
Deductive imputation with the deducorrect package

Mark van der Loo and Edwin de Jonge
Package version 1.1.3

February 22, 2012

Abstract

Numerical and categorical data used for statistical analyses is often
plagued with missing values and inconsistencies. In many cases, a num-
ber of missing values may be derived, based on the consistency rules
imposed on the data and the observed values in a record. The methods
used for such derivations are called deductive imputation. In this paper,
we describe the newly developed deductive imputation functionality of
R package deducorrect. The package gained methods to deductively
impute numerical as well as categorical data. Methods for setting up
a partial data editing system are discussed as well.

This vignette (at version 1.1-1) is a literal transcript of Van der
Loo and de Jonge (2011a). Please use that paper when referencing
imputation functionality of the package. This vignette may be updated
if the package is developed further.

1

Contents

1 Introduction 3

2 Deductive imputation 4
2.1 Overview . 4
2.2 Imputation with deduImpute 5

3 Deductive imputation of numerical data 10
3.1 Imputation with solSpace and imputess 10

3.1.1 Area of application . 10
3.1.2 How it works . 10
3.1.3 An example . 11

3.2 Imputation with deductiveZeros 13
3.2.1 Area of application . 13
3.2.2 How it works . 13
3.2.3 An example . 13

4 Deductive Imputation of categorical data 14
4.1 Imputation with deductiveLevels 14

4.1.1 Area of application . 14
4.1.2 How it works . 14
4.1.3 An example . 15

5 Conclusions 17

References 18

2

1 Introduction

The quality of raw survey data is only rarely sufficient to allow for immediate
statistical analysis. The presence of missing values (item nonresponse) and
inconsistencies impedes straightforward application of standard statistical
estimation methods, and statisticians often have to spend considerable effort
to counterbalance the effect of such errors.

There are basically two ways to take the effect of data quality issues into
account. The first is to adapt the statistical analysis such that the effects of
these issues are taken into account. One well-documented example is to use
weighting methods which take the effect of (selective) item nonresponse into
account (Kalton and Kasprzyk, 1986; Bethlehem et al., 2011). The second
way is to clean up the dataset so that missing values are completed and
inconsistencies have been repaired. The latter method has the advantage
that statistical analyses of the data become to a degree independent of the
models used in data cleaning. Whichever way is chosen, in most cases ad-
ditional assumptions are necessary to clean data or interpret the results of
data analyses.

Recently, a number of near assumption-free data-cleaning methods have
been reported which rely almost purely on record consistency rules imposed
a priori on the data. Examples of such rules include account balances, pos-
itivity demands on variables or forbidden value combinations in categorical
data. In a previous paper (Van der Loo et al., 2011) we reported on methods
which use data consistency rules and information in inconsistent records to
track down and repair typing errors, rounding errors and sign errors. The
theory behind these methods was first published by Scholtus (2008, 2009)
and the methods were implemented by us in R package deducorrect. Since
these so-called deductive correction methods are based on adapting values,
they are not suited for completing missing values.

In this paper, we report on an extension of the deducorrect package which
allows for deductive imputation of missing values in either numerical or cate-
gorical data. The implemented methods were proposed by Pannekoek (2006)
and De Waal et al. (2011). By deductive imputation we mean methods which
use the observed values in a record together with consistency rules imposed
on the record to uniquely derive values where possible. The values may be
missing because of nonresponse, or they may be deemed missing by an er-
ror localization algorithm such as implemented in the editrules package (De
Jonge and Van der Loo, 2011; Van der Loo and de Jonge, 2011b).

In section 2, we further introduce the concept of deductive imputation
and show the easiest way of imputing values with the deducorrect package.
In sections 3 and 4 we expand a bit on the theory and demonstrate the use
of lower-level functionality of the package. Examples in R code are given
throughout to help new users getting started.

