
Package ‘msProcess’
February 7, 2011

Type Package

Title Protein Mass Spectra Processing

Version 1.0.6

Date 2011-02-07

Author Lixin Gong, William Constantine, and Yu Alex Chen

Maintainer Lixin Gong <lgong@tibco.com>

Depends R (>= 2.12.0), methods, graphics, wmtsa, robust, XML, stats

DependsSplus RSQLite (>= 0.5-6), wmtsa, SPXML

Description This package provides tools for protein mass spectra
processing including data preparation, denoising, noise
estimation, baseline correction, intensity normalization, peak
detection, peak alignment, peak quantification, and various
functionalities for data ingestion/conversion, mass
calibration, data quality assessment, and protein mass spectra
simulation. It also provides auxiliary tools for data
representation, data visualization, and pipeline processing history recording and retrieval.

License GNU General Public License Version 2

Copyright 2007-2009 TIBCO Software Inc. All rights reserved.

URL http://www.insightful.com/services/research/proteome/default.asp

R topics documented:
msProcess-package . 3
apply . 3
argNames . 5
assignEvent . 6
calibrants . 7
calibrator . 8
catchEvent . 9
cypherGenXML2Bin . 10
eventHistory . 11
existHistory . 13

1

http://www.insightful.com/services/research/proteome/default.asp

2 R topics documented:

getHistory . 14
importBin2Sqlite . 15
importXMLDir . 16
ion.focus.delay . 17
isProcessRecorded . 18
matchObject . 19
msAlign . 20
msAssign . 22
msCalibrate . 23
msCharge . 25
msDenoise . 26
msDenoiseMRD . 28
msDenoiseSmooth . 31
msDenoiseWavelet . 31
msDenoiseWaveletThreshold . 35
msDetrend . 38
msExtrema . 40
msHelp . 41
msImport . 41
msImportCiphergenXML . 43
msLaunchExample . 44
msList . 45
msLogic . 46
msNoise . 47
msNormalize . 49
msNormalizeSNV . 50
msNormalizeTIC . 51
msObjects . 52
msPeak . 53
msPeakCWT . 55
msPeakInfo . 58
msPeakMRD . 59
msPeakSearch . 61
msPeakSimple . 62
msPlot . 63
msPrepare . 65
msQualify . 66
msQuantify . 68
msQuantifyCount . 69
msQuantifyIntensity . 70
msSet . 71
msSmoothApprox . 74
msSmoothKsmooth . 75
msSmoothLoess . 75
msSmoothMean . 76
msSmoothMonotone . 77
msSmoothMRD . 78
msSmoothSpline . 80
msSmoothSupsmu . 81
msVisual . 81
princomp2 . 82
proteins . 83

apply 3

qclist . 85
qcset . 86
readBinMatrix . 87
rescale . 88
setting . 88
spectrometer . 89
spectrum . 91
throwEvent . 91
writeBinBlocks . 92
zeroCross . 93

Index 95

msProcess-package Protein Mass Spectra Processing

Description

This package provides tools for protein mass spectra processing including data preparation, denois-
ing, noise estimation, baseline correction, intensity normalization, peak detection, peak alignment,
peak quantification, and various functionalities for data ingestion/conversion, mass calibration, data
quality assessment, and protein mass spectra simulation. It also provides auxiliary tools for data
representation, data visualization, and pipeline processing history recording and retrieval.

Details

Basic class structures:

msList Spectra List
msSet Spectra Set

Top level functions:

msImport Data Import
msPrepare Data Conversion
msDenoise Spectra Denoising
msDetrend Baseline Correction
msNormalize Intensity Normalization
msPeak Peak Detection
msAlign Peak Alignment
msQuantify Peak Quantification
msQualify Quality Assessment

Run library(help="msProcess") or packageDescription("msProcess") from
S-PLUS command line to get more general information about this package.

apply S3 generic apply method for msSet Class

4 apply

Description

The apply function in S-PLUS is S3 generic, but it is not so in R. For the msProcess package, the
apply function is overloaded to be an S3 generic function, relying on UseMethod("apply")
to distribute the call. The apply.default function is defined to be base::apply, so if the
class of the X input is not "msSet" then the standard R definition will be used.

Usage

apply(X, MARGIN, FUN, ..., type="intensity", pre=NULL, covar=NULL)

Arguments

X an msSet object.

MARGIN an integer denoting the dimension over which the given function is applied. Use
MARGIN=1 for rows and MARGIN=2 for columns.

FUN a function to be applied to the specified array sections, or a character string
giving the name of the function.

