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Abstract

This article is a (slightly) modified version of Grün and Leisch (2008b), published in
the Journal of Statistical Software.

flexmix provides infrastructure for flexible fitting of finite mixture models in R using the
expectation-maximization (EM) algorithm or one of its variants. The functionality of the
package was enhanced. Now concomitant variable models as well as varying and constant
parameters for the component specific generalized linear regression models can be fitted.
The application of the package is demonstrated on several examples, the implementation
described and examples given to illustrate how new drivers for the component specific
models and the concomitant variable models can be defined.
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1. Introduction

Finite mixture models are a popular technique for modelling unobserved heterogeneity or
to approximate general distribution functions in a semi-parametric way. They are used in
a lot of different areas such as astronomy, biology, economics, marketing or medicine. An
overview on mixture models is given in Everitt and Hand (1981), Titterington, Smith, and
Makov (1985), McLachlan and Basford (1988), Böhning (1999), McLachlan and Peel (2000)
and Frühwirth-Schnatter (2006).

Version 1 of R package flexmix was introduced in Leisch (2004b). The main design principles
of the package are extensibility and fast prototyping for new types of mixture models. It
uses S4 classes and methods (Chambers 1998) as implemented in the R package methods and
exploits advanced features of R such as lexical scoping (Gentleman and Ihaka 2000). The
package implements a framework for maximum likelihood estimation with the expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin 1977). The main focus is on
finite mixtures of regression models and it allows for multiple independent responses and
repeated measurements. The EM algorithm can be controlled through arguments such as the
maximum number of iterations or a minimum improvement in the likelihood to continue.

Newly introduced features in the current package version are concomitant variable models
(Dayton and Macready 1988) and varying and constant parameters in the component spe-
cific regressions. Varying parameters follow a finite mixture, i.e., several groups exist in the
population which have different parameters. Constant parameters are fixed for the whole
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population. This model is similar to mixed-effects models (Pinheiro and Bates 2000). The
main difference is that in this application the distribution of the varying parameters is un-
known and has to be estimated. Thus the model is actually closer to the varying-coefficients
modelling framework (Hastie and Tibshirani 1993), using convex combinations of discrete
points as functional form for the varying coefficients.

The extension to constant and varying parameters allows for example to fit varying intercept
models as given in Follmann and Lambert (1989) and Aitkin (1999a). These models are
frequently applied to account for overdispersion in the data where the components follow
either a binomial or Poisson distribution. The model was also extended to include nested
varying parameters, i.e.˜this allows to have groups of components with the same parameters
(Grün and Leisch 2006; Grün 2006).

In Section˜2 the extended model class is presented together with the parameter estimation
using the EM algorithm. In Section˜3 examples are given to demonstrate how the new
functionality can be used. An overview on the implementational details is given in Section˜4.
The new model drivers are presented and changes made to improve the flexibility of the
software and to enable the implementation of the new features are discussed. Examples for
writing new drivers for the component specific models and the concomitant variable models
are given in Section˜5. This paper gives a short overview on finite mixtures and the package
in order to be self-contained. A more detailed introduction to finite mixtures and the package
flexmix can be found in Leisch (2004b).

All computations and graphics in this paper have been done with flexmix version 2.3-4 and
R version 2.12.1 using Sweave (Leisch 2002). The newest release version of flexmix is al-
ways available from the Comprehensive R Archive Network at http://CRAN.R-project.org/
package=flexmix. An up-to-date version of this paper is contained in the package as a vi-
gnette, giving full access to the R code behind all examples shown below. See help("vignette")
or Leisch (2003) for details on handling package vignettes.

2. Model specification and estimation

A general model class of finite mixtures of regression models is considered in the following. The
mixture is assumed to consist of K components where each component follows a parametric
distribution. Each component has a weight assigned which indicates the a-priori probability
for an observation to come from this component and the mixture distribution is given by the
weighted sum over the K components. If the weights depend on further variables, these are
referred to as concomitant variables.

In marketing choice behaviour is often modelled in dependence of marketing mix variables
such as price, promotion and display. Under the assumption that groups of respondents with
different price, promotion and display elasticities exist mixtures of regressions are fitted to
model consumer heterogeneity and segment the market. Socio-demographic variables such as
age and gender have often been shown to be related to the different market segments even
though they generally do not perform well when used to a-priori segment the market. The
relationships between the behavioural and the socio-demographic variables is then modelled
through concomitant variable models where the group sizes (i.e.˜the weights of the mixture)
depend on the socio-demographic variables.

http://CRAN.R-project.org/package=flexmix
http://CRAN.R-project.org/package=flexmix
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The model class is given by

h(y|x,w, ψ) =

K
∑

k=1

πk(w,α)fk(y|x, θk)

=
K
∑

k=1

πk(w,α)
D
∏

d=1

fkd(yd|xd, θkd),

where ψ denotes the vector of all parameters for the mixture density h() and is given by
(α, (θk)k=1,...,K). y denotes the response, x the predictor and w the concomitant variables.
fk is the component specific density function. Multivariate variables y are assumed to be
dividable into D subsets where the component densities are independent between the subsets,
i.e.˜the component density fk is given by a product over D densities which are defined for
the subset variables yd and xd for d = 1, . . . , D. The component specific parameters are
given by θk = (θkd)d=1,...,D. Under the assumption that N observations are available the

dimensions of the variables are given by y = (yd)d=1,...,D ∈ R
N×

∑D
d=1

kyd , x = (xd)d=1,...,D ∈

R
N×

∑D
d=1

kxd for all d = 1, . . . , D and w ∈ R
N×kw . In this notation kyd denotes the dimension

of the dth response, kxd the dimension of the dth predictors and kw the dimension of the
concomitant variables. For mixtures of GLMs each of the d responses will in general be
univariate, i.e.˜multivariate responses will be conditionally independent given the segment
memberships.

For the component weights πk it holds ∀w that

K
∑

k=1

πk(w,α) = 1 and πk(w,α) > 0, ∀k, (1)

where α are the parameters of the concomitant variable model.

For the moment focus is given to finite mixtures where the component specific densities are
from the same parametric family, i.e.˜fkd ≡ fd for notational simplicity. If fd is from the
exponential family of distributions and for each component a generalized linear model is
fitted (GLMs; McCullagh and Nelder 1989) these models are also called GLIMMIX models
(Wedel and DeSarbo 1995). In this case the component specific parameters are given by
θkd = (β′kd, φkd) where βkd are the regression coefficients and φkd is the dispersion parameter.

The component specific parameters θkd are either restricted to be equal over all components,
to vary between groups of components or to vary between all components. The varying
between groups is referred to as varying parameters with one level of nesting. A disjoint
partition Kc, c = 1, . . . , C of the set K̃ := {1 . . . ,K} is defined for the regression coefficients.
C is the number of groups of the regression coefficients at the nesting level. The regression
coefficients are accordingly split into three groups:

βkd = (β′1d, β
′

2,c(k)d, β
′

3,kd)
′,

where c(k) = {c = 1, . . . , C : k ∈ Kc}.

Similar a disjoint partitionKv, v = 1, . . . , V , of K̃ can be defined for the dispersion parameters
if nested varying parameters are present. V denotes the number of groups of the dispersion
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parameters at the nesting level. This gives:

φkd =







φd for constant parameters
φkd for varying parameters
φv(k)d for nested varying parameters

where v(k) = {v = 1, . . . , V : k ∈ Kv}. The nesting structure of the component specific
parameters is also described in Grün and Leisch (2006).

