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Abstract

lifecontingencies performs actuarial present value calculation for life insurances. This
paper briefly recapitulate the theory regarding life contingencies (life tables, financial
mathematics and related probabilities) on life contingencies. Then it shows how life-
contingencies functions represent a perfect cookbook to perform life insurance actuarial
analysis and related stochastic simulations.
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1. Introduction

As of December 2011, lifecontingencies seems the first R package that deals with life insurance
evaluation.
R has provided many package that actuaries can use within their professional activity.
However most packages are of mainly interest of non-life actuaries, due to the wider impor-
tante of regression modelling and distribution fitting in non - life than in life insurance. The
package actuar, Dutang, Goulet, and Pigeon (2008), provides functions to fit loss distribu-
tions and to perform credibility analysis. Package actuar represents the computational side
of the classical book Klugman, Panjer, Willmot, and Venter (2009). The package ChainLad-
der, Gesmann and Zhang (2011), provides functions to estimate non-life loss reserve. GLM
analysis widely used in predictive modelling can be performed by the base package bundled
within R. Specific models can be using the gamlss package, Rigby and Stasinopoulos (2005),
or the cplm package, Zhang (2011).
Life actuaries conversely work more with demographic and financial data. R has a dedicated
view to packages dedicated to financial analysis. However few packages exist to perform de-
mographic analysis (as demography, Rob J Hyndman, Heather Booth, Leonie Tickle, and
John Maindonald (2011), and LifeTables, Riffe (2011)). Finally no package exists that per-
forms life contingencies calculations, as of December 2011.

Numerous commercial software specifically tailored to actuarial analysis are available in com-
merce. Moses and Prophet are currently the leading actuarial software in life insurance. This
package aims to represent the R computational support of the concepts developed in the
classical life contingencies book Bowers, Gerber, Hickman, Jones, and Nesbitt (1997). Since
life contingencies theory grounds on demography and classical financial mathematics, I have
made use of the Ruckman and Francis Ruckman and Francis and Broverman Broverman
(2008) as references. The structure of the vignette document is:
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1. Section 2 describes the underlying statistical and financial concepts regarding life con-
tingencies theory.

2. Section 3 overviews the general structure of the package.

3. Section 4 gives a wide choice of lifecontingencies packages example.

4. Finally section 5 will provide a discussion of results and further potential developments.

2. Life contingencies statistical and financial foundations

Life insurance analysis involves the calculation of expected values of future cash flows, whose
probabilities depend by events related to insured life contingencies and time value of money.
Therefore life insurance actuarial mathematics grounds itself on concepts derived from de-
mography and theory of interest (like present value).

A life table (also called a mortality table or actuarial table) is a table that shows, for each age
x, the number of subjects lx that are expected to be in life (at risk) at the beginning of age
x. It represents a sequence of l0, l1, . . . , lω being ω the farthest age that a person can obtain
for the life table cohort. A life table is referred to a cohort of subjects, typically varying by
sex, year of birth and country.

Many statistics can be derived from the lx sequence. A non exhaustive list follows:

� tpx = lx+t

lx
, the probability that someone living at age x will reach age x+ t.

� tqx, the complementary probability of tpx.

� tdx, the number of deaths between age x and x+ t.

� tLx =
n∑

t=0
lx+t, the expected number of years lived by the cohort between ages x and

x+ t.

� tmx = tdx
tLx

, the central mortality rate between ages x and x+ t.

� ex, the expected remaining lifetime for someone living at age x.

An exhaustive coverage of life table demographics can be found in Keyfitz and Caswell (2005).
Life table are usually produced by institutions that have access to large amount of reliable
historical data, like official statistics or social security bureaus. Actuaries often start from
those table and modify underlying survival probabilities to make the table better fit to the
insured pool experience. Life table analysis provides the empirical data to assess the time -
until - death random variables for any individual aged x, being Tx and Kx the continuous
and curtate form respectively.

Classical financial mathematics deals with monetary amount that could be available in dif-
ferent times. The most important concept in classical financial mathematics is the present
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value (see formula 2). Present value represents the current value of a series of monetary cash
flows, CFt, that will be available in different periods of time.
The interest rates, it, represents the measure of price of money per unit of time. Formula
1 shows the relationship between the accumulation function, A (t) and interest and discount
rates, both effective and nominal.