... any arguments to FUN. They are passed unchanged to each call of FUN and
include their names.

type a character string specifying the name of the array in the msSet object list to
operate over. A typical value is "intensity" or "noise", but the name of
any legitimate matrix attached to the primary msSet object list can be used for
type. Default: "intensity" (the intensity matrix).

pre a function that is applied to the matrix prior to processing the data. Typical
examples would be pre=t (matrix transpose), pre=log (log of matrix), etc.
Default: NULL (no function is applied a priori).

covar a named list of additional matrices to be parsed in the same manner as the pri-
mary matrix (specified by type). The contents of the covar matrices are also
sent to the FUN function as an input argument with the same name as that sup-
plied in the covar list. As an example, assuming x is an object of class msSet
that contains the matrices x$intensity and x$z, then the call:
apply(x, MARGIN=1, FUN="foo", type="intensity", covar=list(z=z)),
will ultimately result in calls foo(x$intensity[i,], z=x$z[i,]), where
i=1:numRows(x$intensity). Note that the matrix x$z need only have
the same number of rows in this case since MARGIN=1, but need not necessar-
ily contain the same number of columns, i.e., restrictions on the dimensions of
covar matrices not specfied by MARGIN are controlled by the FUN function.
Default: NULL (no covariate matrices).

Value

a matrix containing the result of the FUN function applied to the matrix of type type found in the
original msSet object X.

See Also

msList, msSet.

argNames 5

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

find the means of each spectrum
and convert the result to a single-row matrix
means <- apply(qcset, MARGIN=2, mean)
nc <- NCOL(qcset$intensity)
means <- matrix(means, ncol=nc)
print(means)

add the means (single-row) matrix to the original
msSet object and verify its existence
z <- msSet(qcset, means=means)
names(z)
is.matrix(z$means)

to illustrate the use of the 'covar' argument in apply,
create a faux function that finds tha maximum absolute
difference between each spectrum and its mean value
foo <- function(x,meanvals) max(abs(x-meanvals))
maxdiff <- as.vector(apply(z, MARGIN=2, FUN=foo, covar=list(meanvals=means)))
print(maxdiff)

verify the results: should get vector of nc zeros
unlist(lapply(seq(along=maxdiff), function(i,z,maxdiff)
vecnorm(max(abs(z$intensity[,i]-z$means[,i])) - maxdiff[i]),
z=z, maxdiff=maxdiff))

argNames Display the Argument List of a Function

Description

Displays only the argument names for a function.

Usage

argNames(x)

Arguments

x the name of a function. A character string is also accepted, and is useful when
the function name would not be interpreted as a name by the parser.

Value

the names of the arguments.

See Also

args.

6 assignEvent

Examples

argNames(lm)
argNames("lm")

assignEvent Update a Previously Thrown History Event with New Information

Description

Updates a history event previously thrown to a specified frame (or envirnoment in R). Typically,
a caller function will have thrown the event while the callee(s) update the event information using
the assignEvent function. That information can then be retrieved (typically by the caller) using
catchEvent.

Usage

assignEvent(record, process=NULL, histname="event.history", envir=NULL)

Arguments

record a list containing named character vectors describing the event in the form list(proc2="Description
1", proc2="Description 2") and so on. Here, EventName is a charac-
ter string defining the name of the event, and the named list variables proc1 and
proc2 are character strings that define the specific proceedings for that event.
Each of these proceedings is descibed more thoroughly by the assigned charac-
ter string. If, for a given event, the user wishes only to register the name of the
event sans extra proceedings information, set this variable to a blank character
string "" and specify only the second event argument.

envir the frame in S-PLUS (or environment in R) designated for the processing
and storage of pipeline history data. Default: msProcessEnv, a global envi-
ronment impicitly set by a previous call to throwEvent. In general, the user
should rely on the specified default value.

histname a character string defining the name of the history variable stored in the specified
frame. Default: "event.history".

process a character string defining a title for the current information being recorded.
This typically serves as a flag for other functions so that the same process is not
written more than once. This can be checked using the isProcessRecorded
function.

Value

no output is returned directly. Instead, the variable histname in frame frame is updated with the
supplied event information.

Note

If assignable, the specified histname object is updated in the specified frame with the new process
information.

calibrants 7

See Also

throwEvent, catchEvent, isProcessRecorded.

Examples

throw an event in the global frame
envir <- msGlobalEnv()
throwEvent("The 2005 British Open Championship", envir=envir)

assign data to the thrown event
record <- list(Winner="Tiger Woods")
process <- "champion"
assignEvent(record, "champion", envir=envir)

verify process has been recorded: TRUE
isProcessRecorded(process, envir=envir)

catch event
catchEvent(NULL, envir=envir)

calibrants Class Representing a Set of Calibrants

Description

A set of calibrants only contains a small number (typically 5 to 7) of proteins of known mass.

Class slots:

masses A numeric vector of protein masses.

counts An integer vector of protein counts/abundance.

Class extends:

proteins by direct inclusion.

The class calibrants inherits all the methods of the class proteins.

Usage

calibrants(masses, counts)

Arguments

masses A positive numeric vector of protein masses, whose elements should be unique.

counts A positive integer vector of protein counts/abundance, which should have the
same length as masses.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

8 calibrator

See Also

proteins, spectrometer.