Different concomitant variable models are possible to determine the component weights (Day-
ton and Macready 1988). The mapping function only has to fulfill condition (1). In the
following a multinomial logit model is assumed for the πk given by

πk(w,α) =
ew

′αk

∑K
u=1 e

w′αu

∀k,

with α = (α′

k)
′

k=1,...,K and α1 ≡ 0.

2.1. Parameter estimation

The EM algorithm (Dempster et˜al. 1977) is the most common method for maximum likeli-
hood estimation of finite mixture models where the number of components K is fixed. The
EM algorithm applies a missing data augmentation scheme. It is assumed that a latent vari-
able zn ∈ {0, 1}K exists for each observation n which indicates the component membership,
i.e.˜znk equals 1 if observation n comes from component k and 0 otherwise. Furthermore it
holds that

∑K
k=1 znk = 1 for all n. In the EM algorithm these unobserved component mem-

berships znk of the observations are treated as missing values and the data is augmented by
estimates of the component membership, i.e.˜the estimated a-posteriori probabilities p̂nk. For
a sample of N observations {(y1, x1, w1), . . . , (yN , xN , wN )} the EM algorithm is given by:

E-step: Given the current parameter estimates ψ(i) in the i-th iteration, replace the missing
data znk by the estimated a-posteriori probabilities

p̂nk =
πk(wn, α

(i))f(yn|xn, θ
(i)
k )

K
∑

u=1

πu(wn, α
(i))f(yn|xn, θ

(i)
u )

.

M-step: Given the estimates for the a-posteriori probabilities p̂nk (which are functions of
ψ(i)), obtain new estimates ψ(i+1) of the parameters by maximizing

Q(ψ(i+1)|ψ(i)) = Q1(θ
(i+1)|ψ(i)) +Q2(α

(i+1)|ψ(i)),

where

Q1(θ
(i+1)|ψ(i)) =

N
∑

n=1

K
∑

k=1

p̂nk log(f(yn|xn, θ
(i+1)
k ))

and

Q2(α
(i+1)|ψ(i)) =

N
∑

n=1

K
∑

k=1

p̂nk log(πk(wn, α
(i+1))).
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Q1 and Q2 can be maximized separately. The maximization of Q1 gives new estimates
θ(i+1) and the maximization of Q2 gives α

(i+1). Q1 is maximized separately for each d =
1, . . . , D using weighted ML estimation of GLMs and Q2 using weighted ML estimation
of multinomial logit models.

Different variants of the EM algorithm exist such as the stochastic EM (SEM; Diebolt and Ip
1996) or the classification EM (CEM; Celeux and Govaert 1992). These two variants are also
implemented in package flexmix. For both variants an additional step is made between the
expectation and maximization steps. This step uses the estimated a-posteriori probabilities
and assigns each observation to only one component, i.e.˜classifies it into one component. For
SEM this assignment is determined in a stochastic way while it is a deterministic assignment
for CEM. For the SEM algorithm the additional step is given by:

S-step: Given the a-posteriori probabilities draw

ẑn ∼ Mult((p̂nk)k=1,...,K , 1)

where Mult(θ, T ) denotes the multinomial distribution with success probabilities θ and
number of trials T .

Afterwards, the ẑnk are used instead of the p̂nk in the M-step. For the CEM the additional
step is given by:

C-step: Given the a-posteriori probabilities define

ẑnk =

{

1 if k = min{l : p̂nl ≥ p̂nk ∀k = 1, . . . ,K}
0 otherwise.

Please note that in this step the observation is assigned to the component with the smallest
index if the same maximum a-posteriori probability is observed for several components.

Both of these variants have been proposed to improve the performance of the EM algorithm,
because the ordinary EM algorithm tends to converge rather slowly and only to a local op-
timum. The convergence behavior can be expected to be better for the CEM than ordinary
EM algorithm, while SEM can escape convergence to a local optimum. However, the CEM al-
gorithm does not give ML estimates because it maximizes the complete likelihood. For SEM
good approximations of the ML estimator are obtained if the parameters where the maxi-
mum likelihood was encountered are used as estimates. Another possibility for determining
parameter estimates from the SEM algorithm could be the mean after discarding a suitable
number of burn-ins. An implementational advantage of both variants is that no weighted
maximization is necessary in the M-step.

It has been shown that the values of the likelihood are monotonically increased during the
EM algorithm. On the one hand this ensures the convergence of the EM algorithm if the
likelihood is bounded, but on the other hand only the detection of a local maximum can
be guaranteed. Therefore, it is recommended to repeat the EM algorithm with different
initializations and choose as final solution the one with the maximum likelihood. Different
initialization strategies for the EM algorithm have been proposed, as its convergence to the
optimal solution depends on the initialization (Biernacki, Celeux, and Govaert 2003; Karlis
and Xekalaki 2003). Proposed strategies are for example to first make several runs of the
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SEM or CEM algorithm with different random initializations and then start the EM at the
best solution encountered.

The component specific parameter estimates can be determined separately for each d =
1, . . . , D. For simplicity of presentation the following description assumes D = 1. If all param-
eter estimates vary between the component distributions they can be determined separately
for each component in the M-step. However, if also constant or nested varying parameters are
specified, the component specific estimation problems are not independent from each other
any more. Parameters have to be estimated which occur in several or all components and
hence, the parameters of the different components have to be determined simultaneously for
all components. The estimation problem for all component specific parameters is then ob-
tained by replicating the vector of observations y = (yn)n=1,...,N K times and defining the
covariate matrix X = (Xconstant, Xnested, Xvarying) by

Xconstant = 1K ⊗ (x′1,n)n=1,...,N

Xnested = J⊙ (x′2,n)n=1,...,N

Xvarying = IK ⊗ (x′3,n)n=1,...,N ,

where 1K is a vector of 1s of length K, J is the incidence matrix for each component
k = 1, . . . ,K and each nesting group c ∈ C and hence is of dimension K × |C|, and IK
is the identity matrix of dimension K × K. ⊗ denotes the Kronecker product and ⊙ the
Khatri-Rao product (i.e., the column-wise Kronecker product). xm,n are the covariates of the
corresponding coefficients βm,. for m = 1, 2, 3. Please note that the weights used for the es-
timation are the a-posteriori probabilities which are stacked for all components, i.e.˜a vector
of length NK is obtained.

Due to the replication of data in the case of constant or nested varying parameters the amount
of memory needed for fitting the mixture model to large datasets is substantially increased
and it might be easier to fit only varying coefficients to these datasets. To overcome this
problem it could be considered to implement special data structures in order to avoid storing
the same data multiple times for large datasets.

Before each M-step the average component sizes (over the given data points) are checked and
components which are smaller than a given (relative) minimum size are omitted in order to
avoid too small components where fitting problems might arise. This strategy has already been
recommended for the SEM algorithm (Celeux and Diebolt 1988) because it allows to determine
the suitable number of components in an automatic way given that the a-priori specified
number of components is large enough. This recommendation is based on the assumption
that the redundent components will be omitted during the estimation process if the algorithm
is started with too many components. If omission of small components is not desired the
minimum size required can be set to zero. All components will be then retained throughout
the EM algorithm and a mixture with the number of components specified in the initialization
will be returned. The algorithm is stopped if the relative change in the log-likelihood is smaller
than a pre-specified ǫ or the maximum number of iterations is reached.