A (t) = (1 + i)t = (1− d)−t =

(
1 +

im

m

)t∗m
=

(
1− dm

m

)−t∗m
(1)

All financial mathematics functions (as annuities, ān , or accumulated values, sn ) can be
written as a particular case of formula 2.

PV =
∑
t∈T

CFt(1 + it)
−t (2)

Actuaries uses the probabilities inherent the life table to evaluate life contingencies insurances.
Life contingencies are themselves stochastic variables, in fact. They consist in present values
whose amounts are not certain, but the time and the final values depend by events regarding
the life of the insured head. Their expected value is named actuarial present value (APV).
While APV is certainly the most important statistic used by actuaries, as long as it represents
the average cost of the coverage the insurer provides, lifecontingencies provides functions to
assess the distribution of life contingencies quantities as random value generation.

Some examples of life contingencies follow. The term life insurances represent a contract
where a sum bt is payable whether the insured head dies within n years. A flat n - term life
insurance is expressed in formula 3 and its APV symbol is A1

x:n .

Zn =

{
bT̃ v

T̃ T̃ ≤ n
0 T̃ > n

(3)

Another example is the annuity due, äx, that consists in a series of cash flows of equal amounts
payable at the beginning of each period until death. Formula 4 expresses its APV.

∞∑
k=0

a k+1|k
pxqx+k (4)

The pure endowment is a stochastic variable defined in formula 5. Its APV symbol is nEx.
Under a pure endowment contract a sum is paid after n year if the insured aged x still lives
at age x+ n. {

vT , T̃ > n

0, T̃ ≤ n (5)

The lifecontingencies package provides functions that allows the user to evaluate standard
life insurance contract APV. Function for Ax (life insurance), nEx (the pure endowment), äx
(the annuity due), (DA)1x:n (the decreasing term life insurance) and (IA)x (increasing term
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life insurance) are available as long as variants. Most important variants consist in allowing
fractional terms and temporary duration.
.

In general present values can be expressed as the scalar product of full value cash flows c̄
and their corresponding discount rate v̄. APV formula taxes into account the present value.
While most financial mathematics and lifecontingencies formulas can be expressed in symbolic
form, lifecontingencies will evaluate present values and APVs using vector calculus. Therefore
lifecontingencies builds the vectors of payments, c̄, discounts, v̄ and probabilities, p̄ and it
evaluates their scalar product as shown by equation 6.

〈〈c̄ • v̄〉 • p̄〉 (6)
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3. The structure of the package

Package lifecontingencies contains classes and methods to handle lifetables and actuarial ta-
bles conveniently.

The package is loaded within the R command line as follows:

R> library(lifecontingencies)

Two main S4 classes Chambers (2008) have been defined within the lifecontingencies package:
the lifetable class and the actuarialtable class. The lifetable class is defined as follows

R> #definition of lifetable

R> showClass("lifetable")

Class "lifetable" [package "lifecontingencies"]

Slots:

Name: x lx name

Class: numeric numeric character

Known Subclasses: "actuarialtable"

Class actuarialtable inherits from lifetable class and has another additional slots,the
interest rate.

R> showClass("actuarialtable")

Class "actuarialtable" [package "lifecontingencies"]

Slots:

Name: interest x lx name

Class: numeric numeric numeric character

Extends: "lifetable"

Beyond generic S4 classes and method there are three groups of functions: demographics,
financial mathematics and life contingencies analysis functions.

The demographic group comprises the following functions:

1. dxt returns deaths between age x and x+ t, dx,t.

2. pxt returns survival probability between age x and x+ t, px,t.
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3. pxyt returns the survival probability for two lifes, dxy,t.

4. qxt returns death probability between age x and x+ t, qx,t.

5. qxyt returns the survival probability for two lifes, qxy,t.

6. Txt returns the number of person-years lived after exact age x, Tx,t.

7. mxt returns central mortality rate, mx,t.

8. exn returns the complete or curtate expectation of life from age x to x+ n, ex,n.

9. rLife returns a sample from the time until death distribution underlying a life table.

10. exyt returns the expected life time for two lifes between age x and x+ t.

11. probs2lifetable returns a life table lx from raw one - year survival / death probabil-
ities.

The financial mathematics group comprises the following functions, for which we report most
important function:

1. presentValue returns the present value for a series of cash flows.

2. annuity returns the present value of a annuity - certain, an .

3. iecreasingAnnuity returns the present value of an increasing annuity - certain, (IA)n.