Examples

generate two protein samples
cal1 <- calibrants(masses=c(1, 95, 190), counts=as.integer(c(500, 3000, 10000)))
cal2 <- calibrants(masses=10000+200*(0:3), counts=as.integer(c(12000, 4000, 2000, 1000)))

print the synopsis of the protein samples
cal1
cal2

mix the protein samples
cal <- cal1 + cal2

visualize the calibrants
plot(cal, type="h")

calibrator Class Representing the Calibrator of a Mass Spectrometer

Description

Class slots:

time.mean a numeric scalar denoting the mean time-of-flight of the calibrants.

model an object of class lm.

error.rel a numeric vector denoting the relative calibration error for the calibrants.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

See Also

spectrometer.

catchEvent 9

catchEvent Catch a History Event that has been Thrown

Description

Catches a history event that has been thrown, extracts the history, and attaches/updates the history
in the primary input object.

Usage

catchEvent(x, histname="event.history", envir=NULL)

Arguments

x an object of arbitrary class. Optionally, this input may already contain an event
history in which case the history is updated after being caught. Otherwise the
new history is attached.

envir the frame in S-PLUS (or environment in R) designated for the processing
and storage of pipeline history data. Default: msProcessEnv, a global envi-
ronment impicitly set by a previous call to throwEvent. In general, the user
should rely on the specified default value.

histname a character string defining the name of the history variable stored in the specified
frame. Default: "event.history".

Value

a replication of x with the event history updated/attached.

Note

If available, the last entry of the specified histname object (a list located in the specified frame)
is extracted and written to the input x via the msSet constructor function. If no other entries exist
after extraction, the histname list is deleted from the specified frame.

See Also

throwEvent, assignEvent, isProcessRecorded, eventHistory.

Examples

throw an event
envir <- msGlobalEnv()
throwEvent("Superbowl XL", envir=envir)

assign data to the thrown event
record <- list(NFC="Seattle Seahawks", AFC="Pittsburgh Steelers")
assignEvent(record)

catch event
catchEvent(NULL)

10 cypherGenXML2Bin

cypherGenXML2Bin Convert Cyphergen XML files into binary files

Description

Convert one or a set of Cyphergen XML files into binary files to be imported into SQLite database.

Usage

cypherGenXML2Bin(name, pattern, path, mz, tof = FALSE, maxRows = 10000,
append = TRUE, verbose=TRUE, ...)
cypherGenXMList2BinBlocks(x, pattern, tof = FALSE, maxRows = 10000,
maxCols = NULL, path = ".", category = NULL, verbose = 1, ...)

Arguments

name A character string specifying the name of a xml file.

pattern A character string to specify the common prefix for a series of binary files.

path A character to specify the name of input directory.

mz A numeric vector specifying mz peaks to be used.

maxRows An integer defining the maximum number of rows in a binary file.

tof A logical indicating whether TOF data or the processed data should be read.

append A logical. If FALSE, then existing files will be overwritten. Otherwise, data will
be appended onto the existing file.

x A vector of characters specifying a set of XML files to be imported.

maxCols An integer defining the maximum number of columns in a binary file, or NULL,
in which case all xml files will be put into one sqliteTable.

category A data.frame object containing categorical information.

verbose A logical or a non-negative integer value to control whether or not to print out
extra messages during processing. The larger the value, the more information is
printed out.

... Additional optional arguments.

Details

cypherGenXML2Bin converts a single Cyphergen XML file into a series of binary files via func-
tion writeBinBlocks. Each file contains at most maxRows mz peaks. Currently we assume
calibration has been made by Cyphergen mass spectrometer. We might support customized input of
a, b, t0, u in the future.

cypherGenXMList2BinBlocks is a batch version of cypherGenXML2Bin. It converts a
list of xml files into a list of binary files. Each binary file contains at most maxRows rows and
maxCols columns. If provided, category will be used as group factor to partition XML files
into groups, and each binary file contains XML files within the same group.

mz provides a calibration standard to make all mass spectra sharing the same set of mass-charge
ratio peaks.

maxRows is used as input to mxRow in function writeBinBlocks.

eventHistory 11

Value

cypherGenXML2Bin returns NULL.

cypherGenXMList2BinBlocks returns a list containing the following items:

sampleTable A data frame that contains table topology.
categoryTable

A data frame that contains categorical information.

Author(s)

Y. Alex Chen <ychen@insightful.com>

See Also

readBinMatrix, writeBinBlocks, importBin2Sqlite

eventHistory Event History Creation

Description

The S+Proteome module provides a wealth of preprocessing functionality, some or all of which
may be used as a preface for subsequent classification investigations. This function allows the
user to document the processing pipeline by adding text to a particular attribute of an object that
describes the current processing state. Each process in the pipeline is referred to as an event. This
function will typically not be called directly by the user and will alternatively be called from within
various preprocessing functions.

Usage

eventHistory(x, ..., sub.label=" ", time.stamp=date(), action="append")

Arguments

x an object of any class.

