A>A

)−1
A>Y. To facilitate this calculation, we compute

the block-wise Cholesky factorization of inner product of the “augmented” design matrix above, i.e. A>A.
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[
Λ>Z>ZΛ + I Λ>Z>X

X>ZΛ X>X

]
=

[
LZ 0
LZX LX

] [
L>Z L>ZX
0 L>X

]
,

LZL
>
Z = Λ>Z>ZΛ + I,

LZX = X>ZΛL−>Z ,

LXL>X = X>X− LZXL>ZX .

The inverse of a block-wise triagonal matrix is given by:[
LZ 0
LZX LX

] [
L−1Z 0

−L−1X LZXL−1Z L−1X

]
=

[
I 0
0 I

]
.

Thus the modes of the joint distribution are given by:

[
θ̃

β̃

]
=

[
L−>Z −L−>Z L>ZXL−>X

0 L−>X

] [
L−1Z 0

−L−1X LZXL−1Z L−1X

] [
Λ>Z> I
X> 0

] [
Y
0

]
,

=

[
L−>Z −L−>Z L>ZXL−>X

0 L−>X

] [
L−1Z 0

−L−1X LZXL−1Z L−1X

] [
Λ>Z>Y
X>Y

]
,

=

[
L−>Z −L−>Z L>ZXL−>X

0 L−>X

] [
L−1Z Λ>Z>Y

L−1X X>Y − L−1X LZXL−1Z Λ>Z>Y

]
,

=

[
L−>Z −L−>Z L>ZXL−>X

0 L−>X

] [
θ˜

L−1X
(
X>Y − LZXθ˜)

]
,

=

[
L−>Z −L−>Z L>ZXL−>X

0 L−>X

] [
θ
β̃˜
]
,

=

[
L−>Z

(
θ˜− L>ZXL−>X β˜

)
L−TX β˜

]
,

=

[
L−>Z

(
θ˜− L>ZX β̃

)
L−TX β˜

]
.

where, θ˜ and β˜ are intermediate calculations that we can use to compute the penalized residual sum of

squares (needed to profile out σ̂). Noting that:

θ˜>θ˜+ β˜>β˜ =
[
Y> 0

] [ZΛ X
I 0

] [
Λ>Z>ZΛ + I ΛZ>X

X>ZΛ X>X

]−1 [
Λ>Z> I
X> 0

] [
Y
0

]
.
If this was a simple linear regression, we would write, Y>A

(
A>A

)−1
A>Y = Y>Aβ̂. But,

Y>Y −Y>Aβ̂ = Y>
(
Y −Aβ̂

)
,

=
(
Y −Aβ̂

)> (
Y −Aβ̂

)
,

=
∥∥∥Y −Aβ̂

∥∥∥2 .
So that in our full model, ∥∥∥∥[Y0

]
−
[
ZΛ X
I 0

] [
θ̃

β̃

]∥∥∥∥2 = Y>Y − θ˜>θ˜− β˜>β˜.
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Once we have obtained the modes of the joint distribution, we can proceed to integrate out the modeled
coefficients.

p(Y, θ | Λ, β, σ2) ∝ (σ2)−(N+Q)/2 exp

{
− 1

2σ2

∥∥∥∥[Y0
]
−
[
ZΛ X
I 0

] [
θ
β

]∥∥∥∥2
}
,

= (σ2)−(N+Q)/2 exp

{
− 1

2σ2

[[
θ − θ̃
β − β̃

]> [
LZ 0
LZX LX

] [
L>Z L>ZX
0 L>X

] [
θ − θ̃
β − β̃

]
+

∥∥∥∥[Y0
]
−
[
ZΛ X
I 0

] [
θ̃

β̃

]∥∥∥∥2
]}

.

Considering just the parts that involve θ and rotating the covariance with β into the mean, we have:

(σ2)−Q/2 exp

{
− 1

2σ2

[[
θ − θ̃ + L−>Z L>ZX(β − β̃)

β − β̃

]> [
LZ 0
0 LX

] [
L>Z 0
0 L>X

] [
θ − θ̃ + L−>Z L>ZX(β − β̃)

β − β̃

]]}
.

