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Abstract

Since raw (survey) data usually has to be edited before statistical
analysis can take place, the availability of data cleaning algorithms
is important to many statisticians. In this paper the implementation
of three data correction methods in R are described. The methods
of this package can be used to correct numerical data under linear
restrictions for typing errors, rounding errors, sign errors and value
interchanges. The algorithms, based on earlier work of Scholtus, are
described and implementation details with coded examples are given.
Although the algorithms have originally been developed with financial
balance accounts in mind the algorithms are formulated generically
and can be applied in a wider range of applications.

This vignette is a near-literal transcript of Van der Loo et al. (2011),
which corresponds to package version 1.0-0. Please refer to that paper
in publications. The paper is included in the package. This vignette
will be updated with the package when necessary.
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1 Introduction

Raw statistical data is often plagued with internal inconsistencies and er-
rors which inhibit reliable statistical analysis. Establishment survey data is
particularly prone to in-record inconsistencies, because the numerical vari-
ables contained in these data are usually interrelated by many mathematical
relationships. Before statistical analysis can take place, these relationships
have to be checked and violations should be resolved as much as possible.
While establishing that a record violates certain relationships is straightfor-
ward, deciding which fields in a record contain the actual errors can be a
daunting task. In the past, much attention has been paid to this decision
problem, often using Fellegi and Holt’s principle (Fellegi and Holt, 1976) as
the point of departure. This principle states that for non-systematic errors,
and with no information on the cause of errors, one should try to make a
record consistent by changing as few variables as possible.

This principle precludes using the data available in the (possibly erro-
neous) fields to detect and correct the error. In certain cases, naively apply-
ing Fellegi and Holt’s principle will yield consistent records with nevertheless
faulty data. As an example, consider a survey record with three variables x,
y and z, which have to obey the relationship x = y − z. Such relationships
frequently occur in financial profit-loss accounts. If a record happens to
have values such that x = z − y, then Fellegi and Holt’s principle suggests
that either the numerical value of x, y or z should be adapted in such a way
that the relationship holds, while the values in the record suggest that the
values in fields y and z might have been interchanged. Swapping the values
of z and y therefore seems a reasonable solution although it formally means
changing two values.

This package provides three functions which do use the data in a record
to detect and correct errors:

1. correctRounding corrects rounding errors in numerical records that
cause violations of linear equality rules. The method works by making
small changes to a large enough set of randomly chosen variables.

2. correctTypos corrects typing erros in numerical records that cause
violations of linear equality rules. The method works by computing
correction suggestions and checking which suggestions correspond to
correcting a typing error.

3. correctSigns corrects sign flips and value swaps in numerical records
which violates linear equality rules. The method minimizes the number
of value swaps and sign flips via a binary programming formulation.

Both correctTypos and correctSigns are capable of taking account of
possible rounding errors in the records.
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1.1 Deductive correction

We use the term deductive correction to indicate methods which use infor-
mation available in inconsistent records to deduce and solve the probable
cause of error. Recently, a number of algorithms for deductive correction
have been proposed by Scholtus (2008, 2009). These algorithms can solve
problems not uncommon in numerical survey data, namely

� Rounding errors.

� Simple typing errors.

� Sign swaps and/or value interchanges.

The algorithms focus on solving problems in records that have to obey a set
of linear relationships, each of which can be written as

a · x� b where � ∈ {=,≤, <} (1)

Here, every a is a nonzero real vector, x a numerical data record and b a
constant. In data-editing literature the restrictions imposed on records are
often called edit rules, or edits in short. If an edit describes a relationship
between a number of variables {xj}, we say that the edit contains the vari-
ables {xj}. Conversely, when xj is part of a relationship defined by an edit
we say that xj occurs in the edit. We will denote a generic set of edits with
E. The matrix representation of (in)equality parts of E will be denoted A.

In this paper, we describe the deducorrect package for R (R Develop-
ment Core Team, 2011), which implements (slight) generalizations of the
algorithms proposed by Scholtus (2008, 2009). The purpose of this paper is
to provide details on the algorithms and to familiarize users with the syntax
of the package. For a detailed description of the available routines and their
arguments we refer the reader to the reference manual that comes with the
package.

The correction algorithms in the package report the results in a uniform
matter. Section 1.2 provides details on the deducorrect output object
which stores information on corrected records, applied corrections, and more.
Sections 2, 3 and 4 provide details on the classes of problems that may be
treated with the package, an exposition of the algorithms used and coded
examples with analysis of the results. It is also shown how the examples
from Scholtus (2008) and Scholtus (2009) can be treated with this software.

The package requires that linear relationships are defined with the ed-

itrules package (de Jonge and van der Loo, 2011). The editrules package
offers functionality to define and manipulate sets of equality and inequality
restrictions. With the editrules package, linear restrictions can be defined
as R-statements (in character format) or as a matrix. As a convenience,
one can define edits in any of the forms

a · x� b where � ∈ {=,≤, <,≥, >}, (2)
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Table 1: Contents of the deducorrect object. All slots can be accessed
through the $ operator.

corrected The input data with records corrected where possible.
corrections A data.frame describing the corrections. Every

record contains a row number, labeling the row in
the input data, a variable name of the input data,
the old value and the new value.

status A data.frame with at least one column giving treat-
ment information of every record in the input data.
Depending on the correct function, some extra
columns may be added.

timestamp The date and time when the deducorrect object was
created.

generatedby The name of the function that called newdeducor-

rect to create the object.
user The name of the user running R, deduced from the

environment variables of the system using R.

and have it automatically translated to the form in (1). A short introduction
to the editrules package is given in the appendix of this paper, but we refer
the reader to the package documentation for more detailed information.
Unless noted otherwise, all R-code examples in this paper can be executed
from the R commandline after loading the deducorrect and editrules

package.
Throughout, we denote the Euclidean vector norm with double bars || · ||

while single bars | · | denote the elementwise absolute values of the argument.