For model selection different information criteria are available: AIC, BIC and ICL (Integrated
Complete Likelihood; Biernacki, Celeux, and Govaert 2000). They are of the form twice the
negative loglikelihood plus number of parameters times k where k = 2 for the AIC and k

equals the logarithm of the number of observations for the BIC. The ICL is the same as the
BIC except that the complete likelihood (where the missing class memberships are replaced by
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the assignments induced by the maximum a-posteriori probabilities) instead of the likelihood
is used.

3. Using the new functionality

In the following model fitting and model selection in R is illustrated on several examples
including mixtures of Gaussian, binomial and Poisson regression models, see also Grün (2006)
and Grün and Leisch (2007).

More examples for mixtures of GLMs are provided as part of the software package through
a collection of artificial and real world datasets, most of which have been previously used
in the literature (see references in the online help pages). Each dataset can be loaded
to R with data("name") and the fitting of the proposed models can be replayed using
example("name"). Further details on these examples are given in a user guide which can be
accessed using vignette("regression-examples", package="flexmix") from within R.

3.1. Artificial example

In the following the artificial dataset NPreg is used which has already been used in Leisch
(2004b) to illustrate the application of package flexmix. The data comes from two latent
classes of size 100 each and for each of the classes the data is drawn with respect to the
following structure:

Class˜1: yn = 5x+ ǫ

Class˜2: yn = 15 + 10x− x2 + ǫ

with ǫ ∼ N(0, 9), see the left panel of Figure˜1. The dataset NPreg also includes a response
yp which is given by a generalized linear model following a Poisson distribution and using the
logarithm as link function. The parameters of the mean are given for the two classes by:

Class˜1: µ1 = 2− 0.2x
Class˜2: µ2 = 1 + 0.1x.

This signifies that given x the response yp in group k follows a Poisson distribution with mean
eµk , see the right panel of Figure˜1.

This model can be fitted in R using the commands:

R> set.seed(1802)

R> library("flexmix")

R> data("NPreg")

R> Model_n <- FLXMRglm(yn ~ . + I(x^2))

R> Model_p <- FLXMRglm(yp ~ ., family = "poisson")

R> m1 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p),

+ control = list(verbose = 10))

Classification: weighted

10 Log-likelihood : -1044.7688

11 Log-likelihood : -1044.7678

converged
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Figure 1: Standard regression example (left) and Poisson regression (right).

If the dimensions are independent the component specific model for multivariate observations
can be specified as a list of models for each dimension.

The estimation can be controlled with the control argument which is specified with an
object of class "FLXcontrol". For convenience also a named list can be provided which is
used to construct and set the respective slots of the "FLXcontrol" object. Elements of the
control object are classify to select ordinary EM, CEM or SEM, minprior for the minimum
relative size of components, iter.max for the maximum number of iterations and verbose

for monitoring. If verbose is a positive integer the log-likelihood is reported every verbose

iterations and at convergence together with the number of iterations made. The default is to
not report any log-likelihood information during the fitting process.

The estimated model m1 is of class "flexmix" and the result of the default plot method for
this class is given in Figure˜2. This plot method uses package lattice (Sarkar 2008) and the
usual parameters can be specified to alter the plot, e.g.˜the argument layout determines the
arrangement of the panels. The returned object is of class "trellis" and the plotting can
also be influenced by the arguments of its show method.

The default plot prints rootograms (i.e., a histogram of the square root of counts) of the
a-posteriori probabilities of each observation separately for each component. For each com-
ponent the observations with a-posteriori probabilities less than a pre-specified ǫ (default is
10−4) for this component are omitted in order to avoid that the bar at zero dominates the plot
(Leisch 2004a). Please note that the labels of the y-axis report the number of observations in
each bar, i.e.˜the squared values used for the rootograms.

More detailed information on the estimated parameters with respect to standard deviations
and significance tests can be obtained with function refit(). This function determines the
variance-covariance matrix of the estimated parameters by using the inverted negative Hesse
matrix as computed by the general purpose optimizer optim() on the full likelihood of the
model. optim() is initialized in the solution obtained with the EM algorithm. For mixtures
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Figure 2: The plot method for "flexmix" objects, here obtained by plot(m1), shows
rootograms of the posterior class probabilities.

of GLMs we also implemented the gradient, which speeds up convergence and gives more
precise estimates of the Hessian.

Naturally, function refit() will also work for models which have been determined by applying
some model selection strategy depending on the data (AIC, BIC, . . . ). The same caution is
necessary as when using summary() on standard linear models selected using step(): The
p-values shown are not correct because they have not been adjusted for the fact that the
same data are used to select the model and compute the p-values. So use them only in an
exploratory manner in this context, see also Harrell (2001) for more details on the general
problem.

The returned object can be inspected using summary() with arguments which to specify if
information for the component model or the concomitant variable model should be shown and
model to indicate for which dimension of the component models this should be done. Selecting
model=1 gives the parameter estimates for the dimension where the response variable follows
a Gaussian distribution.

R> m1.refit <- refit(m1)

R> summary(m1.refit, which = "model", model = 1)

$Comp.1

Estimate Std. Error z value Pr(>|z|)

(Intercept) 14.58965 1.24635 11.706 < 2.2e-16 ***

x 9.91572 0.55294 17.933 < 2.2e-16 ***

I(x^2) -0.97578 0.05201 -18.762 < 2.2e-16 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1
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Figure 3: The default plot for refitted "flexmix" objects, here obtained by plot(refit(m1),

model = 1) and plot(refit(m1), model = 2), shows the coefficient estimates and their
confidence intervals.

$Comp.2

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.140549 0.961868 -0.1461 0.8838

x 4.732610 0.474428 9.9754 <2e-16 ***

I(x^2) 0.042722 0.046890 0.9111 0.3622

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

The default plot method for the refitted "flexmix" object depicts the estimated coefficients
with corresponding confidence intervals and is given in Figure˜3. It can be seen that for the
first model the confidence intervals of the coefficients of the intercept and the quadratic term
of x overlap with zero.

A model where these coefficients are set to zero can be estimated with the model driver
function FLXMRglmfix() and the following commands for specifying the nesting structure.
The argument nested needs input for the number of components in each group (given by k)
and the formula which determines the model matrix for the nesting (given by formula). This
information can be provided in a named list.

For the restricted model the element k is a vector with two 1s because each of the components
has different parameters. The formulas specifying the model matrices of these coefficients are
~ 1 + I(x^2) for an intercept and a quadratic term of x for component 1 and ~ 0 for no
additional coefficients for component 2. The EM algorithm is initialized in the previously
fitted model by passing the posterior probabilities in the argument cluster.

R> Model_n2 <- FLXMRglmfix(yn ~ . + 0, nested = list(k = c(1, 1),
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+ formula = c(~ 1 + I(x^2), ~ 0)))

R> m2 <- flexmix(. ~ x, data = NPreg, cluster = posterior(m1),

+ model = list(Model_n2, Model_p))

R> m2

Call:

flexmix(formula = . ~ x, data = NPreg, cluster = posterior(m1),

model = list(Model_n2, Model_p))

Cluster sizes:

1 2

96 104

convergence after 3 iterations

Model selection based on the BIC would suggest the smaller model which also corresponds to
the true underlying model.