3

2 Deductive imputation

2.1 Overview

Deductive imputation relies on in-record consistency rules to derive the value
of variables which have not been completed from variables that have. These
methods therefore rely on the assumption that the values used in the deriva-
tion have been completed correctly. For example, suppose we have a numer-
ical record x = (x1, x2, x3), subject to the rules

x1 + x2 = x3 (1)

x ≥ 0. (2)

Suppose we are given two values of x, for example (NA, x2, x3), where NA
stands for Not Available. In principle, the unknown value is easily derived
from rule (1), but one must take care not to violate any other rules. For
example, if x2 < 0, the derived value for x1 is most likely not the true value,
since at least one of the values used to derive x1 is invalid. Moreover, if
x2 > x3, the derived value for x1 will be negative, and therefore violate rule
(2). For categorical data, analogous situations may arise.

The deductive imputation routines of the deducorrect package offer two
mechanisms to avoid inconsistencies. The first is to explicitly check if con-
sistent deductive imputation is possible based on the observed values. This
is switched on by default for the functions deduImpute, deductiveZeros, the
editmatrix method of solSpace and deductiveLevels. These functions will be
discussed below. The second mechanism is the ability to point out variables
besides the missing ones, which should be considered as if they were miss-
ing. A typical example would be to use the result of an error localization
algorithm which points out erroneous fields in a record.

In the context of a complete automated data editing system, there are
several places where deductive imputation or correction can be applied. Typ-
ically, one will apply such methods before the data is treated with more
complicated imputation models. Figure 1 shows a workflow for automatic
deductive data cleaning. It contains all (near) assumption-free corrections
and imputations of the deducorrect package. If after these steps, missing
values or errors remain, one has to resort to other methods and accept extra
model assumptions. It should be noted that a common step such as detect-
ing and repairing unit measure errors is not included here. However, such
methods are easily implemented in R, and we refer to De Waal et al. (2011)
for an overview.

Deductive imputation appears after the error localization step in the
process flow chart of Figure 1. At that point one is certain that the missing
variables together with the variables pointed out by the error localization
algorithm can be imputed consistent with the edit rules. Error localization
is not strictly necessary to perform deductive imputation with the deducor-

4

read data

read rules

deductive
correction

error
localization

deductive
imputation

other
imputation

methods

editarray, editmatrix

correctTypos
correctSigns

correctRounding

localizeErrors

deduImpute

editrules

deducorrect

editrules

deducorrect

Figure 1: Flow diagram showing how functionality of the deducorrect and
editrules can be combined to perform the deductive corrections, deductive
imputations and error localization. All steps except deductive correction are
available for numerical as well as categorical data. The ellipses indicate some
of the R functions from the packages noted on the right. Error localization
is not strictly necessary to perform deductive imputation, but in this way
the maximum number deductively imputable values will be derived.

rect package since by default, the imputation routines check if consistent
imputation is possible. However, the workflow in Figure 1 guarantees that
as many deductive imputations take place as possible. For performance rea-
sons, the user can choose to skip these checks when the workflow of Figure
1 is followed.

2.2 Imputation with deduImpute

The simplest way to do deductive imputations with the deducorrect package
is to use the deduImpute function. It can be used for both numerical and
categorical data. The function accepts an editmatrix or editarray containing

5

the editrules and a data.frame containing the records. The return value is
an object of class deducorrect, similar to the values returned by the correct-
functions of deducorrect [see Van der Loo et al. (2011)].

For numerical data deduImpute uses two methods (described in sections
3.1 and 3.2) to impute as many empty values as possible. It uses the func-
tions solSpace and deductiveZeros iteratively for each record until no de-
ductive improvements can be made. Here, we will use the example from
De Waal et al. (2011), Chapter 9.2. This example uses the following edits,
based on a part of the Dutch Structural Business Survey balance account.

x1 + x2 = x3
x2 = x4

x5 + x6 + x7 = x8
x3 + x8 = x9
x9 − x10 = x11

x6 ≥ 0
x7 ≥ 0

(3)

The rule x2 = x4 may seem odd for readers not familiar with survey statis-
tics. However, these rules correspond to cases where respondents have to
copy a figure from one page on a paper form to another1. In Figure 2 we
give an example where the following record subject to the edits in Eq. (3) is
treated.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

The record contains missing values. However, by assuming that all non-
missing values are correct, values can be derived for x2, x4, x9 and x11 just
by considering the equality- and nonnegativity rules in the edit set.