... one or more named lists, each containing named character vectors describing an
event to register. Each list must be in the form EventName = list(proc2="Description
1", proc2="Description 2") and so on. Here, EventName is a character string
defining the name of the event, and the named list variables proc1 and proc2
are character strings that define the specific proceedings for that event. Each
of these proceedings is descibed more thoroughly by the assigned character
string. If for a given event, the user wishes only to register the name of the
event sans extra proceedings information, it is allowable to make the call ala
eventHistory(x, "Event A", "Event B") and so on. In this case,
each character string is taken to mean the name of the corresponding event.

action a character string defining the action to take with the new history information.
Supported values are as follows:

prepend Prepend new history to the existing event history.
append Append new history to the existing event history.
replace Replace the event history with the new history.

12 eventHistory

merge Update old events which have a common event name with new events.
The uncommon events are appended.

Default: "append".

sub.label a character string used to preface the proceedings lines for each event when a
history summary is printed on the command line. Default: " " (3 blanks).

time.stamp a character string defining a time stamp for the process(es) being documented.
This time stamp will be automatically added to each process in the event. De-
fault: date().

Value

a replication of the original object, with an attached attribute of class eventHistory containing
a vector of formatted character strings defining the processing history of the input object.

S3 METHODS

@lsb event data access. Input either a character string or an integer defining the registered event in
the history.

print pretty-prints the event history. Optional arguments for this method are

pre Character string to preface each event header. Default: paste("[", attr(x, "index"),
"]", sep = "").

See Also

assignEvent, isProcessRecorded, existHistory, getHistory, eventHistory.

Examples

create a list of simple objects
z <- list(dog="chihuahua", vals=1:5, colors=c("red","green","blue"))

remove mean from vals and document as a history
event
z$vals <- z$vals - mean(z$vals)
z <- eventHistory(z, "Process A"=list(values="mean removed"))

now sort the colors and change the dog name,
and document both actions in the same call
to msHistory as separate processes
z$colors <- sort(z$colors)
z$dog <- "pomeranian"
z <- eventHistory(z, "Process B"=list(colors="sorted alphabetically"),

"Process C"=list(dog="name change", result="more hair"))

add an event without proceedings
z <- eventHistory(z, "Event A", "Event B")

print the history
print(getHistory(z))

replace some of the events with new information
z <- eventHistory(z, "Event A"=list(show="pony"), "Process A",
action="merge")
print(getHistory(z))

existHistory 13

prepend some new events
z <- eventHistory(z, new=list(alpha="first greek letter"),

action="prepend")
print(getHistory(z))

replace event history altogether
z <- eventHistory(z, newest=list(omega="final greek letter"),

action="replace")
print(getHistory(z))

return an object of class eventHistory, i.e.,
not attached to any other object
eventHistory(NULL,

symphony=list(string="violins and cellos", percussion="drums",
reed="flutes and oboes"))

existHistory Verify Existence of an Embedded History Object

Description

Checks for the existence of an object of class eventHistory attached an as attribute to the input
object. Additionally, the user can seek the existence of a particular event within that history.

Usage

existHistory(x, event=NULL)

Arguments

x an object of arbitrary class.

event a character string defining a registered event to query. If no such event has been
registered in a history object (or the history object does not exist) then a FALSE
is returned. Default: NULL (do not search for a specific event).

Value

a logical value. A TRUE value is returned if a history object exists as an attribute of the primary
input object x. If event is also specified, the output will be a logical value defining whether or not
that event has been registered in the history object.

See Also

assignEvent, isProcessRecorded, getHistory, eventHistory.

Examples

check for the existence of a registered history
in an object without one (FALSE)
z <- 1:5
existHistory(z)

14 getHistory

create a simple history
z <- eventHistory(z, "Event A"=list(number="first", positive="yes"),

"Event B"=list(horse="mustang"))

check for a registered history (TRUE)
existHistory(z)

check to see if "Event A" has been registered
(TRUE)
existHistory(z,"Event A")

check to see if "Event D" has been registered
(FALSE)
existHistory(z,"Event D")

getHistory Extract an Event History from an Arbitrary Object

Description

Extracts a registered event history from an arbitrary object or a specified event within that history.

Usage

getHistory(x, event=NULL)

Arguments

x an object of any class.

event a character string or integer defining a specific event to query. If no such event
has been registered in a history object (or the history object does not exist) then
a NA is returned. Default: NULL (do not extract a specific event).

Value

an object of class msHistory. If event is specified, only that event is returned in the history.

See Also

assignEvent, isProcessRecorded, existHistory, eventHistory.

Examples

create a simple history
z <- 1:5
z <- eventHistory(z, "Event A"=list(number="first", positive="yes"),

"Event B"=list(horse="mustang"),
"Event C"=list(string="violins and cellos", percussion="drums",

reed="flutes and oboes"))

extract the entire event history
getHistory(z)

importBin2Sqlite 15

extract only Event B (each method is
equivalent)
getHistory(z,"Event B")
getHistory(z,2)
getHistory(z)["Event B"]
getHistory(z)[2]

return entire history except the second event
(each method is equivalent)
getHistory(z,-2)
getHistory(z)[-2]

attempt to extract a non-existent event (NA is
returned)
getHistory(z)["dogs"]

importBin2Sqlite Import binary file into SQL

Description

Functions to import binary files into one or multiple SQL tables. binblocks2SQLite reads a
series of binary files into a single table. importBin2Sqlite is an extension to binB2SQLite
in order to read a series of binary files into multiple SQLite tables.

