
The lmekin function

Terry Therneau
Mayo Clinic

December 28, 2011

1 Background

The original kinship library had an implementation of linear mixed effects models using the
matrix code found in coxme. Since the primary motivation for the functions in that library was
to fit models with random family effects, i.e., using a kinship matrix for the correlation, the
name lmekin was chosen. The reason for the program was entirely to check our arithmetic: the
result of the matrix manipulations contained in it should give exactly the same answer as lme,
and since the underlying routines were shared with coxme that gave a validity check for parts of
coxme. With more time and a larger test suite the routine is no longer necessary for this purpose,
however, it became popular with users (they often do unanticipated things) since it can fit a few
models that lme cannot. Let me emphasis this: most models that can be fit with the lmekin
function can also be fit with lme and/or lmer. For any such model the lme/lmer functions will
be faster and have superior support routines (residuals, printing, plotting, etc.) The solution
code for lmer is likely also more reliable since it has been exercised on a much wider variety of
data sets.

However, there are models that lmekin will fit which lme will not. The most obvious of these
are models with a random genetic effect, e.g. a kinship matrix. The second class will be models
for which the user has written their own variance extension, as described in the variance vignette.

The follow-up methods for lmekin are limited, which reflects the fact that linear mixed effects
models are not a primary focus for me, the author of the coxme package. A primary reason to
update lmekin at all is a desire to depreciate the original kinship package; this routine was the
last bit of functionality that is not otherwise available. The set of models fit by lmekin was also
extended to include all of the random effects structures supported by coxme, which should make
the routine more valuable. Contributions by others with deeper interest will be warmly received.
Nevertheless, the core code is solid and reliable to the best of my ability and will be actively
maintained.

2 Simple Models

The control code for lmekin is identical to coxme with respect to specifying the random effects,
and both are modeled on the methods used in lmer. Here is a simple example using one of the
data sets from Pinheiro and Bates.

1

> library(coxme)

> fit1 <- lme(effort~Type, random= ~ 1|Subject,data=ergoStool,

method="ML")

> fit2 <- lmekin(effort ~ Type + (1|Subject), data=ergoStool,

method="ML")

> print(fit1)

Linear mixed-effects model fit by maximum likelihood
Data: ergoStool
Log-likelihood: -61.07222
Fixed: effort ~ Type

(Intercept) TypeT2 TypeT3 TypeT4
8.5555556 3.8888889 2.2222222 0.6666667

Random effects:
Formula: ~1 | Subject

(Intercept) Residual
StdDev: 1.25626 1.037368

Number of Observations: 36
Number of Groups: 9

> print(fit2)

Linear mixed-effects kinship model fit by maximum likelihood
Data: ergoStool
Log-likelihood = -61.07222
n= 36

Model: effort ~ Type + (1 | Subject)
Fixed coefficients

Value Std Error z p
(Intercept) 8.5555556 0.5430696 15.75 0.0e+00
TypeT2 3.8888889 0.4890198 7.95 1.8e-15
TypeT3 2.2222222 0.4890198 4.54 5.5e-06
TypeT4 0.6666667 0.4890198 1.36 1.7e-01

Random effects
Group Variable Std Dev Variance
Subject Intercept 1.256260 1.578189
Residual error= 1.037368

And here is a slightly more complex one based on data from J. Cortinas [2]. There are 37 centers
of varying size, and the simulated data set has both random intercepts and treatment effects per
center.

2

> tdata <-eortc

> tdata$center2 <- factor(tdata$center)

> fit3 <- lme(y ~ trt, random= ~ trt|center2, data=tdata,

method="ML")

> fit3

Linear mixed-effects model fit by maximum likelihood
Data: tdata
Log-likelihood: -19413.23
Fixed: y ~ trt

(Intercept) trt
2200.3256 -571.2248

Random effects:
Formula: ~trt | center2
Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
(Intercept) 146.0512 (Intr)
trt 227.1224 0.254
Residual 1017.2737

Number of Observations: 2323
Number of Groups: 37

> fit4 <- lmekin(y ~ trt + (1+ trt|center), tdata)

> fit4

Linear mixed-effects kinship model fit by maximum likelihood
Data: tdata
Log-likelihood = -19413.23
n= 2323

Model: y ~ trt + (1 + trt | center)
Fixed coefficients

Value Std Error z p
(Intercept) 2200.3482 47.60675 46.22 0
trt -571.2595 61.90075 -9.23 0

Random effects
Group Variable Std Dev Variance Corr
center Intercept 141.2490 19951.2793 326.9359

trt 230.2763 53027.1517
Residual error= 1017.271

> all.equal(fit3$logLik, fit4$loglik)

3

[1] TRUE

First note that the two fits give identical log-likelihoods, even though the coefficients differ. The
log-likelihood function is somewhat flat on top, and because of different default starting estimates
the two programs do not end up at exactly the same place.

One small difference above is that lmekin is a little more forgiving with respect to groups.
The center variable in the eortc data set is numeric, when it appears on the right hand side of
the vertical bar (1 + trt|center) the program assumes it is a grouping effect. The lme routine
insists that the grouping variable be a factor. (In defense of lme, if one were to accidentally
put a continuous variable on the right such as age, which has no business being there, the error
message is welcome.)

A more important difference from lme (and lmer) is the inclusion of random intercepts.
In lmer a random term like (age | group will actually fit the model (1+age | group), i.e.,
an intercept term is assumed unless it is specifically removed by adding -1 to the model. In
lmekin an intercept is not assumed, the random effect you type is the one that you get. The
primary reason for this is that lmer mimics lm, which also adds an intercept unless it is explicitly
suppressed. The coxme function mimics coxph, which does not add an intercept. Since lmekin
is built on the same routines as coxme it also follows that convention. (In Cox models there is
not an intercept term for the fixed effects since this is absorbed into the baseline hazard).

3 Computation

The random effects linear model is

y = Xβ + Zb + ε (1)

b ∼ N(0, σ2A(θ) (2)

ε = N(0, σ2) (3)

Here β are the fixed and b the random coefficients, and the variance matrix A of the random
effects depends on some arbitrary vector of parameters θ. For any fixed value of θ the solution
for the remaining parameters is based on a QR decomposition, exactly as is laid out in section
2.2 of Pinheiro and Bates ([1]), leading also a profile likelihood value L(θ).

Notice that both β and σ can be solved for explicitly when θ is known, and that the variance
of b is σ2A not A. Thus for iteration, A will contain relative variances for components of b,
something that Pinheiro and Bates refer to as the precision matrix. (See section 2.1.1; they also
use a Cholesky decomposition ∆ of the inverse precision for further numerical accuracy. We do
not do so.) When the results of a fit are printed out these two are multiplied to give the variance
of b directly. This decomposition will be invisible to most users, unless they either set initial
values or retrieve variances directly from the coxme object.

The Z matrix is often sparse, so the QR computations are done using the Matrix library to
take advantage of this. Maximization of L(θ) with respect to θ is accomplished with the optim()
function.

4

References

[1] José C. Pinheiro and Douglas M. Bates, Mixed-Effects Models in S and S-PLUS, Springer,
2000.

[2] Cortinas Abrahantes, Jose; Burzykowski, Tomasz, A version of the EM algorithm for pro-
portional hazards models with random effects, Lecture Notes of the ICB Seminars, p. 15-20,
2002.

5