The assumption that all missing values can be imputed consistently may
not alway be valid: the nonmissing values may have been filled in erro-
neously, yielding faulty derived values to impute. The reason is that de-
duImpute does not take into account all edit rules: only nonnegativity rules
and equality rules are used to derive imputed values.

The deduImpute function has two mechanisms to get around this. The
first is to set the option checkFeasibility=TRUE. This causes solutions causing
new inconsistencies to be rejected. The second mechanism is to provide a
user-specified adapt array to increase the number of variables which may be
imputed, missing or not. The adapt array is a boolean array, stating which
variable may be changed in which record. A convenient example is to use
the adapt array as generated by the localizeErrors function from the editrules
package. By specifying an adapt array, deduImpute will try to fix records by

1In spite of the availability of web-based forms, many respondents still prefer paper
forms.

6

> E <- editmatrix(c(

+ "x1 + x2 == x3",

+ "x2 == x4",

+ "x5 + x6 + x7 == x8",

+ "x3 + x8 == x9",

+ "x9 - x10 == x11",

+ "x6 >= 0",

+ "x7 >= 0"

+))

> dat <- data.frame(

+ x1=c(145,145),

+ x2=c(NA,NA),

+ x3=c(155,155),

+ x4=c(NA,NA),

+ x5=c(NA, 86),

+ x6=c(NA,NA),

+ x7=c(NA,NA),

+ x8=c(86,86),

+ x9=c(NA,NA),

+ x10=c(217,217),

+ x11=c(NA,NA)

+)

> dat

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

2 145 NA 155 NA 86 NA NA 86 NA 217 NA

> d <- deduImpute(E,dat)

> d$corrected

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 NA NA NA 86 241 217 24

2 145 10 155 10 86 0 0 86 241 217 24

Figure 2: A simple example with deduImpute. The return value is an object
of class deducorrect.

imputing values which are either missing or may be adapted according to
adapt.

For categorical data, deduImpute uses the deductiveLevels function, dis-
cussed in section 4. The function accepts an editarray holding the categorical
edits and a data.frame holding records to be imputed.

Before introducing our example, we note that a categorical record is a
member of a discrete set, written as the cartesian product.

D = D1 ×D2 × . . .×Dn, (4)

where each Dk is the set of categories for a single variable. An edit e can be

7

written as a subset of D:

e = A1 ×A2 × · · · ×An, (5)

where each Ak ⊂ Dk. The interpretation is that if a record v ∈ e, then that
record is invalid.

Here, we reproduce example 9.3 of De Waal et al. (2011) [first published
by (Kartika, 2001)]. Consider four categorical variables with domains D1 =
{a, b, c, d}, D2 = D3 = {a, b, c} and D4 = {a, b}. We define the edit rules

e1 = D1 × {c} × {a, b} × {a} (6)

e2 = D1 × {b, c} ×D3 × {b} (7)

e3 = {a, b, d} × {a, c} × {b, c} ×D4 (8)

e4 = {c} ×D2 × {b, c} × {a}. (9)

Out of 72 possible records, only the following 20 are valid:

(a, a, a, a) (b, a, a, a) (c, a, a, a) (d, a, a, a)
(a, a, a,b) (b, a, a,b) (c, a, a,b) (d, a, a, b)
(a,b, a, a) (b,b, a, a) (c, a,b, b) (d, b, a, a)
(a,b,b, a) (b,b,b, a) (c, a, c, b) (d, b,b, a)
(a,b, c, a) (b, b, c, a) (c, b, a, a) (d, b, c, a).

Figure 3 shows how these rules can be defined in R using the editarray func-
tion of the editrules package. Consider the record (c,b,NA,NA). By simply
considering the list of valid records above it is clear that if v1 and v2 are
assumed correct, the only possible valid imputation is v3 = v4 = a. Indeed
this is returned by deduImpute in Figure 3. The record (NA,NA,NA,b) can-
not be imputed completely, since there are six possible records with v4 = b.
However, all of them have v2 = a, so this may be imputed with certainly.
Finally, the record (b, c, a,NA) cannot be imputed since there is no valid
record with these values for v1, v2 and v3.