Usage

binblocks2SQLite(conn, path, tablename, columnID, pattern, what = "double",
append = FALSE, verbose = TRUE, ...)

importBin2Sqlite(conn, path, tablename, sampleTable, what = "double", categoryTable = NULL,
prefix = "", verbose = 1, ...)

Arguments

conn Either a connection object or a character.
path A character defining
tablename A character string specifying the SQL table name.
columnID A vector of characters specifying the column names.
pattern A character string specifying patterns in file names.
what A character to specifying the data type in the binary file. It is possible

that a binary file might contain several types of data, but we don’t support that
currently.

append A logical value. If FALSE, then existing tables will be overwritten. Otherwise,
data will be appended onto the existing table.

verbose A logical value or non-negative integer to control whether or not to print out
extra information.

sampleTable A data frame containing three fields: sampleID, tableID and pattern.
categoryTable

A data frame containing categorical information.
prefix A character string specifying optional prefix on table names.
... Additional optional arguments.

16 importXMLDir

Details

binB2SQLite reads a series of binary files with names sharing pattern pattern into a single
SQLite table name on database conn.

importBin2Sqlite requires a data frame, (sampleTable) that contains table topology,
i.e. what table contains what columns, and what table contains what kind of binary files. The
sampleTablewill be imported to SQL database conn in additon to all binary files. If an optional
data frame category is specified, it will also be imported into SQLite. In that case, users can use
SQL JOIN to get category related data.

Value

Both functions return a logical indicating whether the importing was successful or not.

Note

Users must make sure that all binary files share the same dimensionality.

Author(s)

Y Alex Chen <ychen@insightful.com>

See Also

readBin, readBinMatrix, writeBinBlocks

importXMLDir Import a directory of cyphergenXML files into SQLite

Description

A wrapper function to import a directory of cyphergenXML files into a SQLite database.

Usage

importXMLDir(xmldir, dbname, tablename, tof = FALSE, maxRows = 10000,
maxCols = NULL, tmpdir = tempdir(), splitSubdir = TRUE, verbose = 0,
...)

Arguments

xmldir A character specifying the directory that holds xml files.
dbname A character specifying the full name of a SQLite database file, including path.
tablename A character string specifying the SQL table name.
tof A logical determining whether reading in TOF or processed data.
maxRows An integer specifying the largest number of rows that a intermediate binary file

can hold.
maxCols An integer specifying the largest number of columns that the resulting SQLite

table can hold. Or a NULL value, indicating that all xml files to be put into a
single table. If the number of cyphergenXML files are too large, it is recom-
mended to specify a maxCols at around 100 so that xml files can be partitioned
into several SQLite tables.

ion.focus.delay 17

tmpdir A character specifying the name of the temporary directory to store binary files.

splitSubdir A logical. If TRUE, the subdirectory will be used as grouping factors: all xml
under the same subdirectory will be put into the same category. Otherwise, no
category structure will be used. See cypherGenXMList2BinBlocks for
details.

verbose A logical or non-negative integer specifying the extend of extra messages to be
printed out.

... Additional optional arguments.

Details

This function will import all cyphergenXML files under a certain directory (including subdirectory)
into a SQLite database. Each XML file contains one mass spectra. XML files can be grouped into
subdirectories so that each group of XML files will go into the same SQLite table. Otherwise all
XML files are treated as the same group. SQLite Tables should not contain too many columns.
Therefore a limit is given by maxCols. If the number of XML files in a group is too large, we split
the XML files evenly into multiple tables. maxRows determined the size of intermediate binary
files. If it is too large, the intermediate file might be out of memory and could not be read in.

Value

It returns a logical indicating whether the importing was successful or not.

Author(s)

Y Alex Chen

See Also

importBin2Sqlite, cypherGenXMList2BinBlocks

Examples

Not run:
xmldir <- "E:\SQLData\UPCI-2007-06\UPCI AUG WCX"
dbname <- "e:\mydatabase1.db"
system.time(p<-importXMLDir(xmldir, dbname, tof=FALSE, split=FALSE,
maxRows=5000, tablename="nocattable", verbose=3))
conn <- dbConnect("SQLite", "e:/mydatabase1.db", cache.size=100000)
dbListTables(conn)

End(Not run)

ion.focus.delay Simulating Linear MALDI-TOF with Ion Focus Delay

Description

Given the mass, initial velocity, and the instrument parameters, it produces the time-of-flight for the
protein particles.

18 isProcessRecorded

Usage

ion.focus.delay(mass, v0, setting)

Arguments

mass A vector of masses in daltons.

v0 A matching vector of initial velocities in meters/second.

setting An object of class setting containing the machine setting.