R> c(BIC(m1), BIC(m2))

[1] 2158.414 2149.956

3.2. Beta-blockers dataset

The dataset is analyzed in Aitkin (1999a,b) using a finite mixture of binomial regression mod-
els. Furthermore, it is described in McLachlan and Peel (2000, p.˜165). The dataset is from
a 22-center clinical trial of beta-blockers for reducing mortality after myocardial infarction.
A two-level model is assumed to represent the data, where centers are at the upper level and
patients at the lower level. The data is illustrated in Figure˜4.

First, the center information is ignored and a binomial logit regression model with treatment
as covariate is fitted using glm, i.e.˜K = 1 and it is assumed that the different centers are
comparable:

R> data("betablocker")

R> betaGlm <- glm(cbind(Deaths, Total - Deaths) ~ Treatment,

+ family = "binomial", data = betablocker)

R> betaGlm

Call: glm(formula = cbind(Deaths, Total - Deaths) ~ Treatment, family = "binomial",

data = betablocker)

Coefficients:

(Intercept) TreatmentTreated

-2.1971 -0.2574

Degrees of Freedom: 43 Total (i.e. Null); 42 Residual

Null Deviance: 333

Residual Deviance: 305.8 AIC: 527.2
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The residual deviance suggests that overdispersion is present in the data. In the next step
the intercept is allowed to follow a mixture distribution given the centers. This signifies
that the component membership is fixed for each center. This grouping is specified in R by
adding | Center to the formula similar to the notation used in nlme (Pinheiro and Bates
2000). Under the assumption of homogeneity within centers identifiability of the model class
can be ensured as induced by the sufficient conditions for identifability given in Follmann
and Lambert (1991) for binomial logit models with varying intercepts and Grün and Leisch
(2008a) for multinomial logit models with varying and constant parameters. In order to
determine the suitable number of components, the mixture is fitted with different numbers of
components.

R> betaMixFix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center,

+ model = FLXMRglmfix(family = "binomial", fixed = ~ Treatment),

+ k = 2:4, nrep = 5, data = betablocker)

2 : * * * * *

3 : * * * * *

4 : * * * * *

The returned object is of class "stepFlexmix" and printing the object gives the information
on the number of iterations until termination of the EM algorithm, a logical indicating if the
EM algorithm has converged, the log-likelihood and some model information criteria. The
plot method compares the fitted models using the different model information criteria.

R> betaMixFix

Call:

stepFlexmix(cbind(Deaths, Total - Deaths) ~ 1 |

Center, model = FLXMRglmfix(family = "binomial",

fixed = ~Treatment), data = betablocker, k = 2:4,

nrep = 5)

iter converged k k0 logLik AIC BIC ICL

2 12 TRUE 2 2 -181.3308 370.6617 377.7984 380.2105

3 11 TRUE 3 3 -159.3605 330.7210 341.4262 343.3243

4 13 TRUE 4 4 -155.7540 327.5079 341.7814 345.7208

A specific "flexmix" model contained in the "stepFlexmix" object can be selected using
getModel() with argument which to specify the selection criterion. The best model with
respect to the BIC is selected with:

R> betaMixFix_3 <- getModel(betaMixFix, which = "BIC")

In this case a model with three components is selected with respect to the BIC. The fitted val-
ues for the model with three components are given in Figure˜4 separately for each component
and the treatment and control groups.

The fitted parameters of the component specific models can be accessed with:
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Figure 4: Relative number of deaths for the treatment and the control group for each center
in the beta-blocker dataset. The centers are sorted by the relative number of deaths in the
control group. The lines indicate the fitted values for each component of the 3-component
mixture model with varying intercept and constant parameters for treatment.

R> parameters(betaMixFix_3)

Comp.1 Comp.2 Comp.3

coef.TreatmentTreated -0.2581790 -0.2581790 -0.2581790

coef.(Intercept) -2.8336803 -2.2501671 -1.6097322

Please note that the coefficients of variable Treatment are the same for all three components.

The variable Treatment can also be included in the varying part of the model. This signifies
that a mixture distribution is assumed where for each component different values are allowed
for the intercept and the treatment coefficient. This mixture distribution can be specified
using function FLXMRglm(). Again it is assumed that the heterogeneity is only between
centers and therefore the aggregated data for each center can be used.

R> betaMix <- stepFlexmix(cbind(Deaths, Total - Deaths) ~ Treatment | Center,

+ model = FLXMRglm(family = "binomial"), k = 3, nrep = 5,

+ data = betablocker)

3 : * * * * *

R> parameters(betaMix)

Comp.1 Comp.2 Comp.3

coef.(Intercept) -2.2477017 -1.5800139 -2.91634446

coef.TreatmentTreated -0.2630018 -0.3248496 -0.08047741



14 FlexMix Version 2

Rootogram of posterior probabilities > 1e−04

0.00

1.25

2.50

3.75

5.00

6.25

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 1

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 2

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 3

Figure 5: Default plot of "flexmix" objects where the observations assigned to the first
component are marked.

R> c(BIC(betaMixFix_3), BIC(betaMix))

[1] 341.4262 346.8925

The difference between model betaMix and betaMixFix_3 is that the treatment coefficients
are the same for all three components for betaMixFix_3 while they have different values for
betaMix which can easily be seen when comparing the fitted component specific parameters.
The larger model betaMix which also allows varying parameters for treatment has a higher
BIC and therefore the smaller model betaMixFix_3 would be preferred.

The default plot for "flexmix" objects gives a rootogram of the posterior probabilities for
each component. Argument mark can be used to inspect with which components the specified
component overlaps as all observations are coloured in the different panels which are assigned
to this component based on the maximum a-posteriori probabilities.

The rootogram indicates that the components are well separated. In Figure˜5 it can be seen
that component 1 is completely separated from the other two components, while Figure˜6
shows that component 3 has a slight overlap with both other components.

The cluster assignments using the maximum a-posteriori probabilities are obtained with:

R> table(clusters(betaMix))

1 2 3

24 10 10

The estimated probabilities of death for each component for the treated patients and those
in the control group can be obtained with:
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Figure 6: Default plot of "flexmix" objects where the observations assigned to the third
component are marked.

R> predict(betaMix,

+ newdata = data.frame(Treatment = c("Control", "Treated")))

$Comp.1

[,1]

1 0.09554789

2 0.07511122

$Comp.2

[,1]

1 0.1707935

2 0.1295590

$Comp.3

[,1]

1 0.05135149

2 0.04756966

or by obtaining the fitted values for two observations (e.g.˜rows 1 and 23) with the desired
levels of the predictor Treatment

R> betablocker[c(1, 23), ]

Deaths Total Center Treatment

1 3 39 1 Control

23 3 38 1 Treated
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R> fitted(betaMix)[c(1, 23), ]

Comp.1 Comp.2 Comp.3

[1,] 0.09554789 0.1707935 0.05135149

[2,] 0.07511122 0.1295590 0.04756966

A further analysis of the model is possible with function refit() which returns the estimated
coefficients together with the standard deviations, z-values and corresponding p-values. Please
note that the p-values are only approximate in the sense that they have not been corrected
for the fact that the data has already been used to determine the specific fitted model.