4. accumulatedValue returns the future value of a series of cash flows, sn .

5. decreasingAnnuity returns the present value of an increasing annuity, (DA)n .

6. accumulatedValue returns the future value of a payments sequence, sn .

7. nominal2Real returns the effective annual interest (discount) rate i given the nominal
m-periodal interest i(m) or discount dm rate.

8. real2Nominal returns the m-periodal interest or discount rate given the m periods or
the discount.

9. intensity2Interest returns the intensity of interest δ given the interest rate i.

10. interest2Intensity returns the interest rate i given the intensity of interest δ.

The actuarial mathematics group comprises the following functions, for which we report must
important function:

1. Axn returns the APV for life insurances.

2. Axyn returns the APV for two heads life insurances.

3. axn returns the APV for annuities.

4. axyn returns the APV for two heads annuities.
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5. Exn returns the APV for the pure endowment.

6. Iaxn returns the APV fof the increasing annuity.

7. IAxn returns the APV fof the increasing life insurance.

8. DAxn returns the APV for the decreasing life insurance.
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4. Code and examples

4.1. Classical financial mathematics example

The lifecontingencies package provides functions to perform classical financial analysis.
Following examples will show how to handle interest and discount rates with different com-
pounding frequency, how to perform present value, annuities and future values analysis cal-
culations, loans amortization and bond pricing.

Interest rate functions

Following examples show how to switch from im → i

R> #an APR of 3% is equal to a

R> real2Nominal(0.03,12)

[1] 0.02959524

R> #of nominal interest rate while

R> #6% annual nominal interest rate is the same of

R> nominal2Real(0.06,12)

[1] 0.06167781

R> #APR

R> #4% per year compounded quarterly is

R> nominal2Real(0.04,4)

[1] 0.04060401

R> #4% effective interest rate corresponds to

R> real2Nominal(0.04,4)*100

[1] 3.941363

R> #nominal interest rate (in 100s) compounded quarterly

and from dm → d

R> #a nominal rate of discount of 4% payable quarterly is equal to a

R> real2Nominal(i=0.04,m=12,type="discount")

[1] 0.04075264

Present value analysis

Performing a project appraisal means evaluating the present value of all net cash flows, as
shown in code below:
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R> #suppose an investment requires and grants following cash flows

R> capitals=c(-1000,200,500,700)

R> #at time (vector) t.

R> times=c(-2,-1,4,7)

R> #the preset value of the investment is

R> presentValue(cashFlows=capitals, timeIds=times,

+ interestRates=0.03)

[1] 158.5076

R> #assuming 3% interest rate

R>

R> #while if interest rates were time - varying

R> #e.g. 0.04 0.02 0.03 0.057

R> presentValue(cashFlows=capitals, timeIds=times,

+ interestRates=c( 0.04, 0.02, 0.03, 0.057))

[1] 41.51177

R> #and if the last cash flow is uncertain, as we assume a

R> #receiving probability of 50%

R> presentValue(cashFlows=capitals, timeIds=times,

+ interestRates=c( 0.04, 0.02, 0.03, 0.057),

+ probabilities=c(1,1,1,0.5))

[1] -195.9224

Annuities and future values

Example of a n| and s n| evaluations are reported below.

R> #PV annuity immediate 100$ each year 5 years @9%

R> 100*annuity(i=0.09,n=5)

[1] 388.9651

R> #while the corresponding future values is

R> 100*accumulatedValue(i=0.09,n=5)

[1] 598.4711

R> #A man wants to save 100,000 to pay for the education

R> #of his son in 10 years time. An education fund requires the investors to

R> #deposit equal instalments annually at the end of each year. If interest of

R> #0.075 is paid, how much does the man need to save each year (R) in order to

R> #meet his target?

R> 100000/accumulatedValue(i=0.075,n=10)
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[1] 7068.593

while the code below shows how fractional annuities (a
(m)
lcroofn) can be handled within annuity

and accumulatedValue functions.

R> #Find the present value of an annuity-immediate of

R> #100 per quarter for 4 years, if interest is compounded semiannually at

R> #the nominal rate of 6%.

R> #the APR is

R> APR=nominal2Real(0.06,2)

R> 100*4*annuity(i=APR,n=4,m=4)

[1] 1414.39

Finally increasingAnnuity and decreasingAnnuity functions handle increasing ((IA)x)
and decreasing ((DA)x) annuities.