Value

The time-of-flight for the protein particles.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

See Also

spectrometer.

isProcessRecorded Verifies the Existence of a Recorded Process in a Thrown Event

Description

Checks for the existence of a previously recorded process in a thrown event history.

Usage

isProcessRecorded(process, histname="event.history", envir=NULL)

Arguments

process a character string defining the name of the process.

envir the frame in S-PLUS (or environment in R) designated for the processing
and storage of pipeline history data. Default: msProcessEnv, a global envi-
ronment impicitly set by a previous call to throwEvent. In general, the user
should rely on the specified default value.

histname a character string defining the name of the history variable stored in the specified
frame. Default: "event.history".

Value

a logical value. If TRUE, the process has already been recorded in the thrown event.

See Also

throwEvent, catchEvent, assignEvent, eventHistory.

matchObject 19

Examples

throw an event
envir <- msGlobalEnv()
throwEvent("The 2005 British Open Championship", envir=envir)

assign data to the thrown event
record <- list(Winner="Tiger Woods")
process <- "champion"
assignEvent(record, process)

verify process has been recorded: TRUE
isProcessRecorded(process)

catch event
catchEvent(NULL)

once event has been caught, isProcessRecorded returns FALSE
isProcessRecorded(process)

matchObject Search for an Object Name Matching a Character String on the Data

Description

Returns a character string which is the name of an S-PLUS object in a position on the search list.

Usage

matchObject(what, ignore.case=TRUE)

Arguments

what a character string to be searched as the name of an S-PLUS object.

ignore.case if TRUE upper- and lowercase analogs are considered equivalent when match-
ing.

Value

a character string which is the name of an S-PLUS object in a position on the search list is returned.

See Also

ls, objects.

Examples

matchObject("max")
matchObject("lm")
matchObject("glm")

20 msAlign

msAlign Peak Alignment

Description

Performs cross-spectral alignment of detected peaks.

Usage

msAlign(x, FUN="cluster", mz.precision=0.003, snr.thresh=10,...)

Arguments

x An object of class msSet containing a "peak.list" element.

FUN A character string specifying the method to use for alignment. Choices are

"cluster": clusters peaks using one-dimensional hierarchical clustering and
uses distances between peak locations as the similarity measure.

"gap": analyzes peaks sequentially from low mass to high mass. Two adja-
cent peaks are classified into the same class if the distances between their
locations is smaller than the specified threshold.

"vote": clusters peaks iteratively. Each peak is associated with a window
and the number of peaks that fall within the window across all samples is
counted. The peak corresponding to the highest count forms a new peak
cluster and all the peaks that have contributed to this peak are removed.
The procedure is repeated until all peaks are exhausted from every sample.

"mrd": clusters peaks by smoothing a histogram of scale-based feature loca-
tions for all spectra as identified by a call to msPeak(x,FUN="mrd",
...). The midpoints of the valleys in the smoothed histogram identifies
the common peak locations across corresponding spectra.

Default: "cluster".

mz.precision A numeric value, used to construct the threshold when performing clustering.
The default value is 0.003 because SELDI data is often assumed to have ±0.3%
mass drift, i.e., a peak at mass w could represent a protein with a mass within
the interval [w(1− 0.003), w(1 + 0.003)].

snr.thresh A non-negative numeric value. The peaks with signal-to-noise ratio larger than
this value will be used to construct the common set of peak classes. Default: 10.

... Additional arguments passed to the msAlignMRD function.

Details

Currently, the mass accuracy of a mass spectrometer is proportional to the mass-to-charge (m/z)
values. Thus, for a given set of spectra, the locations of the detected peaks will vary from spectrum
to spectrum. In order to perform a comparative analysis of an ensemble of spectra, it is then a
prerequisite to perform inter-sample alignment of the detected peaks. This process is normally
called peak alignment or clustering.

The basic idea for peak alignment is to group peaks of similar molecular weight across all spectra
into peak clusters or classes to form a superset, allowing for slight variations in mass. Each cluster
is representative of a particular protein. Various methods have been proposed to align the peaks,
which differ in how the superset is constructed.

msAlign 21

Value

An object of class msSet, which is the input x with the added element "peak.class": a ma-
trix with peak classes as rows and some summary statistics of the peak clusters as columns. These
statistics include the location, left bound, right bound and peak span of the peak classes in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span") and mass mea-
sure ("mass.loc", "mass.left", "mass.right", "mass.span").

References

Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., and Kuerer, H.M., “Improved peak
detection and quantification of mass spectrometry data acquired from surface-enhanced laser des-
orption and ionization by denoising spectra with the undecimated discrete wavelet transform," Pro-
teomics, 5:4107–17, 2005.

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q.T., “Sam-
ple classification from protein mass spectrometry, by ’peak probability contrasts’," Bioinformatics,
20(17):3034–44, 2004.

Yasui, Y., McLerran, D., Adam, B.L., Winget, M., Thornquist, M., and Feng, Z., “An automated
peak identification/calibration procedure for high-dimensional protein measures from mass spec-
trometers," Journal of Biomedicine and Biotechnology, 2003(4):242–8, 2003.

Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, Jr., G.L., Qu, Y., Potter, J.D., Winget,
M., Thornquist, M., and Feng, Z., “A data-analytic strategy for protein biomarker discovery: Pro-
filing of high-dimensional proteomic data for cancer detection," Biostatistics, 4(3):449–63, 2003.

T.W. Randolph and Y. Yasui, Multiscale Processing of Mass Spectrometry Data, Biometrics, 62:589–
97, 2006.

See Also

msPeak, msQuantify.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract several spectra from the build-in
dataset
z <- qcset[, 1:8]

denoising
z <- msDenoise(z, FUN="wavelet", n.level=10, thresh.scale=2)

local noise estimation
z <- msNoise(z, FUN="mean")

baseline subtraction
z <- msDetrend(z, FUN="monotone", attach=TRUE)

intensity normalization
z <- msNormalize(z)

peak detection
z <- msPeak(z, FUN="simple", use.mean=FALSE, snr=2)

peak alignment

22 msAssign

z <- msAlign(z, FUN="cluster", snr.thresh=10,
mz.precision=0.004)

extract the peak.class
z[["peak.class"]]

visualize the alignment
plot(z, process="msAlign", subset=1:8, offset=100,

xlim=c(13000, 17000), lty=c(1,4))

msAssign Utility functions for maintaining pipeline processing histories

Description

For mutual compatibility in S-PLUS and R, these functions switch on is.R as an interface to
the assign, exists, get, and remove functions. In addition, the msGlobalEnv function
outputs the environment in R and frame in S-PLUS associated with the global work environment
and session database, respectively. The msNewEnv returns the integer 1 in S-PLUS (for frame 1,
the expression frame) or a new environment in R (ala new.env).

Usage

msAssign(x, value, envir)
msExists(x, envir)
msGet(x, envir)
msGlobalEnv()
msNewEnv()
msRemove(x, envir)

Arguments

x a character string denoting the name of the object.

value any S-PLUS or R object; the value to be assigned the name in x. Only used in
the msAssign function.

envir the frame in S-PLUS (or environment in R) designated for the processing
and storage of pipeline history data. Default: msProcessEnv, a global envi-
ronment impicitly set by a previous call to throwEvent. In general, the user
should rely on the specified default value.

Value

the standard output of the related functions as described in the Description section.

See Also

assign, exists, get, remove.

msCalibrate 23

Examples

envir <- msGlobalEnv()
x <- "myval"

msAssign(x, 1:10, envir)
msExists(x, envir)
msGet(x, envir)
msRemove(x, envir)
msExists(x, envir)

msCalibrate Constructor Function for Objects of Class msCalibrate

Description

Computes the parameters of the quadratic equation used by Ciphergen mass spectrometers to con-
vert time-of-flight to m/z values.

Usage

msCalibrate(mz, tof, u=20000, FUN="lm", digits=4, predict.mz=TRUE)

Arguments

mz A vector of mass-to-charge (m/z) values (in daltons) of the calibrants used.
This input may also be a list or named vector whose objects have (at the very
least) the names "u", "t0", "a", and "b", each containing a numeric scalar
coresponding to the conversion coefficients. In this case, the predict method
is called to return the predicted m/z values for the tof input.

tof A numeric vector of corresponding time-of-flight measures (in nanoseconds) of
the calibrants used.

FUN A character string specifying the method for quadratic fitting. Possible choices
are "lm", "lmRobMM", "ltsreg", "lmsreg", "l1fit", "rreg". De-
fault: "lm".

digits The maximum precision to use in calculating the m/z values. Default: 4.

predict.mz A logical. If TRUE, predicts the mz from the input tof. Default: TRUE.

u A numeric value denoting the voltage (in volts) used. Default: 20000.

Details

Assuming that the mass spectrometry data was recorded by a mass spectrometer using time of flight
(TOF) to register the number of ions at each mass/charge (m/z) value, mass calibration means to
convert a raw TOF t to m/z. The m/z ratio is usually a direct measure of mass because the protein
molecules are almost exclusively singly charged, i.e., z=+1.

Typically, the calibration process involves acquiring a spectrum from a standard sample with at
least five proteins or peptides of various molecular weights, spanning the mass range of interest. A
quadratic equation relating t to mz is then fit to the t values of the standard peaks in this spectrum:
m/z
U = a(t − t0)2 + b, where U is the preset voltage. The equation (with the fitted a, b, and
t0 coefficients) is then used to convert t to m/z in mass spectra that are collected under the same
instrument conditions such as laser intensity, approximate date, and focusing mass or time lag.

24 msCalibrate

Value

An object of class msCalibrate.