When integrated out, we obtain:

p(Y | Λ, β, σ2) ∝ (σ2)−N/2|LZ |−1 exp

{
− 1

2σ2

[
(β − β̃)>LXL>X(β − β̃) +

∥∥∥∥[Y0
]
−
[
ZΛ X
I 0

] [
θ̃

β̃

]∥∥∥∥2
]}

.

From this, the MLE for β is the joint mode, β̃. Profiling out β gives us that the mode of σ2 is 1
N

[
‖Y − ZΛθ̃ −Xβ̃‖2 + ‖θ̃‖2

]
,

or the penalized residual sum of squares divided by the sample size. Finally, the fully profiled deviance is
given by:

d(Λ) = N
(
1 + log(2πσ̂2)

)
+ 2 log |LZ |.

If we had wanted the REML, we can further take the likelihood and integrate out β with a flat prior, leaving:

p(Y | Λ, σ2) = (σ2)−(N−P )/2|LZ |−1|LX |−1 exp

{
− 1

2σ2

∥∥∥∥[Y0
]
−
[
ZΛ X
I 0

] [
θ̃

β̃

]∥∥∥∥2
}
.

Consequently, the REML estimate of σ2 is the penalized, weighted residual sum of squares divided by N−P .
The profiled deviance is

d(Λ) = (N − P )
(
1 + log(2πσ̂2)

)
+ 2 log |LZ |+ 2 log |LX |.
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For the following, we now impose a Gaussian prior on β with a known variance Σβ (with decomposition
LβL

>
β = Σβ), so that the full model is given by:

Y | θ, β,Λ, σ ind∼ N
(
Xβ + ZΛθ, σ2IN

)
,

θ | σ iid∼ N
(
0, σ2IQ

)
,

β
iid∼ N (0,Σβ) .

Consequently, the joint distribution of the observations and the coefficients is proportional to:

p (Y, θ, β | Λ, σ) ∝ (σ2)−(N+Q)/2 exp

{
− 1

2σ2

[
‖Y −Xβ − ZΛθ‖2 + ‖θ‖2 +

∥∥∥σL−1β β
∥∥∥2]} ,

∝ (σ2)−(N+Q)/2 exp

− 1

2σ2

∥∥∥∥∥∥
Y0

0

−
ZΛ X

0 σL−1β
IQ 0

[θ
β

]∥∥∥∥∥∥
2
 .

As before, we can take a block-wise Cholesky factorization of the augmented design matrix:

LZL
>
Z = Λ>Z>ZΛ + IQ,

LZX = X>ZΛL−>Z ,

LX(σ2)L>X(σ2) = X>X + σ2Σ−1β − LZXL>ZX .

Proceeding as before by calculating the joint mode and integrating with respect to θ produces:

p(Y, β | Λ, σ) ∝ (σ2)−N/2|LZ |−1 exp

{
− 1

2σ2

[
(β − β̃(σ))>LX(σ)L>X(σ)(β − β̃(σ))

]}
×

exp

− 1

2σ2


∥∥∥∥∥∥
Y0

0

−
ZΛ X

0 σL−1β
IQ 0

[θ̃(σ)

β̃(σ)

]∥∥∥∥∥∥
2

 .

If we are interested in maximizing the posterior mode, β | Y,Λ, σ2, we can see that for any fixed value of σ2

and Λ, the mode in β will be the same as the joint. Consequently, the profiled posterior is:

p(β̂ | Y,Λ, σ) ∝ (σ2)−N/2|LZ |−1 exp

− 1

2σ2

∥∥∥∥∥∥
Y0

0

−
ZΛ X

0 σL−1β
IQ 0

[θ̃(σ)

β̃(σ)

]∥∥∥∥∥∥
2
 .