R> #An increasing n-payment annuity-due shows payments of 1, 2,

R> #... , n

R> #at time 0, 1, ... ,

R> #n - 1 . At interest rate of

R> #0.03 and n=10, its present value of the annuity is

R> increasingAnnuity(i=0.03, n=10,type="due")

[1] 46.18416

R> #while the present value of a decreasing

R> #annuity due of 10, 9,...,1

R> #from time 1 to time 10 is

R> decreasingAnnuity(i=0.03, n=10,type="immediate")

[1] 48.99324

Finally the calculation of the present value of a geometrically increasing annuity is shown in
the code below

R> #assume each year the annuity increases its value by 3%

R> #while the interest rate is 4%

R> #first determine the effective interest rate

R> ieff=(1+0.04)/(1+0.03)-1

R> #assume the annuity lasts 10 years

R> annuity(i=ieff,n=10)

[1] 9.48612



D
ra
ft

Giorgio Alfredo Spedicato 11

Loan amortization

The code lines below show how an investment amortization schedule will be repaired.

Suppose loaned capital is C, then assuming an interest rate i, the amount due to the lender
at each instalment is R = C

a n|
.

At each installment the Rt installment repays It = Ct−1 ∗ i as interest and Ct = Rt − It as
capital.

R> capital=100000

R> interest=0.05 #assume 5% effective annual interest

R> payments_per_year=2 #payments per year

R> rate_per_period=(1+interest)^(1/payments_per_year)-1

R> years=5 #five years length of the loan

R> installment=1/payments_per_year*capital/annuity(i=interest, n=years,m=payments_per_year)

R> installment

[1] 11407.88

R> #compute the balance due at the begin of period

R> balance_due=numeric(years*payments_per_year)

R> balance_due[1]=capital*(1+rate_per_period)-installment

R> for(i in 2:length(balance_due))

+ {

+ balance_due[i]=balance_due[i-1]*(1+rate_per_period)-installment

+ cat("Payment ",i, " balance due:",round(balance_due[i]),"\n")

+ }

Payment 2 balance due: 81903

Payment 3 balance due: 72517

Payment 4 balance due: 62900

Payment 5 balance due: 53046

Payment 6 balance due: 42948

Payment 7 balance due: 32600

Payment 8 balance due: 21998

Payment 9 balance due: 11133

Payment 10 balance due: 0

Bond pricing

Bond pricing is another application of present value analysis. A standard bond whose principal
will be repaid at time T is a series of coupon ct, priced according to a coupon rate j(k) on a
principal C. Formula 7 expresses the present value of a bond.

Bt = cta
(k)

n| + CvT (7)

We will show how to evaluate a standard bond with following examples:
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R> bond<-function(faceValue, couponRate, couponsPerYear, yield,maturity)

+ {

+ out=NULL

+ numberOfCF=maturity*couponsPerYear #determine the number of CF

+ CFs=numeric(numberOfCF)

+ payments=couponRate*faceValue/couponsPerYear #determine the coupon sum

+ cf=payments*rep(1,numberOfCF)

+ cf[numberOfCF]=faceValue+payments #set the last payment amount

+ times=seq.int(from=1/couponsPerYear, to=maturity, by=maturity/numberOfCF)

+ out=presentValue(cashFlows=cf, interestRates=yield, timeIds=times)

+ return(out)

+ }

R> #bond coupon rate 6%, two coupons per year, face value 1000, yield 5%, three years to maturity

R> bond(1000,0.06,2,0.05,3)

[1] 1029.25

R> #bond coupon rate 3%, one coupons per year, face value 1000, yield 3%, three years to maturity

R> bond(1000,0.06,1,0.06,3)

[1] 1000
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4.2. Lifetables and actuarial tables analysis

lifetable classes represent the basic class designed to handle life table calculations. A
actuarialtable class inherits from lifetable class adding one more slot to set the a priori
rate of interest.
Both classes have been designed using the S4 class framework.
Examples follow showing how lifetable and actuarialtable objects initialization, basic
survival probability and life tables analysis.

Creating lifetable and actuarialtable objects

Lifetable objects can be created by raw R commands or using existing data.frame objects.
However, to build a lifetable class object three items are needed:

1. The years sequence, that is an integer sequence 0, 1, . . . , ω. It shall starts from zero and
going to the ω age (the age x that px = 0).