1.2 The deducorrect object and status values

Apart from the corrected records, every correct- function of the deducor-

rect package returns some logging information on the applied corrections.
Information on applied corrections, a status indicator per record, a time-
stamp and user information are included and stored uniformly in a de-

ducorrect object. See Table 1 for an overview of the contents of this object.
Because of the large amount of information in a deducorrect object, the
contents are summarized for printing to screen. In the example below, we
define one record of data, a linear restriction in the form of an editmatrix,
and apply the correctSigns correction method1.

> (d <- data.frame(x=1,y=0,z=1))

x y z

1 1 0 1

1sometimes extra brackets are included to force R to print the result
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> E <- editmatrix("x==y-z")

> sol <- correctSigns(E,d)

> sol

deducorrect object generated by 'correctSigns' on Wed Feb 22 09:49:33 2012

slots: $corrected, $corrections, $status, $timestamp, $generatedby, $user

Record status:

invalid partial corrected valid Sum

0 0 1 0 1

Variables corrected:

x Sum

1 1

The individual components of sol can be retrieved with the dollar-operator.
The slot corrected is the same as the input data, but with corrected records,
where possible:

> sol$corrected

x y z

1 -1 0 1

The applied corrections are stored in the corrections slot.

> sol$corrections

row variable old new

1 1 x 1 -1

Every row in corrections tells which variable in which row of the input
data was changed, and what the old and new values are. The status slot
gives details on the status of the record.

> sol$status

status weight degeneracy nflip nswap

1 corrected 1 2 1 0

The first column is an indicator which can take five different values, indi-
cating whether validity could be established, and/or if the record could be
(partially) corrected by the method which created the deducorrect object.
These values are (see Table 2 for an overview per correct-function):

� valid: The record violates none of the edit rules defined by the user.

� corrected: The record violated one or more edit rules but the correct-
function could adapt the record so no rules are violated afterwards.
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Table 2: The number of equalities n and inequalities m violated by an edit, before
and after treatment with one of the correct-functions of deducorrect. The label
N/A indicates that this status value does not occur for tat function. (Note that is
is not the same as NA, which occurs when validity could not be established because
the record has missing values.) As an example, consider the fourth row. In this
case, a record enters a correct-function with n linear equality violations. After
being treated by the function less than n, but more than 0 edit violations remain.
For correctSigns, this situation cannot occur: the method tries to find a comlete
solution. Both correctRounding and correctTypos allow for partially repairing
a record, so in their case, the status is labeled “partial”.

Before After status
Eqs Ineqs Eqs Ineqs correctSigns correctRounding correctTypos

0 0 0 0 valid valid valid
0 m 0 m invalid invalid invalid
n 0 n 0 invalid invalid invalid
n 0 < n 0 N/A partial partial
n 0 0 0 corrected corrected corrected
n m n m invalid invalid invalid
n m < n 0 N/A partial partial
n m < n < m N/A partial partial
n m 0 0 corrected corrected corrected

� partial: The record violated one ore more edit rules. Some, but not all
violations could be repaired.

� invalid: The records violates one or more edit rules. None of them
could be repaired.

� NA: The record contains missing values, therefore edit violation cannot
be establised.

The other columns of the status slot depend on the function which
created the object and can provide more details on the chosen solutions.
These are described in the coming sections.

1.3 Balance accounts and totally unimodular matrices

Most algorithms described here have been designed with financial balance ac-
counts in mind. The balance accounts encountered in establishment surveys
mostly involve integer records since financial amounts are usually reported
in currency (kilo-)units. Therefore, linear edit rules of the form

Ax = b with A ∈ {−1, 0, 1}m×n, x ∈ Zn, and b ∈ Zm, (3)
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are frequently encountered. In all the examples of financial balance accounts
encountered by the authors, the matrix A happened to be totally unimod-
ular. A (not necessarily square) matrix is called totally unimodular when
every square submatrix has determinant −1, 0, or 1. The scapegoat al-
gorithm (Scholtus, 2008), which is used in the correctRounding function,
requires A to be totally unimodular. See appendix B of Scholtus (2008)
for a further discussion of total unimodularity. The deducorrect package
offers the function isTotallyUnimodular which checks if a matrix is totally
unimodular. The algorithm follows a recursive procedure given below.

1: procedure isTotallyUnimodular(A)
2: A←reduceMatrix(A)
3: if A = ∅ then
4: return TRUE
5: else if Each column of A has exactly 2 nonzero elements then
6: return hellerTompkins(A)
7: else
8: A ←raghavachari(A)
9: if Every A ∈ A isTotallyUnimodular(A) then

10: return TRUE
11: else
12: return FALSE
13: end if
14: end if
15: end procedure

Here, reduceMatrix iteratively removes all rows and columns of A which
have at most one nonzero element (an operation of O(n) in the number
of columns and rows). When possible, the criterium of Heller and Tomp-
kins (1956), which is O(2n) in the number of columns is used to determine
unimodularity. If this is not possible, a set of smaller matrices A is derived
with the method of Raghavachari (1976). Every matrix in A is subsequently
checked for total unimodularity by calling isTotallyUnimodular. In the
worst case, Raghavachari’s method must be called recursively and checking
for unimodularity is O(n!) in the number of columns. For this reason, our
implementation is set up so that Raghavachari’s method is used only af-
ter the reduction method and the Heller-Tompkins method have been tried.
Also, matrices are transposed to make sure that n is minimized in every step.
In practical applications A is often fairly sparse and only a small portion of
A has to be treated with the Raghavachari method.
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2 correctRounding