R> summary(refit(betaMix))

$Comp.1

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.247677 0.045181 -49.7481 < 2.2e-16

TreatmentTreated -0.262988 0.065598 -4.0091 6.096e-05

(Intercept) ***

TreatmentTreated ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

$Comp.2

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.579970 0.065997 -23.9401 < 2.2e-16

TreatmentTreated -0.324830 0.092882 -3.4972 0.0004701

(Intercept) ***

TreatmentTreated ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

$Comp.3

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.916346 0.099210 -29.3958 <2e-16 ***

TreatmentTreated -0.080478 0.141037 -0.5706 0.5683

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Given the estimated treatment coefficients we now also compare this model to a model where
the treatment coefficient is assumed to be the same for components 1 and 2. Such a model
is specified using the model driver FLXMRglmfix(). As the first two components are as-
sumed to have the same coeffcients for treatment and for the third component the coefficient
for treatment shall be set to zero the argument nested has k = c(2,1) and formula =

c(~Treatment, ~).
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R> ModelNested <- FLXMRglmfix(family = "binomial", nested = list(k = c(2, 1),

+ formula = c(~ Treatment, ~ 0)))

R> betaMixNested <- flexmix(cbind(Deaths, Total - Deaths) ~ 1 | Center,

+ model = ModelNested, k = 3, data = betablocker,

+ cluster = posterior(betaMix))

R> parameters(betaMixNested)

$Comp.1

coef.TreatmentTreated coef.(Intercept)

-0.2837780 -2.2379837

$Comp.2

coef.TreatmentTreated coef.(Intercept)

-0.2837780 -1.5985098

$Comp.3

coef.(Intercept)

-2.956159

R> c(BIC(betaMix), BIC(betaMixNested), BIC(betaMixFix_3))

[1] 346.8925 339.9429 341.4262

The comparison of the BIC values suggests that the nested model with the same treatment
effect for two components and no treatment effect for the third component is the best.

3.3. Productivity of Ph.D.˜students in biochemistry

This dataset is taken from Long (1990). It contains 915 observations from academics who
obtained their Ph.D.˜degree in biochemistry in the 1950s and 60s. It includes 421 women and
494 men. The productivity was measured by counting the number of publications in scientific
journals during the three years period ending the year after the Ph.D.˜was received. In
addition data on the productivity and the prestige of the mentor and the Ph.D.˜department
was collected. Two measures of family characteristics were recorded: marriage status and
number of children of age 5 and lower by the year of the Ph.D.

First, mixtures with one, two and three components and only varying parameters are fitted,
and the model minimizing the BIC is selected. This is based on the assumption that un-
observed heterogeneity is present in the data due to latent differences between the students
in order to be productive and achieve publications. Starting with the most general model
to determine the number of components using information criteria and checking for possible
model restrictions after having the number of components fixed is a common strategy in finite
mixture modelling (see Wang, Puterman, Cockburn, and Le 1996). Function refit() is used
to determine confidence intervals for the parameters in order to choose suitable alternative
models. However, it has to be noted that in the course of the procedure these confidence
intervals will not be correct any more because the specific fitted models have already been
determined using the same data.
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Figure 7: Coefficient estimates and confidence intervals for the model with only varying
parameters.

R> data("bioChemists")

R> Model1 <- FLXMRglm(family = "poisson")

R> ff_1 <- stepFlexmix(art ~ ., data = bioChemists, k = 1:3, model = Model1)

1 : * * *

2 : * * *

3 : * * *

R> ff_1 <- getModel(ff_1, "BIC")

The selected model has 2 components. The estimated coefficients of the components are
given in Figure˜7 together with the corresponding 95% confidence intervals using the plot
method for objects returned by refit(). The plot shows that the confidence intervals of the
parameters for kid5, mar, ment and phd overlap for the two components. In a next step a
mixture with two components is therefore fitted where only a varying intercept and a varying
coefficient for fem is specified and all other coefficients are constant. The EM algorithm is
initialized with the fitted mixture model using posterior().

R> Model2 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment)

R> ff_2 <- flexmix(art ~ fem + phd, data = bioChemists,

+ cluster = posterior(ff_1), model = Model2)

R> c(BIC(ff_1), BIC(ff_2))
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[1] 3212.990 3200.070

If the BIC is used for model comparison the smaller model including only varying coefficients
for the intercept and fem is preferred. The coefficients of the fitted model can be obtained
using refit():

R> summary(refit(ff_2))

$Comp.1

Estimate Std. Error z value Pr(>|z|)

kid5 -0.2070933 0.0521307 -3.9726 7.11e-05 ***

marMarried 0.1646178 0.0768505 2.1421 0.0321892 *

ment 0.0274301 0.0032899 8.3377 < 2.2e-16 ***

(Intercept) -0.4782683 0.2203176 -2.1708 0.0299453 *

femWomen 0.6045078 0.1822079 3.3177 0.0009077 ***

phd 0.0775564 0.0408161 1.9001 0.0574147 .

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

$Comp.2

Estimate Std. Error z value Pr(>|z|)

kid5 -0.2070933 0.0521307 -3.9726 7.110e-05 ***

marMarried 0.1646178 0.0768505 2.1421 0.03219 *

ment 0.0274301 0.0032899 8.3377 < 2.2e-16 ***

(Intercept) 1.3208461 0.2337507 5.6507 1.598e-08 ***

femWomen -2.2054873 0.4313328 -5.1132 3.168e-07 ***

phd -0.0818211 0.0554627 -1.4752 0.14015

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

It can be seen that the coefficient of phd does for both components not differ significantly
from zero and might be omitted. This again improves the BIC.

R> Model3 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment)

R> ff_3 <- flexmix(art ~ fem, data = bioChemists, cluster = posterior(ff_2),

+ model = Model3)

R> c(BIC(ff_2), BIC(ff_3))

[1] 3200.070 3192.815

The coefficients of the restricted model without phd are given in Figure˜8.

An alternative model would be to assume that gender does not directly influence the number
of articles but has an impact on the segment sizes.

R> Model4 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + mar + ment)

R> ff_4 <- flexmix(art ~ 1, data = bioChemists, cluster = posterior(ff_2),

+ concomitant = FLXPmultinom(~ fem), model = Model4)

R> parameters(ff_4)
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Figure 8: Coefficient estimates and confidence intervals for the model with varying and con-
stant parameters where the variable phd is not used in the regression.

Comp.1 Comp.2

coef.kid5 -0.1819169 -0.1819169

coef.marMarried 0.1884007 0.1884007

coef.ment 0.0288500 0.0288500

coef.(Intercept) -0.2583751 0.9950134

R> summary(refit(ff_4), which = "concomitant")

$Comp.2

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.02262 0.28385 -3.6027 0.0003149 ***

femWomen -0.61281 0.27280 -2.2464 0.0246782 *

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

R> BIC(ff_4)

[1] 3182.328

This suggests that the proportion of women is lower in the second component which is the
more productive segment.
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Figure 9: The estimated productivity for each compoment for men and women.

The alternative modelling strategy where homogeneity is assumed at the beginning and a
varying interept is added if overdispersion is observed leads to the following model which is
the best with respect to the BIC.