2. The lx vector, that is the number of subjects living at the beginning of age x.

3. The name of the life table.

R> x_example=seq(from=0,to=9, by=1)

R> lx_example=c(1000,950,850,700,680,600,550,400,200,50)

R> fakeLt=new("lifetable",x=x_example, lx=lx_example, name="fake lifetable")

A print (or show ) method are available. These methods report the x, lx, px and ex in
tabular form.

R> print(fakeLt)

Life table fake lifetable

x lx px ex

1 0 1000 0.9500000 4.742105

2 1 950 0.8947368 4.241176

3 2 850 0.8235294 4.042857

4 3 700 0.9714286 3.147059

5 4 680 0.8823529 2.500000

6 5 600 0.9166667 1.681818

7 6 550 0.7272727 1.125000

8 7 400 0.5000000 0.750000

9 8 200 0.2500000 0.500000

head and tail methods for data.frame S3 classes have also been adapted to lifetable

classes, as code below shows.

R> #show head method

R> head(fakeLt)
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x lx

1 0 1000

2 1 950

3 2 850

4 3 700

5 4 680

6 5 600

R> #show tail method

R> tail(fakeLt)

x lx

5 4 680

6 5 600

7 6 550

8 7 400

9 8 200

10 9 50

Nevertheless the easiest way to create a lifetable object is starting from a suitable existing
data.frame.

R> #load USA Social Security LT

R> data(demoUsa)

R> usaMale07=demoUsa[,c("age", "USSS2007M")]

R> usaMale00=demoUsa[,c("age", "USSS2000M")]

R> #coerce from data.frame to lifecontingencies requires x and lx names

R> names(usaMale07)=c("x","lx")

R> names(usaMale00)=c("x","lx")

R> #apply coerce methods and changes names

R> usaMale07Lt<-as(usaMale07,"lifetable")

R> usaMale07Lt@name="USA MALES 2007"

R> usaMale00Lt<-as(usaMale00,"lifetable")

R> usaMale00Lt@name="USA MALES 2000"

R> #create the tables

R> ##males

R> lxIPS55M<-with(demoIta, IPS55M)

R> pos2Remove<-which(lxIPS55M %in% c(0,NA))

R> lxIPS55M<-lxIPS55M[-pos2Remove]

R> xIPS55M<-seq(0,length(lxIPS55M)-1,1)

R> ##females

R> lxIPS55F<-with(demoIta, IPS55F)

R> pos2Remove<-which(lxIPS55F %in% c(0,NA))

R> lxIPS55F<-lxIPS55F[-pos2Remove]

R> xIPS55F<-seq(0,length(lxIPS55F)-1,1)

R> #finalize the tables

R> ips55M=new("lifetable",x=xIPS55M, lx=lxIPS55M, name="IPS 55 Males")

R> ips55F=new("lifetable",x=xIPS55F, lx=lxIPS55F, name="IPS 55 Females")
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The last way a lifetable object can be created is generating it from one year survival or
death probabilities. Such probabilities could be obtained from mortality projection methods
(e.g. Lee - Carter).

R> #use 2002 Italian males life tables

R> data(demoIta)

R> itaM2002<-demoIta[,c("X","SIM92")]

R> names(itaM2002)=c("x","lx")

R> itaM2002Lt<-as(itaM2002,"lifetable")

removing NA and 0s

R> itaM2002Lt@name="IT 2002 Males"

R> #reconvert in data frame

R> itaM2002<-as(itaM2002Lt,"data.frame")

R> #add qx

R> itaM2002$qx<-1-itaM2002$px

R> #reduce to 20% one year death probability for ages between 20 and 60

R> for(i in 20:60) itaM2002$qx[itaM2002$x==i]=0.2*itaM2002$qx[itaM2002$x==i]

R> #otbain the reduced mortality table

R> itaM2002reduced<-probs2lifetable(probs=itaM2002[,"qx"], radix=100000,type="qx",name="IT 2002 Males reduced")

An actuarialtable class inherits from the lifecontingencies class, but it contains and
additional slot: the interest rate slot. slot.

R> #assume 3% interest rate

R> fakeAct=new("actuarialtable",x=fakeLt@x, lx=fakeLt@lx, interest=0.03,

+ name="fake actuarialtable")

Method getOmega provides the ω age.