8

> M <- editarray(c(

+ "v1 %in% letters[1:4]",

+ "v2 %in% letters[1:3]",

+ "v3 %in% letters[1:3]",

+ "v4 %in% letters[1:2]",

+ "if (v2 == 'c' & v3 != 'c' & v4 == 'a') FALSE",

+ "if (v2 != 'a' & v4 == 'b') FALSE",

+ "if (v1 != 'c' & v2 != 'b' & v3 != 'a') FALSE",

+ "if (v1 == 'c' & v3 != 'a' & v4 == 'a') FALSE"

+))

> Mdat <- data.frame(

+ v1 = c('c', NA,'b'),

+ v2 = c('b', NA,'c'),

+ v3 = c(NA, NA,'a'),

+ v4 = c(NA,'b', NA),

+ stringsAsFactors=FALSE

+)

> s <- deduImpute(M, Mdat)

> s$corrected

v1 v2 v3 v4

1 c b a a

2 <NA> a <NA> b

3 b c a <NA>

> s$status

status imputations

1 corrected 2

2 partial 1

3 invalid 0

> s$corrections

row variable old new

1 1 v3 NA a

2 1 v4 NA a

3 2 v2 NA a

Figure 3: Deductive imputations for categorical data using deduImpute.

9

3 Deductive imputation of numerical data

The valid value combinations of numerical data records with n variables are
usually limited to some subset of Rn. Common cases include balance ac-
counts (linear restrictions) combined with linear inequality rules (positivity
rules for example). In such cases the set of valid records is a convex polytope.
In certain cases, when the values for a number of variables have been fixed,
the set of possible values for a number of the remaining variables reduces to
a point. In such cases deductive imputation is possible.

3.1 Imputation with solSpace and imputess

3.1.1 Area of application

The combination of functions solSpace and imputess can be used to impute
numerical data under linear equality restrictions:

Ax = b, with A ∈ Rm×n, x ∈ Rn and b ∈ Rm. (10)

If x has missing values, then solSpace returns a representation of the linear
space of imputations valid under Eqn. (10). The function imputess performs
the actual imputation. It is important to note that these functions do not
take into account the presence of any inequality restrictions.

3.1.2 How it works

Consider a numerical record x with nmiss values missing. The values may
be missing because of nonresponse, or they may be deemed missing by
an error localization procedure (see the next subsection). We will write
x = (xobs,xmiss), with xobs the observed values and xmiss the missing ones.
Supposing further that x must obey a set of equality restrictions as in Eqn.
(10), we may write A = [Aobs,Amiss]. Consequently we have (De Waal
et al., 2011)

Amissxmiss = b−Aobsxobs. (11)

This gives

xmiss = x0 + Cz, (12)

with z an arbitrary real vector of dimension nmiss and x0 and C constant.
The purpose of solSpace is to compute x0 and C. Together they deter-

mine the vector space of values available for xmiss. Deductive imputation can
be realized by observing that if any rows of C are filled with zeros, then the
sole value for the corresponding values of xmiss are given the corresponding
values in x0. The values of x0 and C are given by

x0 = A+
miss(b−Aobsxobs) (13)

C = A+
missAmiss − 1. (14)

10

Here, 1 is the identity matrix and A+
miss is the pseudoinverse of A, obeying

AmissA
+
missAmiss = Amiss. (15)

See De Waal et al. (2011) for details on the imputation method or Greville
(1959) for an excellent discussion on the pseudoinverse.