R> Model5 <- FLXMRglmfix(family = "poisson", fixed = ~ kid5 + ment + fem)

R> ff_5 <- flexmix(art ~ 1, data = bioChemists, cluster = posterior(ff_2),

+ model = Model5)

R> BIC(ff_5)

[1] 3174.266

In Figure˜9 the estimated distribution of productivity for model ff_5 are given separately
for men and women as well as for each component where for all other variables the mean
values are used for the numeric variables and the most frequent category for the categorical
variables. The two components differ in that component 1 contains the students who publish
no article or only a single article, while the students in component 2 write on average several
articles. With a constant coefficient for gender women publish less articles than men in both
components.

This example shows that different optimal models are chosen for different modelling proce-
dures. However, the distributions induced by the different variants of the model class may be
similar and therefore it is not suprising that they then will have similar BIC values.

4. Implementation

The new features extend the available model class described in Leisch (2004b) by providing
infrastructure for concomitant variable models and for fitting mixtures of GLMs with varying
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Figure 10: UML class diagram (see Fowler 2004) of the flexmix package.

and constant parameters for the component specific parameters. The implementation of the
extensions of the model class made it necessary to define a better class structure for the
component specific models and to modify the fit functions flexmix() and FLXfit().

An overview on the S4 class structure of the package is given in Figure˜10. There is a class
for unfitted finite mixture distributions given by "FLXdist" which contains a list of "FLXM"
objects which determine the component specific models, a list of "FLXcomponent" objects
which specify functions to determine the component specific log-likelihoods and predictions
and which contain the component specific parameters, and an object of class "FLXP" which
specifies the concomitant variable model. Class "flexmix" extends "FLXdist". It represents
a fitted finite mixture distribution and it contains the information about the fitting with the
EM algorithm in the object of class "FLXcontrol". Repeated fitting with the EM algorithm
with different number of components is provided by function stepFlexmix() which returns
an object of class "stepFlexmix". Objects of class "stepFlexmix" contain the list of the
fitted mixture models for each number of components in the slot "models".

For the component specific model a virtual class "FLXM" is introduced which (currently) has
two subclasses: "FLXMC" for model-based clustering and "FLXMR" for clusterwise regression,
where predictor variables are given. Additional slots have been introduced to allow for data
preprocessing and the construction of the components was separated from the fit and is now
captured as an expression (to allow for lexical scoping; Gentleman and Ihaka 2000) in the slot
defineComponent. "FLXMC" has an additional slot dist to specify the name of the distribution
of the variable. In the future functionality shall be provided for sampling from a fitted or
unfitted finite mixture. Using this slot observations can be generated by using the function
which results from adding an r at the beginnning of the distribution name. This allows to
only implement the (missing) random number generator functions and otherwise use the same
method for sampling from mixtures with component specific models of class "FLXMC".

For flexmix() and FLXfit() code blocks which are model dependent have been identified
and different methods implemented. Finite mixtures of regressions with varying, nested and
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constant parameters were a suitable model class for this identification task as they are different
from models previously implemented. The main differences are:

❼ The number of components is related to the component specific model and the omission
of small components during the EM algorithm impacts on the model.

❼ The parameters of the component specific models can not be determined separately in
the M-step and a joint model matrix is needed.

This makes it also necessary to have different model dependent methods for fitted() which
extracts the fitted values from a "flexmix" object, predict() which predicts new values
for a "flexmix" object and refit() which refits an estimated model to obtain additional
information for a "flexmix" object.

4.1. Component specific models with varying and constant parameters

A new M-step driver is provided which fits finite mixtures of GLMs with constant and
nested varying parameters for the coefficients and the dispersion parameters. The class
"FLXMRglmfix" returned by the driver FLXMRglmfix() has the following additional slots with
respect to "FLXMRglm":

design: An incidence matrix indicating which columns of the model matrix are used for
which component, i.e.˜D = (1K ,J, IK).

nestedformula: An object of class "FLXnested" containing the formula for the nested re-
gression coefficients and the number of components in each Kc, c ∈ C.

fixed: The formula for the constant regression coefficients.

variance: A logical indicating if different variances shall be estimated for the components fol-
lowing a Gaussian distribution or a vector specifying the nested structure for estimating
these variances.

The difference between estimating finite mixtures including only varying parameters using
models specified with FLXMRglm() and those with varying and constant parameters using
function FLXMRglmfix() is hidden from the user, as only the specified model is different. The
fitted model is also of class "flexmix" and can be analyzed using the same functions as for
any model fitted using package flexmix. The methods used are the same except if the slot
containing the model is accessed and method dispatching is made via the model class. New
methods are provided for models of class "FLXMRglmfix" for functions refit(), fitted()
and predict() which can be used for analyzing the fitted model.

The implementation allows repeated measurements by specifying a grouping variable in the
formula argument of flexmix(). Furthermore, it has to be noticed that the model matrix is
determined by updating the formula of the varying parameters successively with the formula
of the constant and then of the nested varying parameters. This ensures that if a mixture
distribution is fitted for the intercept, the model matrix of a categorical variable includes only
the remaining columns for the constant parameters to have full column rank. However, this
updating scheme makes it impossible to estimate a constant intercept while allowing varying
parameters for a categorical variable.
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For this model one big model matrix is constructed where the observations are repeated K
times and suitable columns of zero added. The coefficients of allK components are determined
simultaneously in the M-step, while if only varying parameters are specified the maximization
of the likelihood is made separately for all components. For large datasets the estimation of
a combination of constant and varying parameters might therefore be more challenging than
only varying parameters.

4.2. Concomitant variable models

For representing concomitant variable models the class "FLXP" is defined. It specifies how the
concomitant variable model is fitted using the concomitant variable model matrix as predictor
variables and the current a-posteriori probability estimates as response variables. The object
has the following slots:

fit: A function (x, y, ...) returning the fitted values for the component weights during
the EM algorithm.

refit: A function (x, y, ...) used for refitting the model.

df: A function (x, k, ...) returning the degrees of freedom used for estimating the
concomitant variable model given the model matrix x and the number of components
k.

x: A matrix containing the model matrix of the concomitant variables.

formula: The formula for determining the model matrix x.

name: A character string describing the model, which is only used for print output.

Two constructor functions for concomitant variable models are provided at the moment.
FLXPconstant() is for constant component weights without concomitant variables and for
multinomial logit models FLXPmultinom() can be used. FLXPmultinom() has its own class
"FLXPmultinom" which extends "FLXP" and has an additional slot coef for the fitted coef-
ficients. The multinomial logit models are fitted using package nnet (Venables and Ripley
2002).

4.3. Further changes

The estimation of the model with the EM algorithm was improved by adapting the variants
to correspond to the CEM and SEM variants as outlined in the literature. To make this more
explicit it is now also possible to use "CEM" or "SEM" to specify an EM variant in the classify
argument of the "FLXcontrol" object. Even though the SEM algorithm can in general not
be expected to converge the fitting procedure is also terminated for the SEM algorithm if
the change in the relative log-likelhood is smaller than the pre-specified threshold. This is
motivated by the fact that for well separated clusters the posteriors might converge to an
indicator function with all weight concentrated in one component. The fitted model with the
maximum likelihood encountered during the SEM algorithm is returned.