R> getOmega(fakeAct)

[1] 9

Method print behaves differently between lifetable objects and actuarialtable objects.
One year survival probability and complete expected remaining life until deaths is reported
when print method is applied on a lifetable object. Classical commutation functions (Dx,
Nx, Cx, Mx, Rx) are reported when print method is applied on an actuarialtable object.

R> #apply method print applied on a life table

R> print(fakeLt)
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Life table fake lifetable

x lx px ex

1 0 1000 0.9500000 4.742105

2 1 950 0.8947368 4.241176

3 2 850 0.8235294 4.042857

4 3 700 0.9714286 3.147059

5 4 680 0.8823529 2.500000

6 5 600 0.9166667 1.681818

7 6 550 0.7272727 1.125000

8 7 400 0.5000000 0.750000

9 8 200 0.2500000 0.500000

R> #apply method print applied on an actuarial table

R> print(fakeAct)

Actuarial table fake actuarialtable interest rate 3 %

x lx Dx Nx Cx Mx Rx

1 0 1000 1000.00000 5467.92787 48.54369 840.7400 4839.7548

2 1 950 922.33010 4467.92787 94.25959 792.1963 3999.0148

3 2 850 801.20652 3545.59778 137.27125 697.9367 3206.8185

4 3 700 640.59916 2744.39125 17.76974 560.6654 2508.8819

5 4 680 604.17119 2103.79209 69.00870 542.8957 1948.2164

6 5 600 517.56527 1499.62090 41.87421 473.8870 1405.3207

7 6 550 460.61634 982.05563 121.96373 432.0128 931.4337

8 7 400 325.23660 521.43929 157.88185 310.0491 499.4210

9 8 200 157.88185 196.20268 114.96251 152.1672 189.3719

10 9 50 38.32084 38.32084 37.20470 37.2047 37.2047

Basic demographic calculations

Basic probability calculations may be performed on valid lifetable or actuariatable ob-
jects. Below calculations for tpx, tqx and e̊x:n .

R> #using ips55M life table

R> #probability to survive one year, being at age 20

R> pxt(ips55M,20,1)

[1] 0.9995951

R> #probability to die within two years, being at age 30

R> qxt(ips55M,30,2)

[1] 0.001332031
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R> #expected life time between 50 and 70 years

R> exn(ips55M, 50,20)

[1] 19.43322

Fractional survival probabilities can also be calculated according with linear interpolation,
constant force of mortality and hyperbolic assumption.

R> data(soa08Act) #load Society of Actuaries illustrative life table

R> pxt(soa08Act,80,0.5,"linear") #linear interpolation (default)

[1] 0.9598496

R> pxt(soa08Act,80,0.5,"constant force") #constant force

[1] 0.9590094

R> pxt(soa08Act,80,0.5,"hyperbolic") #hyperbolic Balducci's assumption.

[1] 0.9581701

Analysis of two heads survival probabilities can be performed also, as shown by code below:

R> pxyt(fakeLt,fakeLt,x=6, y=7, t=2) #joint survival probability

[1] 0.04545455

R> pxyt(fakeLt,fakeLt,x=6, y=7, t=2,status="last") #last survival probability

[1] 0.4431818

R> #evaluate the expected joint life time for a couple aged 65 and 63 using Italina IPS55 tables

R> exyt(ips55M, ips55F, x=65,y=63, status="joint")

[1] 19.1983

4.3. Classical actuarial mathematics examples

Classical actuarial mathematics on life contingencies will follow now. We will use the SOA
illustrative life table on all following examples.

Life insurance examples

Following examples show the APV (i.e. the lump sum benefit premium) for:
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1. 10-year term life insurance for a subject aged 30 assuming 4% interest rate, A 1
30:10

.

2. 10-year term life insurance for a subject aged 30 with benefit payable at the end of
month of death at 4% interest rate.

3. whole life insurance for a subject aged 40 assuming 4% interest rate, A40.

4. 5 years deferred 10-years term life insurance for a subject aged 40 assuming 5% interest
rate, 5|10Ā40.

5. 5 years annually decreasing term life insurance for a subject aged 50 assuming 6%
interest rate, (DA) 1

50:5
.

6. 20 years increasing term life insurance, age 40, (IA) 1
50:5

.