3.1.3 An example

The solSpace function returns the x0 and C as a list. For example consider
the first record from Figure 2:

> (x <- dat[1,])

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 NA 155 NA NA NA NA 86 NA 217 NA

Using the editmatrix defined in the same figure, we get:

> (s <- solSpace(E,x))

$x0

[,1]

x2 10.00000

x4 10.00000

x5 28.66667

x6 28.66667

x7 28.66667

x9 241.00000

x11 24.00000

$C

x2 x4 x5 x6 x7 x9 x11

x2 0 0 0.0000000 0.0000000 0.0000000 0 0

x4 0 0 0.0000000 0.0000000 0.0000000 0 0

x5 0 0 -0.6666667 0.3333333 0.3333333 0 0

x6 0 0 0.3333333 -0.6666667 0.3333333 0 0

x7 0 0 0.3333333 0.3333333 -0.6666667 0 0

x9 0 0 0.0000000 0.0000000 0.0000000 0 0

x11 0 0 0.0000000 0.0000000 0.0000000 0 0

solSpace has an extra argument adapt which allows extra fields of x to be
considered missing. An example of its use would be to determine erroneous
fields with errorLocalizer (of the editrules package) and to determine the im-
putation space with solSpace.

The top two and bottom two rows of C in the example have zero coeffi-
cients, yielding a unique solution for x2, x4, x9 and x11. The unique values
may be imputed with imputess:

11

> imputess(x, s$x0, s$C)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 NA NA NA 86 241 217 24

If a z-vector is provided as well [See Eq. (12)], all values may be imputed.
Here, we choose z = 0 (arbitrarily).

> (y <- imputess(x, s$x0, s$C, z=rep(0,ncol(s$C))))

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 145 10 155 10 28.66667 28.66667 28.66667 86 241 217 24

Using violatedEdits from the editrules package, we may verify that this record
satisfies every inequality rule as well (E as in figure 2).

> any(violatedEdits(E,y,tol=1e-8))

[1] FALSE

To demonstrate the use of the adapt argument, consider the following
case.

> Ey <- editmatrix(c(

+ "yt == y1 + y2 + y3",

+ "y4 == 0"))

> y <- c(yt=10, y1=NA, y2=3, y3=7,y4=12)

> (s <- solSpace(Ey,y))

NULL

However, using the adapt argument, which is a logical indicator stating which
entries may be adapted, we get the following.

> (s <- solSpace(Ey, y, adapt=c(FALSE,FALSE,FALSE,FALSE,TRUE)))

$x0

[,1]

y1 0

y4 0

$C

y1 y4

y1 0 0

y4 0 0

> imputess(y,x0=s$x0,C=s$C)

yt y1 y2 y3 y4

10 0 3 7 0

12

3.2 Imputation with deductiveZeros

3.2.1 Area of application

This method can be used to impute missing values in numerical records
subject to

Ax = b, with A ∈ Rm×n, x ∈ Rn and b ∈ Rm (16)

xj ≥ 0 for at least one j ∈ {1, 2, . . . , n}. (17)

Economic survey data are often subject to account balances of the form
xt = x1 + x2 + · · ·xk. For example, xt might be the total personnel cost
and the xi are costs related to permanent staff, temporary staff, externals,
etc. It is not uncommon for respondents to leave fields open which are not
relevant to them. For example, if a company has not hired any temporary
staff, the corresponding field might be left empty while a 0 would have been
appropriate.

In such cases, missing values are bounded from above by the sum rules
while they are bounded from below by the nonnegativity constraint. If the
missing values are ignored, and the completed values add up to the required
totals, then missing values may be uniquely imputed with 0. The function
deductiveZeros detects such cases.

3.2.2 How it works

Consider again the notation of Section 3.1.2. We write (following notation
of De Waal et al. (2011)).

b∗ = b−Aobsxobs. (18)

If any b∗l = 0, this means that the sum rule al · x = bl is obeyed if missing
values are ignored. For those cases, the following properties are checked.

� Each amiss,lj has the same sign.

� Each amiss,lj 6= 0 corresponds to a variable xj that is constrained to be
nonnegative.

If these demands are obeyed, the corresponding value xmiss,j may be imputed
with 0.

3.2.3 An example

The function deductiveZeros does not perform imputation itself but com-
putes an indicator stating which values may be imputed. As a first example
consider the following.