For discrete data in general multiple observations with the same values are given in a dataset.
A weights argument was added to the fitting function flexmix() in order to avoid repeating
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these observations in the provided dataset. The specification is through a formula in order
to allow selecting a column of the data frame given in the data argument. The weights
argument allows to avoid replicating the same observations and hence enables more efficient
memory use in these applications. This possibitliy is especially useful in the context of model-
based clustering for mixtures of Poisson distributions or latent class analysis with multivariate
binary observations.

In order to be able to apply different initialization strategies such as for example first running
several different random initializations with CEM and then switching to ordinary EM using
the best solution found by CEM for initialization a posterior() function was implemented.
posterior() also takes a newdata argument and hence, it is possible to apply subset strate-
gies for large datasets as suggested in Wehrens, Buydens, Fraley, and Raftery (2004). The
returned matrix of the posterior probabilities can be used to specify the cluster argument
for flexmix() and the posteriors are then used as weights in the first M-step.

The default plot methods now use trellis graphics as implemented in package lattice (Sarkar
2008). Users familiar with the syntax of these graphics and with the plotting and printing
arguments will find the application intuitive as a lot of plotting arguments are passed to
functions from lattice as for example xyplot() and histogram(). In fact only new panel, pre-
panel and group-panel functions were implemented. The returned object is of class "trellis"
and the show method for this class is used to create the plot.

Function refit() was modified and has now two different estimation methods: "optim"

and "mstep". The default method "optim" determines the variance-covariance matrix of the
parameters from the inverse Hessian of the full log-likelihood. The general purpose optimizer
optim() is used to maximize the log-likelihood and initialized in the solution obtained with
the EM algorithm. For mixtures of GLMs there are also functions implemented to determine
the gradient which can be used to speed up convergence.

The second method "mstep" is only a raw approximation. It performs an M-step where
the a-posteriori probabilities are treated as given instead of estimated and returns for the
component specific models nearly complete "glm" objects which can be further analyzed.
The advantage of this method is that the return value is basically a list of standard "glm"

objects, such that the regular methods for this class can be used.

5. Writing your own drivers

Two examples are given in the following to demonstrate how new drivers can be provided for
concomitant variable models and for component specific models. Easy extensibility is one of
the main implementation aims of the package and it can be seen that writing new drivers
requires only a few lines of code for providing the constructor functions which include the fit
functions.

5.1. Component specific models: Zero-inflated models

In Poisson or binomial regression models it can be often encountered that the observed number
of zeros is higher than expected. A mixture with two components where one has mean zero
can be used to model such data. These models are also referred to as zero-inflated models (see
for example Böhning, Dietz, Schlattmann, Mendonça, and Kirchner 1999). A generalization
of this model class would be to fit mixtures with more than two components where one
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component has a mean fixed at zero. So this model class is a special case of a mixture of
generalized linear models where (a) the family is restricted to Poisson and binomial and (b)
the parameters of one component are fixed. For simplicity the implementation assumes that
the component with mean zero is the first component. In addition we assume that the model
matrix contains an intercept and to have the first component absorbing the access zeros the
coefficient of the intercept is set to −∞ and all other coefficients are set to zero.

Hence, to implement this model using package flexmix an appropriate model class is needed
with a corresponding convenience function for construction. During the fitting of the EM
algorithm using flexmix() different methods for this model class are needed when deter-
mining the model matrix (to check the presence of an intercept), to check the model after
a component is removed and for the M-step to account for the fact that the coefficients of
the first component are fixed. For all other methods those available for "FLXMRglm" can be
re-used. The code is given in Figure˜11.

The model class "FLXMRziglm" is defined as extending "FLXMRglm" in order to be able to
inherit methods from this model class. For construction of a "FLXMRziglm" class the conveni-
cence function FLXMRziglm() is used which calls FLXMRglm(). The only differences are that
the family is restricted to binomial or Poisson, that a different name is assigned and that an
object of the correct class is returned.

The presence of the intercept in the model matrix is checked in FLXgetModelmatrix() after us-
ing the method available for "FLXMRglm"models as indicated by the call to callNextMethod().
During the EM algorithm FLXremoveComponent() is called if one component is removed. For
this model class it checks if the first component has been removed and if this is the case the
model class is changed to "FLXMRglm".

In the M-step the coefficients of the first component are fixed and not estimated, while for the
remaining components the M-step of "FLXMRglm" objects can be used. During the EM algo-
rithm FLXmstep() is called to perform the M-step and returns a list of "FLXcomponent" ob-
jects with the fitted parameters. A new method for this function is needed for "FLXMRziglm"
objects in order to account for the fixed coefficients in the first component, i.e.˜for the
first component the "FLXcomponent" object is constructed and concatenated with the list
of "FLXcomponent" objects returned by using the FLXmstep() method for "FLXMRglm" mod-
els for the remaining components.

Similar modifications are necessary in order to be able to use refit() for this model class.
The code for implementing the refit() method using optim() for "FLXMRziglm" is not
shown, but can be inspected in the source code of the package.

Example: Using the driver

This new M-step driver can be used to estimate a zero-inflated Poisson model to the data
given in Böhning et˜al. (1999). The dataset dmft consists of count data from a dental epi-
demiological study for evaluation of various programs for reducing caries collected among
school children from an urban area of Belo Horizonte (Brazil). The variables included are the
number of decayed, missing or filled teeth (DMFT index) at the beginning and at the end of
the observation period, the gender, the ethnic background and the specific treatment for 797
children.

The model can be fitted with the new driver function using the following commands:
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1 setClass (" FLXMRziglm", contains = "FLXMRglm ")

FLXMRziglm <- function(formula = . ~ .,

family = c(" binomial", "poisson"), ...)

{

6 family <- match.arg(family)

new(" FLXMRziglm", FLXMRglm(formula , family , ...),

name = paste(" FLXMRziglm", family , sep =":"))

}

11 setMethod (" FLXgetModelmatrix", signature(model=" FLXMRziglm "),

function(model , data , formula , lhs=TRUE , ...)

{

model <- callNextMethod(model , data , formula , lhs)

if (attr(terms(model@fullformula), "intercept ") == 0)

16 stop(" please include an intercept ")

model

})

setMethod (" FLXremoveComponent", signature(model = "FLXMRziglm "),

21 function(model , nok , ...)

{

if (1 %in% nok) as(model , "FLXMRglm ") else model

})

26 setMethod (" FLXmstep", signature(model = "FLXMRziglm "),

function(model , weights , ...)