2.1 Area of application

This function can be used to correct violations of linear equality restrictions
because of rounding errors in one or more variables. The rounding errors are
assumed to be measurement errors rather than rounding errors caused by
machine computation. Rounding errors caused at measurement are on the
order of a unit of measurement, much larger than errors caused by machine
computation. The linear equality restrictions must be of the form

Ax = b with A ∈ {−1, 0, 1}m×n, x ∈ Zn, and b ∈ Zm,

where A is a totally unimodular matrix (see Section 1.3), which can be
tested with the function isTotallyUnimodular. Linear inequalities with
real coefficients can be imposed as well. The correctRounding function will
only return solutions which do not violate any extra inequality violations.

2.2 How it works

The correctRounding function uses the scapegoat algorithm described in
Scholtus (2008) to suggest corrections for linear equality violations. Linear
inequalities are ignored, except that corrections which cause new inequal-
ity violations are not accepted. The algorithm first selects linear edit rules
violated by rounding errors. Rounding errors cause small deviations from
equality and therefore deviations smaller than some ε (say, ε = 2) are as-
sumed to stem from rounding errors. Next, a number of variables –called
scapegoat variables– are selected randomly in such a way that rounding er-
rors can be solved exactly and uniquely by altering the drawn scapegoat
variables. Note that the number of scapegoat variables is not fixed and may
vary over drawings. If the chosen solution happens to cause new inequality
violations, the solution is rejected and a new set of scapegoat variables is
drawn. This is repeated at most k times. See Algorithm 1 for a concise
description of the basic procedure (without checking for inequalities).

2.3 Examples

Here, we will reproduce the example of Scholtus (2008), Section 5.3.2. Con-
sider an integer-valued record with 11 variables, subject to the rules:

> E <- editmatrix( c("X1 + X2 == X3"

+ ,"X2 == X4"

+ ,"X5 + X6 + X7 == X8"

+ ,"X3 + X8 == X9"

+ ,"X9 - X10 == X11"))

Consider also the following inconsistent record:
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Algorithm 1 Scapegoat algorithm

Input: Equality restriction matrix A and constant vector b, record x,
rounding tolerance ε.

1: Remove rows from the system Ax = b not satisfying |a · x− b| < ε.
2: if A 6= ∅ and ||Ax− b|| > 0 then
3: Randomly permute columns of A. Permute x accordingly.
4: Use QR decomposition to partition A columnwise in a square invert-

ible matrix A1 and remaining columns A2. Partition x in x1 and x2

accordingly.
5: x1 ← A−11 (b−A2x2)
6: Unpermute [x1,x2]
7: end if
8: Restore x by adding the previously removed elements.

Output: x

> (dat <- data.frame(t(c(12, 4, 15, 4, 3, 1, 8, 11, 27, 41, -13))))

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

1 12 4 15 4 3 1 8 11 27 41 -13

> violatedEdits(E,dat)

edit

record num1 num2 num3 num4 num5

1 TRUE FALSE TRUE TRUE TRUE

As reported by the violatedEdits function, this record violates edit rules
1, 3, 4, and 5.

Repairing the record can be done with

> set.seed(1)

> sol <- correctRounding(E,dat)

> cbind(sol$corrected, sol$status)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 status attempts

1 12 4 16 4 3 1 8 12 28 41 -13 corrected 1

> sol$corrections

row variable old new

1 1 X3 15 16

2 1 X8 11 12

3 1 X9 27 28

Here, we used set.seed to make results reproducible. The result is not
exactly the same as the solution found in the reference. Here, variables x3,
x8 and x9 have been adapted, while in the reference x3, x4, x8, x9, and x10
were adapted. Since corrections are very small, smearing out the effect of
adaptations over a number of variables is a reasonable option.
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3 correctTypos

3.1 Area of application

This function can be used to correct typographical errors in an integer
record. Examples of typographical errors include extra or to few digits,
digit permutations and/or digit substitutions. To be precise, the method
can be applied to integer records x which violate linear equality constraints
as in Eq. (3):

Ax = b with A ∈ {−1, 0, 1}m×n, x ∈ Zn, and b ∈ Zm.

In fact, the function will also run when A ∈ Rm×n. However, the nature of
the algorithm is such that it is unlikely that typing errors will be found for
such systems. The algorithm was developed with sets of financial balance
equations in mind, where these type of problems are very common. As far
as inequalities are concerned, they are currently ignored by the algorithm, in
the sense that no attempt is made to repair inequality violations. However,
the algorithm does not generate solutions causing extra inequality violations.

The function has a parameter ε which allows for a tolerance so that
rounding errors can be ignored. The default value of ε is almost zero: it is
set to the square root of .Machine$double.eps which amounts to approx-
imately 10−8. The value should be increased, to 2 units of measurement
for example, to allow for rounding errors that are caused by measurement
rather then machine computation. This way, records containing just round-
ing errors can be ignored by correctTypos but do note that in that case
they will receive the status valid, since no typos were found.

3.2 How it works

In short, the algorithm first computes a list of suggestions which correct one
or more violated edits (Algorithm 2). The corrections not corresponding to
a typographical error are removed, after which the set of suggestions that
maximize the number of satisfied edit rules is determined (Algorithm 3).