R> #The APV of a life insurance for a 10-year term life insurance for an

R> #insured aged 40 @ 4% interest rate is

R> Axn(soa08Act, 30,10,i=0.04)

[1] 0.01577283

R> #same as above but payable at the end of month of death

R> Axn(soa08Act, x=30,n=10,i=0.04,k=12)

[1] 0.01605995

R> #a whole life for a 40 years old insured at @4% is

R> Axn(soa08Act, 40) #soa08Act has 6% implicit interest rate

[1] 0.1613242

R> #a 5-year deferred life insurance, 10 years length, 40 years age, @5% interest rate

R> Axn(soa08Act, x=40,n=10,m=5,i=0.05)

[1] 0.03298309

R> #Five years annually decreasing term life insurance, age 50.

R> DAxn(soa08Act, 50,5)

[1] 0.08575918

R> #Increasing 20 years term life insurance, age 40

R> IAxn(soa08Act, 40,10)

[1] 0.1551456

while following code evaluates pure endowments APV, nEx, assuming SOA life table at 6%
interest rate.
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R> #evaluate the APV for a n year pure endowment, age x=30, n=35, i=6%

R> Exn(soa08Act, x=30, n=35, i=0.06)

[1] 0.1031648

R> #try i=3%

R> Exn(soa08Act, x=30, n=35, i=0.03)

[1] 0.2817954

Life annuities examples

Following examples show annuities APV calculations for

1. annuity immediate for a subject aged 65, a65.

2. annuity due for a subject aged 65, ä65.

3. 20 years annuity due with monthly fractional payments of $1000, ä
(12)

65:20
.

All examples assume SOA life table at 6% interest rate.

R> #assuming insured's age x=65 and SOA illustrative life table @6% hold for all examples

R> #annuity immediate

R> axn(soa08Act, x=65, m=1)

[1] 8.896928

R> #annuity due

R> axn(soa08Act, x=65)

[1] 9.896928

R> #due with monthly payments of $1000 provision

R> 12*1000*axn(soa08Act, x=65,k=12)

[1] 113179.1

R> #due with montly payments of $1000 provision, 20 - years term

R> 12*1000*axn(soa08Act, x=65,k=12, n=20)

[1] 108223.5

R> #immediate with monthly payments of 1000 provision, 20 - years term

R> 12*1000*axn(soa08Act, x=65,k=12,n=20,m=1/12)

[1] 107321.1
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Benefit premiums examples

lifecontingencies package functions can be used to evaluate benefit premium for life contin-
gencies, using the formula hP

1
x:n = APV äx:h .

R> data(soa08Act) #use SOA MLC exam illustrative life table

R> #Assume X, aged 30, whishes to buy a 250K 35-years life insurance

R> #premium paid annually for 15 years @2.5%.

R> Pa=100000*Axn(soa08Act, x=30,n=35,i=0.025)/axn(soa08Act, x=30,n=15,i=0.025)

R> Pa

[1] 921.5262

R> #if premium is paid montly

R> Pm=100000*Axn(soa08Act, x=30,n=35,i=0.025)/axn(soa08Act, x=30,n=15,i=0.025,k=12)

R> Pm

[1] 932.9836

R> #level semiannual premium for an endowment insurance of 10000

R> #insured age 50, insurance term is 20 years

R> APV=10000*(Axn(soa08Act,50,20)+Exn(soa08Act,50,20))

R> P=APV/axn(soa08Act,50,20,k=2)

Benefit reserves examples

Now we will evaluate the benefit reserve for a 20 year life insurance of 100,000, whith benefits
payable at the end of year of death, whith level benefit premium payable at the beginning of
each year. Assume 3% of interest rate and SOA life table to apply.

The benefit premium is P , determined from equation

P ä40:20 = 100000A 1
40:20

. The benefit reserve is kV
1

40+t:n−t = 100000A 1
40+t:20−t − P ä40+t:20−t for t = 0 . . . 19.

R> P=100000*Axn(soa08Act,x=40,n=20,i=0.03)/axn(soa08Act,x=40,n=20,i=0.03)

R> for(t in 0:19) cat("At time ",t," benefit reserve is ", 100000*Axn(soa08Act,x=40+t,n=20-t,i=0.03)-P*axn(soa08Act,x=40+t,n=20-t,i=0.03), "\n")

At time 0 benefit reserve is 0

At time 1 benefit reserve is 306.9663

At time 2 benefit reserve is 604.0289

At time 3 benefit reserve is 889.0652

At time 4 benefit reserve is 1159.693

At time 5 benefit reserve is 1413.253

At time 6 benefit reserve is 1646.808

At time 7 benefit reserve is 1857.044
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At time 8 benefit reserve is 2040.286