13

> Ey <- editmatrix(c(

+ "yt == y1 + y2 + y3",

+ "y1 >= 0", "y2 >= 0 ","y3 >= 0"))

> y <- c(yt=10, y1=NA, y2=3, y3=7)

> (I<-deductiveZeros(Ey,y))

yt y1 y2 y3

FALSE TRUE FALSE FALSE

The record y can be imputed in one statement.

> y[I] <- 0

> y

yt y1 y2 y3

10 0 3 7

4 Deductive Imputation of categorical data

As shown in Eq. (4), a categorical data record is a member of a discrete set
of value combinations D (the domain). In practice, not every record in D
may be acceptable. For example if

D = {child, adult} × {married,unmarried}, (19)

then the record (child,married) may be excluded from the set of valid
records. Therefore, if we have a record with (NA,married), and assume
that the marital status is correct, there is only one possible value for the age
class, namely “adult”. So just like for numerical data, if the known values
limit the number of options for the unknowns to a unique value, deductive
imputation is possible.

4.1 Imputation with deductiveLevels

4.1.1 Area of application

The function deductiveLevels works on purely categorical data where the
number of categories for each variable is known and fixed, as in Eq. (4). It
determines which missing values in a record are determined uniquely by the
known values, and these unique values are returned.

4.1.2 How it works

The algorithm behind deductiveLevels has been described by De Waal et al.
(2011) and is reproduced here in Algorithm 1. The Algorithm is described
in terms of the functions eliminate and substValue, both of which are im-
plemented in the editrules package and have been described extensively by

14

Algorithm 1 deductiveLevels(E,v)

Input: An editarray E, a partially complete record v
Determine the index I ⊂ {1, 2, . . . n} in v of observed values.
E ← substValue(E, I,vI)
if ¬isFeasible(E) then

return ∅
end if
M ← {1, 2, . . . , n}\I . Index of missing values in v
T ← ∅
S ← ∅
while M\T 6= ∅ do

m←M1

F ← E
for k ∈M\m do . Eliminate all but k from F

F ← eliminate(F, k)
end for
if There is one possible value ṽ for variable m in F then

E ← substValue(E,m, ṽ)
M ←M\m
S ← S ∪ (m, ṽ)

else
T ← T ∪m

end if
end while

Output: Unique imputations S.

Van der Loo and de Jonge (2011a). In short, deductiveLevels derives deduc-
tive imputations by first substituting all observed values in the edit rules.
Subsequently, all variables but one are eliminated from the remaining edits.
If only one possible value remains for the remaining variable, it may be used
as a deductive imputation and substituted in the set of edits. This process
is repeated until all missing values are treated.

4.1.3 An example

Consider the variables v1 =gender, v2 =pregnant and v3 =chromosome. The
value domain and edit rules are given by

D1 = {male, female} (20)

D2 = {true, false} (21)

D3 = {xx, xy} (22)

e1 = {male} × {true} ×D3 (23)

e2 = {male} ×D2 × {xx}. (24)

15

The corresponding editarray can be defined as follows.

> E <- editarray(c(

+ "gender %in% c('male','female')",

+ "pregnant %in% c(TRUE,FALSE)",

+ "chromosome %in% c('XX','XY')",

+ "if (gender == 'male') !pregnant",

+ "if (gender == 'male') chromosome == 'XY'"))

Now, consider the record (male, false,NA). Using deductiveLevels we find:

> v <- c(gender='male',pregnant=FALSE,chromosome=NA)

> (s <- deductiveLevels(E,v))

chromosome

"XY"

And imputation can be performed as follows:

> v[names(s)] <- s

> v

gender pregnant chromosome

"male" "FALSE" "XY"

The deductiveLevels function has an optional argument, allowing to switch off
the feasibility check. To illustrate this, consider the record (male,true,NA).
Clearly, there is no way to impute this record consistently by just imputing
the chromosome variable. If we choose v3 = XX, this conflicts with the
gender (male) if we choose XY this conflicts with the gender implied by v2
(pregnant). In this case deductiveLevels returns NULL.