Suggestions are generated for the set of variables which only occur in
violated edits since altering these variables will have no effect on already
satisfied edits. For every variable xj , define the matrix A(j) who’s rows

represent edits containing xj . Suggestions x̃
(i)
j for every row i of A(j) can

be generated by solving for xj :

x̃
(i)
j =

1

A
(j)
ij

bi −
∑
j′ 6=j

A
(j)
ij′ xj

 . (4)

We keep only the unique suggestions, and reject solutions which are more
than a certain Damerau-Levenshtein distance removed from the original
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Algorithm 2 Generate solution candidates

Input: Record x, a set of linear equality restrictions and a list of variables
to fixate. A maximum Damerau-Levenshtein distance maxdist.

1: L← ∅
2: Determine J0 = {j : xj occurs only in violated edits and not in fixate}
3: for j ∈ J0 do
4: Determine the matrix A(j) of violated edits containing xj and asso-

ciated constant vector b(j)

5: for every row i of A(j) do

6: x̃
(i)
j ←

(
b
(j)
i −

∑
j′ 6=j A

(j)
ij′ xj′

)
/A

(j)
ij

7: L← L ∪ x̃
(i)
j . Only new values are added

8: end for
9: end for

10: Remove x̃
(i)
j from L for which dDL(x̃

(i)
j , xj) > maxdist

Output: List L of m unique solution suggestions for record x.

value. The Damerau-Levenshtein distance dDL between two strings s and t
is the minimum number of character insertions, deletions, substitutions and
transpositions necessary to change s into t or vice versa (Damerau, 1964;

Levenshtein, 1966). The remaining set of suggestions {x(i)j } will in general
contain multiple suggestions for each violated edit i and multiple sugges-

tions for each variable xj . Using a tree search algorithm, a subset of {x(i)j }
is selected which maximizes the number of resolved edits. The tree search
is sped up considerably by pruning branches which resolve the same edit
multiple times or use multiple suggestions for the same variable. When mul-
tiple solutions are found, only the variables which obtain the same correction
suggestion in each solution are adapted.

This algorithm generalizes the algorithms of Scholtus (2009) in the fol-
lowing two ways: first, the imposed linear restrictions are generalized from
Ax = 0 to Ax = b. Secondly, the original algorithm allowed for a single
digit insertion, deletion, transposition or substitution. The more general
Damerau-Levenshtein distance used here treats the digits as characters, al-
lowing for sign changing, which is forbidden if only digit changes are allowed.
Also, by applying a standard Damerau-Levenshtein algorithm it is easy to
allow for corrections spanning larger values dDL. That is, one could allow
for multiple typos in a single field. Moreover, the Damerau-Levenshtein
distance as implemented in the deducorrect package allows one to define
different weights to the four types of operations involved, adding some extra
flexibility to the method.
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Algorithm 3 Maximize number of resolved edits

Input: Record x, a list of linear equality restrictions and a list of solution

suggestions L = {L` = x̃
(i`)
j`

: ` = 1, 2, . . . ,m}
1: k ← 0
2: s← NULL
3: procedure tree(x, L)
4: if L 6= ∅ then
5: tree(x, L\L1) . Left branch: don’t use suggestion
6: xj1 ← L1 . Right branch: use suggestion

7: L← L\{x(i`)j`
∈ L : j` = j1 or x

(i`)
j`

occurs in same edit as L1}
8: tree(x, L)
9: else

10: if Number of edits n resolved by x larger then k then
11: k ← n
12: s← x
13: end if
14: end if
15: end procedure
Output: (partial) solution s, resolving maximum number of edits.

3.3 Examples

In this section we show the most important options of the correctTypos

function. After a simple, worked-out example we reproduce the results in
Chapter 4 of Scholtus (2009).

First, define a simple one-record dataset with an associated edit rule.

> dat <- data.frame(x = 123, y = 192, z = 252)

> (E <- editmatrix("z == x + y"))

Edit matrix:

x y z Ops CONSTANT

num1 -1 -1 1 == 0

Edit rules:

num1 : z == x + y

Obviously, the edit in E is not satisfied since 123+192 = 315. As can be seen
from the output of editmatrix, we have b = 0, so the correction candidates
here are:

x̃(1) = 0− −1 · 192 + 1 · 252

−1
= 60 (5)

ỹ(1) = 0− −1 · 123 + 1 · 252

−1
= 129 (6)

z̃(1) = 0− −1 · 123− 1 · 192

1
= 315 (7)
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The Damerau-Levenshtein distances between the candidates and their orig-
inals are given by:

dDL(x̃(1), x) = dDL(60, 123) = 3 (two substitutions and an insertion)(8)

dDL(ỹ(1), y) = dDL(129, 192) = 1 (one transposition) (9)

dDL(z̃(1), z) = dDL(315, 252) = 3 (three substitutions) (10)

In this case, there is just one candidate with dDL = 1, solving the inconsis-
tency with just one digit transposition. Running the record through cor-

rectTypos indeed finds the digit transposition:

> correctTypos(E, dat)$corrected

x y z

1 123 129 252

Scholtus (2009) (Chapter 4) treats a series of examples which we will repro-
duce here. We consider a dataset with 11 variables, subject to the following
edit rules.

> E <- editmatrix( c("x1 + x2 == x3"

+ ,"x2 == x4"

+ ,"x5 + x6 + x7 == x8"

+ ,"x3 + x8 == x9"

+ ,"x9 - x10 == x11"))

The following dataframe contains the correct record (example 4.0) as well
as the manipulated erroneous records.