{

coef <- c(-Inf , rep(0, ncol(model@x )-1))

names(coef) <- colnames(model@x)

31 comp.1 <- with(list(coef = coef , df = 0, offset = NULL ,

family = model@family), eval(model@defineComponent ))

c(list(comp.1),

FLXmstep(as(model , "FLXMRglm"), weights[, -1, drop=FALSE ]))

})

Figure 11: Driver for a zero-inflated component specific model.
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R> data("dmft")

R> Model <- FLXMRziglm(family = "poisson")

R> Fitted <- flexmix(End ~ log(Begin + 0.5) + Gender + Ethnic + Treatment,

+ model = Model, k = 2 , data = dmft, control = list(minprior = 0.01))

R> summary(refit(Fitted))

$Comp.2

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1470633 0.0963031 -1.5271 0.126739

log(Begin + 0.5) 0.7303432 0.0402403 18.1496 < 2.2e-16

Gendermale 0.0068796 0.0550486 0.1250 0.900544

Ethnicwhite 0.0500274 0.0592974 0.8437 0.398854

Ethnicblack -0.0472594 0.0899984 -0.5251 0.599504

Treatmenteduc -0.2371851 0.0905877 -2.6183 0.008837

Treatmentall -0.3277723 0.1011637 -3.2400 0.001195

Treatmentenrich 0.0172651 0.0838729 0.2058 0.836909

Treatmentrinse -0.2414635 0.0871032 -2.7722 0.005569

Treatmenthygiene -0.1026303 0.0916676 -1.1196 0.262888

(Intercept)

log(Begin + 0.5) ***

Gendermale

Ethnicwhite

Ethnicblack

Treatmenteduc **

Treatmentall **

Treatmentenrich

Treatmentrinse **

Treatmenthygiene

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Please note that Böhning et˜al. (1999) added the predictor log(Begin + 0.5) to serve as
an offset in order to be able to analyse the improvement in the DMFT index from the be-
ginning to the end of the study. The linear predictor with the offset subtracted is intended
to be an estimate for log(E(End)) − log(E(Begin)). This is justified by the fact that for a
Poisson distributed variable Y with mean between 1 and 10 it holds that E(log(Y + 0.5)) is
approximately equal to log(E(Y )). log(Begin + 0.5) can therefore be seen as an estimate for
log(E(Begin)).

The estimated coefficients with corresponding confidence intervals are given in Figure˜12. As
the coefficients of the first component are restricted a-priori to minus infinity for the intercept
and to zero for the other variables, they are of no interest and only the second component is
plotted. The box ratio can be modified as for barchart() in package lattice. The code to
produce this plot is given by:

R> print(plot(refit(Fitted), components = 2, box.ratio = 3))
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Treatmenthygiene

Treatmentrinse

Treatmentenrich

Treatmentall

Treatmenteduc

Ethnicblack

Ethnicwhite

Gendermale

log(Begin + 0.5)

(Intercept)

−0.5 0.0 0.5

Comp. 2

Figure 12: The estimated coefficients of the zero-inflated model for the dmft dataset. The first
component is not plotted as this component captures the inflated zeros and its coefficients
are fixed a-priori.

5.2. Concomitant variable models

If the concomitant variable is a categorical variable, the multinomial logit model is equivalent
to a model where the component weights for each level of the concomitant variable are de-
termined by the mean values of the a-posteriori probabilities. The driver which implements
this "FLXP" model is given in Figure˜13. A name for the driver has to be specified and a
fit() function. In the fit() function the mean posterior probability for all observations
with the same covariate points is determined, assigned to the corresponding observations and
the full new a-posteriori probability matrix returned. By contrast refit() only returns the
new a-posteriori probability matrix for the number of unique covariate points.

Example: Using the driver

If the concomitant variable model returned by myConcomitant() is used for the artificial
example in Section˜3 the same fitted model is returned as if a multinomial logit model is
specified. An advantage is that in this case no problems occur if the fitted probabilities are
close to zero or one.

R> Concomitant <- FLXPmultinom(~ yb)

R> MyConcomitant <- myConcomitant(~ yb)

R> m2 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p),

+ concomitant = Concomitant)

R> m3 <- flexmix(. ~ x, data = NPreg, k = 2, model = list(Model_n, Model_p),

+ cluster = posterior(m2), concomitant = MyConcomitant)
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myConcomitant <-

function(formula = ~ 1) {

z <- new("FLXP",

4 name = "myConcomitant",

formula = formula)

z@fit <- function(x, y, w, ...) {

if (missing(w) || is.null(w)) w <- rep(1, length(x))

f <- as.integer(factor(apply(x, 1, paste ,

9 collapse = "")))

AVG <- apply(w*y, 2, tapply , f, mean)

(AVG/rowSums(AVG))[f,,drop=FALSE]

}

z@refit <- function(x, y, w, ...) {

14 if (missing(w) || is.null(w)) w <- rep(1, length(x))

f <- as.integer(factor(apply(x, 1, paste ,

collapse = "")))

AVG <- apply(w*y, 2, tapply , f, mean)

(AVG/rowSums(AVG))

19 }

z

}

Figure 13: Driver for a concomitant variable model where the component weights are de-
termined by averaging over the a-posteriori probabilities for each level of the concomitant
variable.

R> summary(m2)

Call:

flexmix(formula = . ~ x, data = NPreg, k = 2,

model = list(Model_n, Model_p), concomitant = Concomitant)

prior size post>0 ratio

Comp.1 0.5 100 181 0.552

Comp.2 0.5 100 185 0.541

✬log Lik.✬ -1085.995 (df=14)

AIC: 2199.989 BIC: 2246.166

R> summary(m3)

Call:

flexmix(formula = . ~ x, data = NPreg, k = 2,

cluster = posterior(m2), model = list(Model_n,

Model_p), concomitant = MyConcomitant)

prior size post>0 ratio

Comp.1 0.5 100 181 0.552

Comp.2 0.5 100 185 0.541
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✬log Lik.✬ -1085.994 (df=14)

AIC: 2199.987 BIC: 2246.164

For comparing the estimated component weights for each value of yb the following function
can be used:

R> determinePrior <- function(object) {

+ object@concomitant@fit(object@concomitant@x,

+ posterior(object))[!duplicated(object@concomitant@x), ]

+ }

R> determinePrior(m2)

[,1] [,2]

1 0.1121867 0.88781331

4 0.9288458 0.07115421

R> determinePrior(m3)

[,1] [,2]

1 0.1123765 0.88762354

2 0.9288789 0.07112112

Obviously the fitted values of the two models correspond to each other.

6. Summary and outlook

Package flexmix was extended to cover finite mixtures of GLMs with (nested) varying and
constant parameters. This allows for example the estimation of varying intercept models. In
order to be able to characterize the components given some variables concomitant variable
models can be estimated for the component weights.

The implementation of these extensions have triggered some modifications in the class struc-
ture and in the fit functions flexmix() and FLXfit(). For certain steps, as e.g.˜the M-step,
methods which depend on the component specific models are defined in order to enable the
estimation of finite mixtures of GLMs with only varying parameters and those with (nested)
varying and constant parameters with the same fit function. The flexibility of this modified
implementation is demonstrated by illustrating how a driver for zero-inflated models can be
defined.

In the future diagnostic tools based on resampling methods shall be implemented as bootstrap
results can give valuable insights into the model fit (Grün and Leisch 2004). A function
which conveniently allows to test linear hypotheses about the parameters using the variance-
covariance matrix returned by refit() would be a further valuable diagnostic tool.

The implementation of zero-inflated Poisson and binomial regression models are a first step
towards relaxing the assumption that all component specific distributions are from the same
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parametric family. As mixtures with components which follow distributions from different
parametric families can be useful for example to model outliers (Dasgupta and Raftery 1998;
Leisch 2008), it is intended to also make this functionality available in flexmix in the future.

Computational details

All computations and graphics in this paper have been done using R version 2.12.1 with
the packages nnet 7.3-1, ellipse 0.3-5, diptest 0.25-3, flexmix 2.3-4, multcomp 1.2-5, survival
2.36-5, mvtnorm 0.9-96, modeltools 0.2-17, lattice 0.19-17, tools 2.12.1.
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