> v <- c(gender='male',pregnant=TRUE,chromosome=NA)

> deductiveLevels(E,v)

NULL

The reason is that deductiveLevels checks if feasible imputations are possible
after substituting all observed values into the edits. This check can be time-
consuming since it potentially involves many variable elimination steps. It
may be turned off by passing checkFeasibility=FALSE:

> deductiveLevels(E,v,checkFeasibility=FALSE)

chromosome

"XY"

16

However, one must be careful since, as shown above, the result may be an
inconsistent imputation. The reason to include this option is that users may
provide an additional parameter, called adapt, allowing deductiveLevels to
impute more variables. If the adapt parameter is chosen such that missing
values plus adaptable values can lead to consistent imputation, the consis-
tency check may be turned off. For example, we may choose to adapt the
pregnancy status.

> adapt <- c(gender=FALSE,pregnant=TRUE,chromosome=TRUE)

> (s <- deductiveLevels(E,v,adapt=adapt,checkFeasibility=FALSE))

pregnant chromosome

"FALSE" "XY"

So that the imputed value becomes

> v[names(s)] <- s

> v

gender pregnant chromosome

"male" "FALSE" "XY"

which is indeed a valid record. In general, the adapt parameter should be
derived via a consistent error localization mechanism, such as implemented
in the editrules package. Only those cases it is safe to gain some performance
by switching the feasibility check off.

5 Conclusions

Missing values and inconsistencies in raw data often hinder statistical anal-
yses. However, in many cases, correct values can be derived using only the
available values and consistency rules imposed on the data (deductive im-
putation). As of version 1.1, the deducorrect package includes functionality
for deductive imputation of both numerical and categorical data. The func-
tionality of the deducorrect package can be used as-is, or may be integrated
with the error localization functionality of the editrules package.

Future work on the package will include several performance enhance-
ments and visualisation options.

17

References

Bethlehem, J., F. Cobben, and B. Schouten (2011). Handbook of Nonre-
sponse in Household Surveys, Volume 562 of Wiley handbooks in survey
methodology. John Wiley & Sons.

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and
error localization with the editrules package. Technical Report 2011020,
Statistics Netherlands, The Hague/Heerlen.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of statistical
data editing and imputation. Wiley handbooks in survey methodology.
Hoboken, New Jersey: John Wiley & Sons.

Greville, T. N. E. (1959). The pseudoinverse of a rectangular or singular
matrix and its application to the solution of systems of linear equations.
SIAM Review 1, 38–43.

Kalton, G. and D. Kasprzyk (1986). The treatment of missing survey data.
Survey methodology 12, 1–16.

Kartika, W. (2001). Consistent imputation of categorical and numerical
data. Technical report, Statistics Netherlands, Den Haag.

Pannekoek, J. (2006). Regression imputation with linear equality constraints
on the variables. In UNECE Work session on statistical data editing in
Bonn. http://www.unece.org/stats/documents/2006.09.sde.html.

Scholtus, S. (2008). Algorithms for correcting some obvious inconsistencies
and rounding errors in business survey data. Technical Report 08015,
Statistics Netherlands, Den Haag. The papers are available in the inst/doc
directory of the R package or via the website of Statistics Netherlands.

Scholtus, S. (2009). Automatic correction of simple typing error in numerical
data with balance edits. Technical Report 09046, Statistics Netherlands,
Den Haag. The papers are available in the inst/doc directory of the R
package or via the website of Statistics Netherlands.

Van der Loo, M. and E. de Jonge (2011a). Deductive correction with the
deducorrect package. Technical Report 2011xx, Statistics Netherlands,
Den Haag. In press.

Van der Loo, M. and E. de Jonge (2011b). Manipulation of categorical
edits and error localization with the editrules package. Technical Report
201129, Statistics Netherlands, The Hague/Heerlen.

Van der Loo, M., E. de Jonge, and S. Scholtus (2011). Correction of round-
ing, typing and sign errors with the deducorrect package. Technical

18

Report 201119, Statistics Netherlands, Den Haag. This paper is included
with the package.

19