> dat

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

example 4.0 1452 116 1568 116 323 76 12 411 1979 1842 137

example 4.1 1452 116 1568 161 323 76 12 411 1979 1842 137

example 4.2 1452 116 1568 161 323 76 12 411 19979 1842 137

example 4.3 1452 116 1568 161 0 0 0 411 19979 1842 137

example 4.4 1452 116 1568 161 323 76 12 0 19979 1842 137

This data.frame can be read into R by copying the code from the correct-
Typos help page. As can be seen, example 4.1 has a single digit transposition
in x4, example 4.2 has the same error, and an extra 9 inserted in x9, ex-
ample 4.3 contains multiple extra errors (in x5, x6 and x7 which cannot be
explained by simple typing errors. Finally, example 4.4 also has multiple
errors which cannot all be explained by simple typing errors. This example
has multiple solutions which solve an equal amount of errors.

The violated edit rules may be listed with the function

> violatedEdits(E,dat)
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edit

record num1 num2 num3 num4 num5

example 4.0 FALSE FALSE FALSE FALSE FALSE

example 4.1 FALSE TRUE FALSE FALSE FALSE

example 4.2 FALSE TRUE FALSE TRUE TRUE

example 4.3 FALSE TRUE TRUE TRUE TRUE

example 4.4 FALSE TRUE TRUE TRUE TRUE

Now, to apply as many typo-corrections as possible:

> sol <- correctTypos(E, dat)

> cbind(sol$corrected, sol$status)

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 status

example 4.0 1452 116 1568 116 323 76 12 411 1979 1842 137 valid

example 4.1 1452 116 1568 116 323 76 12 411 1979 1842 137 corrected

example 4.2 1452 116 1568 116 323 76 12 411 1979 1842 137 corrected

example 4.3 1452 116 1568 116 0 0 0 411 1979 1842 137 partial

example 4.4 1452 116 1568 116 323 76 12 0 19979 1842 137 partial

Our implementation finds the exact same solutions as in the original paper
of Scholtus (2009). Also see this reference for a thorough analysis of the
results.

4 correctSigns

4.1 Area of application

This function can be used to solve sign errors and value swaps which cause
linear equalities to fail. Possible presence of linear inequalities are taken into
account when resolving errors, but they are not part of the error detection
process. The function has an argument ε which allows one to ignore rounding
errors that can mask sign errors and value swaps. The standard value is
the square root of machine accuracy (.Machine$double.eps). It should be
increased to 2 units of measurement or more to account for rounding errors
caused by measurement.

4.2 How it works

The function correctSigns tries to change the sign of (combinations of)
variables and/or swap the order of variables to repair inconsistent records.
Sign flips and value swaps are closely related since

−(x− y) = y − x, (11)

These simple linear relations frequently occur in profit-loss accounts for ex-
ample. Basically, correctSigns first tries to correct a record by changing
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one sign. If that doesn’t yield any solution, it tries changing two, and so
on. If the user allows value swaps as well, it starts by trying to correct the
record with a single sign flip or variable swap. If no solution is found, all
combinations of two such actions are tried, and so on. The algorithm only
treats the variables which have nonzero coefficients in one of the violated
equality constraints. Since the number of combinations grows exponentially
with the number of variables to treat, the user is given some control over
the volume of the search space to cover in a three different ways.

1. The variables which are allowed to flip signs or variable pairs which
may be interchanged simultaneously can be determined by the user.
Knowledge of the origin of the data will usually give a good idea on
which variables are prone to sign errors. For example, in surveys on
profit-loss accounts, respondents sometimes erroneously submit the
cost as a negative number.

Once variables which may change sign, and variable pairs which may be
permuted are determined, the number of combinations may still become
large. If there are n possible sign flips and value swaps, there are

∑
k

(
n
k

)
=

2n possible repair actions in total. The second option allows the user to

2. limit the maximum number k of simultaneous sign flips and/or value
swaps that may be tested. This is controlled by the maxActions pa-
rameter in Algorithm 4.

Since the function tries to repair the record with k = 1, k = 2, . . ., an extra
control parameter allows the user to

3. exit the function when the number of combinations
(
n
k

)
becomes too

large. This is controlled by the maxCombinations parameter in Algo-
rithm 4.

To account for sign errors and variable swap errors which are masked by
rounding errors, the user can provide a nonnegative tolerance ε, so the set
of equality constraints are checked as

|Ax− b| < ε, (12)

elementwise.
The function tries to find and apply the minimal number of actions

(sign flips and/or variable swaps) necessary to repair the record. It is not
guaranteed that a solution exists, nor that the solution is unique. If multiple
solutions are found, the solution which minimizes a weight is chosen. The
user has the option to assign weights to every variable, or to every action.
The total weight of a solution is the sum over the weights of the altered
variables or the sum over the weight of the actions performed. Actions with
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Algorithm 4 Record correction for correctSigns

Input: A numeric record x, a tolerance ε. A set of equality and inequality
constraints of the form

Ax = b

Bx ≤ c,

A list flip of variables of which the signs may be flipped, a list swap

of variable pairs of which the values may be interchanged, an integer
maxActions, an integer maxCombinations and a weight vector.

1: Create a list actions, of length n containing those elements of flip and
swap that affect variables that occur in violated rows of A.

2: Create an empty list S.
3: k ← 0
4: while S = ∅ and k < min(maxActions, n) do
5: if not

(
n
k

)
> maxCombinations then

6: k ← k + 1
7: Generate all

(
n
k

)
combinations of k actions.

8: Loop over those combinations, applying them to x. Add solutions
obeying |Ax− b| < ε and Bx ≤ c to S.