At time 9 benefit reserve is 2192.436

At time 10 benefit reserve is 2308.88

At time 11 benefit reserve is 2384.513

At time 12 benefit reserve is 2413.576

At time 13 benefit reserve is 2389.633

At time 14 benefit reserve is 2305.464

At time 15 benefit reserve is 2152.963

At time 16 benefit reserve is 1922.973

At time 17 benefit reserve is 1605.162

At time 18 benefit reserve is 1187.872

At time 19 benefit reserve is 657.8482

The benefit reserve for a whole life annuity with level annual premium is kV (n|äx), that equals

n|äx − P̄ (n|āx)äx+k:n−k when x . . . n, äx+k otherwise. The figure is shown in 1.

Figure 1: Benefit reserve of ä65
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Insurance and annuities on two heads

Lifecontingencies package provides functions to evaluate life insurance and annuities on two
lifes. Following examples will check the equality axy = ax + ay − axy.

R> axn(soa08Act, x=65,m=1)+axn(soa08Act, x=70,m=1)-axyn(soa08Act,soa08Act, x=65,y=70,status="joint",m=1)

[1] 10.35704

R> axyn(soa08Act,soa08Act, x=65,y=70, status="last",m=1)

[1] 10.35704

Reversionary annuity (annuities payable to life y upon death of x), ax|y = ay − axy can also
be evaluate using lifecontingencies functions.

R> #assume x aged 65, y aged 60

R> axn(soa08Act, x=60,m=1)-axyn(soa08Act,soa08Act, x=65,y=60,status="joint",m=1)

[1] 2.695232
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4.4. Stochastic analysis

This last paragraphs will show some stochastic analysis that can be performed by our pack-
age, both in demographic analysis and life insurance evaluation.

The age-until-death, both in the continuous (Tx) or curtate form (Kx), is a stochastic variable
whose distribution is implicit within the deaths distribution of a given life table. The code
below shows how to sample values from the age-until-death distribution implicit in the SOA
life table.

R> data(soa08Act)

R> #sample 10 numbers from the Tx distribution

R> sample1<-rLife(n=10,object=soa08Act,x=0,type="Tx")

R> #sample 10 numbers from the Kx distribution

R> sample1<-rLife(n=10,object=soa08Act,x=0,type="Kx")

while code below shows how the mean of the sampled distribution is statistically equivalent
to the expected life time.

R> #assume an insured aged 29

R> #his expected integer number of years until death is

R> exn(soa08Act, x=29,type="curtate")

[1] 45.50066

R> #check if we are sampling from a statistically equivalent distribution

R> t.test(x=rLife(2000,soa08Act, x=29,type="Kx"),mu=exn(soa08Act, x=29,type="curtate"))$p.value

[1] 0.6378775

R> #statistically not significant

Finally figure 2 shows the deaths distribution implicit in the ips55M life table.

The APV is a present value of a random variable that represents a composite function between
the discount amount and indicator variables regarding the life status of the insured. Figure
3 shows the stochastic distribution of ä65.

5. Discussion

The lifecontingencies package allows actuaries to perform financial and life contingencies ac-
tuarial mathematics within R. It offers the basic tools to manipulate life tables and perform
financial calculations. Pricing, reserving and stochastic evaluation of most important life in-
surance contract can be performed within R.

Future work spans in multiple directions. Currently lifecontingencies handles only one - year
life tables and single causes of decrement only. We expect to make the package more flesible
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Figure 2: Deaths distribution implicit in the IPS55 males table

from this side. The stochastic calculation modules will be improved, morover. Similarly
we expect to integrate C++ fragments using Rcpp package whether it effectively improves
performance.
Finally we wish to provide lifecontingencies coerce methods toward packages specialized in
demographic analysis, like demography and LifeTables and interest rates modelling.

Disclaimer

The accuracy of calculation have been verified by checkings with numerical examples reported
in Bowers et al. (1997). The package numerical results are identical to those reported in the
Bowers et al. (1997) for most function, with the exception of fractional payments annuities
where the accuracy leads only to the 5th decimal. The reason of such inaccuracy is due to the
fact that the package calculates the APV by directly sum of fractional survival probabilities,
while the formulas reported in Bowers et al. (1997) uses an analytical formula.
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Figure 3: Stochastic distribution of ä65
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