If, however, we are interested in the likelihood, we can obtain it by integrating out β from the joint. The
result is:

p(Y | Λ, σ) = (σ2)−(N−P )/2|LZ |−1|LX(σ)|−1 exp

− 1

2σ2

∥∥∥∥∥∥
Y0

0

−
ZΛ X

0 σL−1β
IQ 0

[θ̃(σ)

β̃(σ)

]∥∥∥∥∥∥
2
 .

I have chosen to highlight the dependencies on σ above as we typically numerically optimize over Λ, and had
previously been able to profile out σ. Since we can no longer do that, the goal will be to be able to brute-force
optimize over σ, conditioned on the hyper-parameters. For this, we use Newton’s method, requiring the first
and second derivatives of the objective function.

Also as before, we can write the sum of squared residuals in terms of the intermediate calculations -
Y>Y − θ˜>θ˜− β˜>(σ)β˜(σ) - which simplifies calculating the derivative of the log-posterior or log-likelihood.

Consequently,
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∂

∂σ
l(β̂ | Y,Λ, σ) = −N 1

σ
+

1

σ3

(
Y>Y − θ˜>θ˜− β˜>(σ)β˜(σ)

)
+

1

2σ2

∂

∂σ
β˜>(σ)β˜(σ).

Where β˜(σ) = L−1X (σ)
(
X>Y − LZXθ˜) and θ˜ = L−1Z Λ>Z>Y. From this, we have

β˜>(σ)β˜(σ) =
(
X>Y − LZXθ˜)> L−>X (σ)L−1X (σ)

(
X>Y − LZXθ˜) .

Noting that L−>X L−1X =
(
LXL>X

)−1
=
(
X>X + σ2Σ−1β − LZXL>ZX

)−1
, we let a = X>Y − LZXθ˜ and

S = X>X− LZXL>ZX . We can write

β˜>(σ)β˜(σ) = a>
(
S + σ2Σ−1β

)−1
a,

= a>Lβ
(
L>β SLβ + σ2IP

)−1
L>β a.

For the sake of computing the derivative, we further make the notational simplifications of b = L>β a and

R = L>β SLβ .

H(σ) = G(F (σ)),

G(D) = b>D−1b,

F (σ) = R + σ2IP ,

d

dσ
H(σ) =

d vec(G(D))

d vec(D)>
d vec(F (σ))

dσ
,

d

dσ
vec(F (σ)) = 2σvec(IP ),

d

d vec(D)>
vec(G(D)) = −vec

(
D−>bb>D−>

)>
.

To help clarify this a bit, as F maps a scalar to a Q × Q matrix, its derivative is a Q2 × 1 matrix. As G
maps Q × Q matrix to a scalar, its derivative is a 1 × Q2 matrix. When we multiply the two in the chain
rule, we get the desired scalar derivative.

Furthermore, as dF/dσ involves vectorizing the identity matrix, we are going to add from the derivative of
G the elements that correspond to the diagonal. As such, we can express the derivative as:

d

dσ
H(σ) = −2σ × tr

((
R + σ2IP

)−>
bb>

(
R + σ2IP

)−>)
,

= −2σb>
(
R + σ2IP

)−1 (
R + σ2IP

)−1
b,

= −2σa>Lβ
(
L>β SLβ + σ2IP

)−1 (
L>β SLβ + σ2IP

)−1
L>β a,

= −2σa>
(
S + σ2Σ−1β

)−1
L−>β L−1β

(
S + σ2Σ−1β

)−1
a,

= −2σβ˜>(σ)L−1X (σ)L−>β L−1β L−>X (σ)β˜(σ),

= −2σ

∥∥∥∥L−1β L−>X (σ)β˜(σ)

∥∥∥∥2 .
Summing up, the first derivative is given by:

∂

∂σ
l(β̂ | Y,Λ, σ) = −N 1

σ
+

1

σ3

(
Y>Y − θ˜>θ˜−

∥∥∥β˜(σ)
∥∥∥2)− 1

σ

∥∥∥L−1β L−>X (σ)β˜(σ)
∥∥∥2 .
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Furthermore, the second derivative is given by:

∂2

(∂σ)2
l(β̂ | Y,Λ, σ) = N

1

σ2
− 3

σ4

(
Y>Y − θ˜>θ˜−

∥∥∥∥β˜(σ)

∥∥∥∥2
)

+
3

σ2

∥∥∥∥L−1β L−>X (σ)β˜(σ)

∥∥∥∥2 +

4

∥∥∥∥L−1X (σ)L−>β L−1β L−>X (σ)β˜(σ)

∥∥∥∥2 .
We have written in this fashion to highlight how might compute the various derivatives efficiently. If one
caches X>X−LZXL>ZX , for a new value of σ one can efficiently compute the new LX(σ). With this value,
and having also cached X>Y − LZXθ˜, the new β˜ is, as before, L−1X (σ)

(
X>Y − LZXθ˜).

Then, one only needs to compute ‖β˜‖2, ‖L−1β L−>X β˜‖2, and ‖L−1X L−>β L−1β L−>X β˜‖2.

To obtain the derivative for the case in which the unmodeled coefficients are integrated out, we have to be
able to take the derivative of |LX(σ)|. Noting that, for an arbitrary matrix A,

d|A|
dvec(A)>

= |A|vec(A−>)>,

d|A(σ)|
dσ

= |A|vec(A−>)>
dA

dσ
.

Consequently, using our previous definition of R,

d

dσ
|LX(σ)| = d

dσ

∣∣∣L−>β (
R + σ2IP

)
L−1β

∣∣∣ ,
=
∣∣∣Σ−1β ∣∣∣ d

dσ

∣∣R + σ2IP
∣∣ ,

=
∣∣∣Σ−1β ∣∣∣ ∣∣R + σ2IP

∣∣ vec
((

R + σ2IP
)−1)> × 2σvec(IP ),

= 2σ
∣∣∣Σ−1β ∣∣∣ ∣∣R + σ2IP

∣∣ tr (R + σ2IP
)−1

,

= 2σ |LX(σ)| tr
(
L−1β L−>X (σ)L−1X (σ)L−Tβ

)
.

The first derivative of the log-likelihood is then:

∂

∂σ
l(Y | Λ, σ) = −(N − P )

1

σ
+

1

σ3

(
Y>Y − θ˜>θ˜−

∥∥∥∥β˜(σ)

∥∥∥∥2
)
− 1

σ

∥∥∥∥L−1β L−>X (σ)β˜(σ)

∥∥∥∥2−
2σ × tr

(
L−1β L−>X (σ)L−1X (σ)L−Tβ

)
.

Now we utilize the fact that d
dσ tr(A) = tr

(
d
dσA

)
to compute:

d

dσ
tr
(
R + σ2IP

)−1
= −2σ × tr

((
R + σ2IP

)−1 (
R + σ2IP

)−1)
,

= −2σ × tr

((
L−1β L−>X (σ)L−1X (σ)L−Tβ

)2)
.

Putting this together, we have

∂2

(∂σ)2
l(Y | Λ, σ) = (N − P )

1

σ2
− 3

σ4

(
Y>Y − θ˜>θ˜−

∥∥∥∥β˜(σ)

∥∥∥∥2
)

+
3

σ2

∥∥∥∥L−1β L−>X (σ)β˜(σ)

∥∥∥∥2 +

4

∥∥∥∥L−1X (σ)L−>β L−1β L−>X (σ)β˜(σ)

∥∥∥∥2−2×tr
(
L−1β L−>X (σ)L−1X (σ)L−Tβ

)
+4σ2×tr

((
L−1β L−>X (σ)L−1X (σ)L−Tβ

)2)
.
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To compute these traces, we will already have access to the the matrix product L−1β L−>X . The trace of AA>

is just the sum of the squares of the elements of that matrix, but it seems unavoidable for us to at least
consider the product L−1β L−>X L−1X L−>β . With this, we can compute the first order trace by summing down

the diagonal, and the second by summing the squares of the elements. For many models, L−1β is diagonal,

so that L−1β L−>X is triangular and the crossproduct can be computed efficiently.
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