9: end if
10: end while
11: if not S = ∅ then
12: Compute solution weights and choose solution with minimum weight.

Choose the first solution in the case of degeneracy.
13: end if
14: Apply the chosen solution, if any, to x.
Output: x

higher weight are therefore less likely to be performed and variables with
higher weight are less likely to be altered.

This algorithm is a generalization of the original algorithms in Scholtus
(2008) in two ways. First, the original algorithm was designed with a specific
type of profit-loss account in mind, while the algorithm of deducorrect can
handle any set of linear equalities. Second, the original algorithm was not
designed to take account of inequality restrictions, which is a feature of the
algorithm in this work. In Section 4.4 it is shown how the results of the
original example can be reproduced.

4.3 Some simple examples

In this section we walk through most of the options of the correctSigns

function. We will work with the following six records as example.

> (dat <- data.frame(

+ x = c( 3, 14, 15, 1, 17, 12.3),
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+ y = c(13, -4, 5, 2, 7, -2.1),

+ z = c(10, 10,-10, NA, 10, 10 )))

x y z

1 3.0 13.0 10

2 14.0 -4.0 10

3 15.0 5.0 -10

4 1.0 2.0 NA

5 17.0 7.0 10

6 12.3 -2.1 10

We subject this data to the rule

z = x− y. (13)

With the editrules package, this rule can be parsed to an editmatrix.

> E <- editmatrix(c("z == x-y"))

Obviously, not all records in dat obey this rule. This can be checked with a
function from the editrules package:

> cbind(dat, violatedEdits(E,dat))

x y z num1

1 3.0 13.0 10 TRUE

2 14.0 -4.0 10 TRUE

3 15.0 5.0 -10 TRUE

4 1.0 2.0 NA NA

5 17.0 7.0 10 FALSE

6 12.3 -2.1 10 TRUE

Records 1, 2, 3 and 6 violate the editrule, record 5 is valid and for record 4
validity cannot be established since it has no value for z. If correctSigns
is called without any options, all variables x, y and z can be sign-flipped:

> sol <- correctSigns(E, dat)

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap

1 3.0 13.0 -10 corrected 1 1 1 0

2 14.0 4.0 10 corrected 1 1 1 0

3 15.0 5.0 10 corrected 1 1 1 0

4 1.0 2.0 NA <NA> 0 0 0 0

5 17.0 7.0 10 valid 0 0 0 0

6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections
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row variable old new

1 1 z 10 -10

2 2 y -4 4

3 3 z -10 10

So, the first three records have been corrected by flipping the sign of z, y
and z respectively. Since no weight parameter was given, the weight in the
output is just the number of variables whose have been sign-flipped. The
degeneracy column records the number of solutions with equal weight that
were found for each record. Record 4 is not treated, since validity could not
be established, record 5 was valid to begin with and record 6 could not be
repaired with sign flips. However, record 6 seems to have a rounding error.
We can try to accomodate for that by allowing a tolerance when checking
equalities.

> sol <- correctSigns(E, dat, eps=2)

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap

1 3.0 13.0 -10 corrected 1 1 1 0

2 14.0 4.0 10 corrected 1 1 1 0

3 15.0 5.0 10 corrected 1 1 1 0

4 1.0 2.0 NA <NA> 0 0 0 0

5 17.0 7.0 10 valid 0 0 0 0

6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new

1 1 z 10.0 -10.0

2 2 y -4.0 4.0

3 3 z -10.0 10.0

4 6 y -2.1 2.1

Indeed, changing the sign of y in the last record brings the record within
the allowed tolerance. Suppose that we have so much faith in the value of z,
that we do not wish to change its sign. This can be done with the fixate

option:

> sol <- correctSigns(E, dat, eps=2, fixate="z")

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap

1 -3.0 -13.0 10 corrected 2 1 2 0

2 14.0 4.0 10 corrected 1 1 1 0

3 -15.0 -5.0 -10 corrected 2 1 2 0

4 1.0 2.0 NA <NA> 0 0 0 0

5 17.0 7.0 10 valid 0 0 0 0

6 12.3 2.1 10 corrected 1 1 1 0
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> sol$corrections

row variable old new

1 1 x 3.0 -3.0

2 1 y 13.0 -13.0

3 2 y -4.0 4.0

4 3 x 15.0 -15.0

5 3 y 5.0 -5.0

6 6 y -2.1 2.1

Indeed, we now find solutions whitout changing z, but at the price of more
sign flips. By the way, the same result could have been obtained by

> correctSigns(E, dat, flip=c("x","y"))

The sign flips in record one and three have the same effect of a variable
swap. Allowing for swaps can be done as follows.

> sol <- correctSigns(E, dat, swap=list(c("x","y")),

+ eps=2, fixate="z")

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap

1 13.0 3.0 10 corrected 1 1 0 1

2 14.0 4.0 10 corrected 1 1 1 0

3 5.0 15.0 -10 corrected 1 1 0 1

4 1.0 2.0 NA <NA> 0 0 0 0

5 17.0 7.0 10 valid 0 0 0 0

6 12.3 2.1 10 corrected 1 1 1 0

> sol$corrections

row variable old new

1 1 x 3.0 13.0

2 1 y 13.0 3.0

3 2 y -4.0 4.0

4 3 x 15.0 5.0

5 3 y 5.0 15.0

6 6 y -2.1 2.1

Notice that apart from swapping, the algorithm still tries to correct records
by flipping signs. What happened here is that the algorithm first tries to flip
the sign of x, then of y, and then it tries to swap x and y. Each is counted
as a single action. If no solution is found, it starts trying combinations. In
this relatively simple example the result turned out well. In cases with more
elaborate systems of equalities and inequalities, the result of the algorithm
becomes harder to predict for users. It is therefore in general advisable to

� Use as much knowledge about the data as possible to decide which
variables to flip sign and which variable pairs to swap. The problem
treated in section 4.4 is a good example of this.
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� Keep flip and swap disjunct. It is better to run the data a few times
times through correctSigns with different settings.

Not allowing any sign flips can be done with the option flip=c().

> sol <- correctSigns(E, dat, flip=c(), swap=list(c("x","y")))

> cbind(sol$corrected, sol$status)

x y z status weight degeneracy nflip nswap

1 13.0 3.0 10 corrected 1 1 0 1

2 14.0 -4.0 10 invalid 0 0 0 0

3 5.0 15.0 -10 corrected 1 1 0 1

4 1.0 2.0 NA <NA> 0 0 0 0

5 17.0 7.0 10 valid 0 0 0 0

6 12.3 -2.1 10 invalid 0 0 0 0

> sol$corrections

row variable old new

1 1 x 3 13

2 1 y 13 3

3 3 x 15 5

4 3 y 5 15

This yields less corrected records. However running the data through

> correctSigns(E, sol$corrected, eps=2)$status

status weight degeneracy nflip nswap

1 valid 0 0 0 0

2 corrected 1 1 1 0

3 valid 0 0 0 0

4 <NA> 0 0 0 0

5 valid 0 0 0 0

6 corrected 1 1 1 0

will fix the remaining edit violations. The last two statements are easier to
interpret than the one before that.

4.4 Sign errors in a profit-loss account

Here, we will work through the example of chapter 3 of Scholtus (2008).
This example considers 4 records, labeled case a, b, c, and d, which can be
defined in R as

> dat <- data.frame(

+ case = c("a","b","c","d"),

+ x0r = c(2100,5100,3250,5726),

+ x0c = c(1950,4650,3550,5449),

+ x0 = c( 150, 450, 300, 276),
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+ x1r = c( 0, 0, 110, 17),

+ x1c = c( 10, 130, 10, 26),

+ x1 = c( 10, 130, 100, 10),

+ x2r = c( 20, 20, 50, 0),

+ x2c = c( 5, 0, 90, 46),

+ x2 = c( 15, 20, 40, 46),

+ x3r = c( 50, 15, 30, 0),

+ x3c = c( 10, 25, 10, 0),

+ x3 = c( 40, 10, 20, 0),

+ x4 = c( 195, 610,-140, 221))

A record consists of 4 balance accounts of which the results have to add up
to a total. Each xi,r denotes some kind of revenue, xic some kind of cost
and xi the difference xi,r − xi,c. There are operating, financial, provisions
and exeptional incomes and expenditures. The differences x0, x1, x2 and x3
have to add up to a given total x4. These linear restrictions must be defined
with the use of the editrules package.

> E <-editmatrix(c(

+ "x0 == x0r - x0c",

+ "x1 == x1r - x1c",

+ "x2 == x2r - x2c",

+ "x3 == x3r - x3c",

+ "x4 == x0 + x1 + x2 + x3"))

> E

Edit matrix:

x0 x0c x0r x1 x1c x1r x2 x2c x2r x3 x3c x3r x4 Ops CONSTANT

num1 1 1 -1 0 0 0 0 0 0 0 0 0 0 == 0

num2 0 0 0 1 1 -1 0 0 0 0 0 0 0 == 0

num3 0 0 0 0 0 0 1 1 -1 0 0 0 0 == 0

num4 0 0 0 0 0 0 0 0 0 1 1 -1 0 == 0

num5 -1 0 0 -1 0 0 -1 0 0 -1 0 0 1 == 0

Edit rules:

num1 : x0 + x0c == x0r

num2 : x1 + x1c == x1r

num3 : x2 + x2c == x2r

num4 : x3 + x3c == x3r

num5 : x4 == x0 + x1 + x2 + x3

Checking which records violate what edit rules can be done with the vio-

latedEdits function of editrules.

> violatedEdits(E,dat)

edit

record num1 num2 num3 num4 num5

1 FALSE TRUE FALSE FALSE TRUE

2 FALSE TRUE FALSE TRUE FALSE

22



3 TRUE FALSE TRUE FALSE TRUE

4 TRUE TRUE TRUE FALSE TRUE

So record 1 (case a) for example, violates the restrictions e1: x1 = x1,r−x1,c
and e5, x0 + x1 + x2 + x3 = x4. We can try to solve the inconsistencies by
allowing the following flips and swaps:

> swap <- list(

+ c("x1r","x1c"),

+ c("x2r","x2c"),

+ c("x3r","x3c"))

> flip <- c("x0","x1","x2","x3","x4")

Trying to correct the records by just flipping and swapping variables indi-
cated above corresponds to trying to solve the system of equations

x0s0 = x0,r − x0,c
x1s1 = (x1,r − x1,c)t1
x2s2 = (x2,r − x2,c)t2
x3s3 = (x3,r − x3,c)t3
x4s4 = x0s0 + x1s1 + x2s2 + x3s3
(s0, s1, s2, s3, s4, t1, t2, t3) ∈ {−1, 1}8 ,

(14)

where every si corresponds to a sign flip and tj corresponds to a value swap,
see also Eqn. (3.4) in Scholtus (2008). Using the correctSigns function,
we get the following.

> cor <- correctSigns(E, dat, flip=flip, swap=swap)

> cor$status

status weight degeneracy nflip nswap

1 corrected 1 1 1 0

2 corrected 2 1 0 2

3 corrected 2 1 1 1

4 invalid 0 0 0 0

As expected from the example in the reference, the last record could not be
corrected because the solution is masked by a rounding errors. This can be
solved by allowing a tolerance of two measurements units.

> cor <- correctSigns(E, dat, flip=flip, swap=swap, eps=2)

> cor$status

status weight degeneracy nflip nswap

1 corrected 1 1 1 0

2 corrected 2 1 0 2

3 corrected 2 1 1 1

4 corrected 2 1 2 0

> cor$corrected
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case x0r x0c x0 x1r x1c x1 x2r x2c x2 x3r x3c x3 x4

1 a 2100 1950 150 0 10 -10 20 5 15 50 10 40 195

2 b 5100 4650 450 130 0 130 20 0 20 25 15 10 610

3 c 3250 3550 -300 110 10 100 90 50 40 30 10 20 -140

4 d 5726 5449 276 17 26 -10 0 46 -46 0 0 0 221

The latter table corresponds exactly to Table 2 of Scholtus (2008).

5 Final remarks

This paper demonstrates our implementation of three data correction meth-
ods, initially devised by one of us (Scholtus (2008, 2009)). With the de-

ducorrect R package, users can correct numerical data records which vio-
late linear equality restrictions for rounding errors, typographical errors and
sign errors and/or value transpositions. Since both the algorithms correct-
ing for typographical and sign errors can take rounding errors into account,
a typical data-cleaning sequence would be to start with correcting for sign-
and typographical errors, ignoring rounding errors and subsequently treating
the rounding errors. We note that data cleaning can be sped up significantly
if independent blocks of editrules are treated separately. If an matrix repre-
sentation of a set of edits can be written as a direct sum A = A1⊕A2, data
can be treated for editrules in A1 and A2 independently. The editrules

package offers functionality to split editmatrices into blocks via the blocks

function.
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A Some notes on the editrules package

The editrules package (de Jonge and van der Loo, 2011) is a package for
reading, parsing and manipulating numerical and categorical editrules. It
offers functionality to conveniently construct edit matrices from verbose edit
rules, stated as R statements. As an example consider the following set of
edits on records with profit p, cost c, and turnover t.

t ≥ 1
c ≥ 0
t = p + l
p < 0.6t.

(15)

The first two rules indicate that cost must be nonnegative, and turnover
must larger than or equal to 1. The third rule indicates that the profit-loss
account must balance, and the last rule indicates that profit cannot be more
thatn 60% of the turnover. Denoting a record as a vector (p, l, t), these rules
can be denoted as matrix equations:[

0 0 1
0 1 0

] p
l
t

 ≥
[

1
0

]
(16)

[
1 1 −1

]  p
l
t

 = 0 (17)

[
1 0 −0.6

]  p
l
t

 < 0 (18)

In the editrules package, these linear rules are all stored in a single object,
called an editmatrix. It can be constructed as follows:

> (E <- editmatrix(c(

+ "t >= 1",

+ "l >= 0",

+ "t == p + l",

+ "p < 0.6*t")))

Edit matrix:

t l p Ops CONSTANT

num1 -1.0 0 0 <= -1

num2 0.0 -1 0 <= 0

num3 1.0 -1 -1 == 0

num4 -0.6 0 1 < 0

Edit rules:

num1 : 1 <= t
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num2 : 0 <= l

num3 : t == l + p

num4 : p < 0.6*t

An editmatrix object stores a stacked matrix representation of linear edit
resrictions. Alternatively, one can define edits as a matrix and cast it into
an editmatrix object:

> E <- matrix(c(

+ 1, 0, 0,

+ 0, 1, 0,

+ 1, -1,-1,

+ -0.6, 1, 1),

+ nrow=4,

+ byrow=TRUE,

+ dimnames=list(

+ 1:4,

+ c("t","l","p")

+ )

+ )

> b <- c(1,0,0,0)

> ops <- c(">=", ">=", "==", ">")

> (E <- as.editmatrix(E,b,ops))

Edit matrix:

t l p Ops CONSTANT

1 1.0 0 0 >= 1

2 0.0 1 0 >= 0

3 1.0 -1 -1 == 0

4 -0.6 1 1 > 0

Edit rules:

1 : t >= 1

2 : l >= 0

3 : t == l + p

4 : l + p > 0.6*t

There are more storage modes in editrules which we will not detail
here. Users can extract (in)equalities through the getOps function which
returns a vector of comparison operators for every row. For example:

> E[getOps(E)==">=", ]

Edit matrix:

t l p Ops CONSTANT

1 1 0 0 >= 1

2 0 1 0 >= 0

Edit rules:

1 : t >= 1

2 : l >= 0
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Alternatively, the comparison operators of an edit matrix may be normal-
ized:

> editmatrix(as.character(E),normalize=TRUE)

Edit matrix:

t l p Ops CONSTANT

1 -1.0 0 0 <= -1

2 0.0 -1 0 <= 0

3 1.0 -1 -1 == 0

4 0.6 -1 -1 < 0

Edit rules:

1 : 1 <= t

2 : 0 <= l

3 : t == l + p

4 : 0.6*t < l + p

The editrules package offers functionality to check data against any set
of editrules. The function violatedEdits, for example returns a boolean
matrix indicating which record violates what editrules. editrules also offers
editrule manipulation functionality, for example to split editmatrices into
independent blocks. For further functionality of the editrules package,
refer to the package documentation.
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