S3 METHODS

coef Get regression coefficients.

plot Plot the predicted m/z values versus supplied tof. Optional plot parameters are as follows:

type The plot type. Default: "b".
xlab A character string defining the abscissa label. Default: "tof".
ylab A character string defining the ordinate label. Default: "m/z".
add A logical value. If TRUE, the plot is added using the current par() layout. Otherwise a

new plot is produced. Default: FALSE.
... Additional plot arguments, i.e., par() options.

predict Predictm/z values from from tof input. The following optional arguments are supported:

newtof New TOF values to predict over. If missing, the original TOF values will be used.
Default: NULL (missing).

digits The maximum precision to use in calculating the m/z values. Default: 4.

print Print the results.

See Also

lm, msCalibrate.

Examples

set up parameters
u <- 20000
t0 <- 0.0038
a <- 0.0002721697
b <- 0.0

simulate m/z and time-of-flight
tof <- seq(from=20, to=60, length=7)
mz <- u*(a*(tof - t0)^2 + b)

perform quadratic fitting
fit <- msCalibrate(mz=mz, tof=tof, u=u, FUN="lm")

check the fitted parameters
print(fit)

do prediction: convert tof to mass
tof2 <- seq(from=min(tof), to=max(tof), length=60)
mz.predicted <- predict(fit, tof2)

visualization
plot(fit, type="p", col=1, xlim=range(tof2),

ylim=range(mz.predicted))
lines(tof2, mz.predicted, col=2)
legend(x=20, y=20000, col=1:2, pch="o ", lty=c(0,1),

legend=c("true", "predicted"))

msCharge 25

msCharge Charge Detection

Description

Find proteins that possibly have multiple charges. This is achieved by detecing proteins whose mz
values are nearly exact multiples of others and hence potentially represent the same protein.

Usage

msCharge(x, ncharge=2:3, mz.precision=0.003,
event="Charge Detection", ...)

Arguments

x An object of class msSet with an existing element "peak.class".

... Not used.

event A character string denoting the name of the event to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"Charge Detection".

mz.precision A numeric value, used to construct the threshold when comparing the multiples
of mz values. The default value is 0.003 because SELDI data is often assumed
to have ±0.3% mass drift, i.e., a peak at mass w could represent a protein with a
mass within the interval [w(1− 0.003), w(1 + 0.003)].

ncharge A numeric integer vector denoting the multiple charges of interest. All of its
elements must be larger than 1.

Value

An object of class msSet with charge estimate attached as element "peak.charge".

See Also

msSet.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract several spectra from the build-in
dataset
z <- qcset[, 1:8]

denoising
z <- msDenoise(z, FUN="wavelet", n.level=10, thresh.scale=2)

local noise estimation
z <- msNoise(z, FUN="mean")

baseline subtraction
z <- msDetrend(z, FUN="monotone", attach=TRUE)

26 msDenoise

intensity normalization
z <- msNormalize(z)

peak detection
z <- msPeak(z, FUN="simple", use.mean=FALSE, snr=2)

peak alignment
z <- msAlign(z, FUN="cluster", snr.thresh=10,

mz.precision=0.004)

charge detection
z <- msCharge(z, ncharge=2:5, mz.precision=0.003)

extract the peak.charge
z[["peak.charge"]]

msDenoise Mother Function for Mass Spectra Denoising

Description

Denoise spectra with various functions.

Usage

msDenoise(x, FUN="wavelet",
attach.noise=TRUE, event="Denoising", ...)

Arguments

x An object of class msSet.

... Additional arguments to FUN. They are passed unchanged to each call of FUN
and include their names. See the help documentation of the specified FUN for
details.

FUN Either an object of class "character" or of class "function".
character: A character string denoting the method to use in denoising the data.
Supported choices are "wavelet" for wavelet shrinkage, "mrd" for partial
summation of a wavelet-based multiresolution decomposition, and "smooth"
for robust running medians. Default: "wavelet".
function: A user-defined function with an argument list of the form (x, ...)
where x is a required argument corresponding to a numeric vector (typically
these values will be the intensity values of a mass spectrum).
In either case, the additional arguments ... will be passed directly to the spec-
ified FUN.

attach.noise A logical indicating if the noise removed should be attached or not. Default:
TRUE.

event A character string denoting the name of the event to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"Denoising".

msDenoise 27

Value

An object of class msSet, optionally, with the estimated noise attached as element "noise".

Note

If FUN="mrd", an mrd object containing meta information regarding the multiresolution decom-
position is attached to the msSet output object for subsequent use by other MRD-based function
calls such as msPeak(x, FUN="mrd",

See Also

msDenoiseSmooth, msDenoiseWavelet, msDenoiseMRD, matchObject.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

denoise a spectrum portion via waveshrink and a
smoothing function
mz <- (qcset$mz > 3000 & qcset$mz < 5000)
data <- qcset[mz, 1, drop=FALSE]

add a little Gaussian noise for illustration
noise <- rnorm(length(data$intensity), sd=stdev(data$intensity)/3)
xnoise <- data
xnoise$intensity <- data$intensity +

matrix(noise, ncol=1)

denoise using the supported routines
z1 <- msDenoise(xnoise, FUN="wavelet")
z2 <- msDenoise(xnoise, FUN="smooth")
z3 <- msDenoise(xnoise, FUN="mrd", levels=4:6)

create a user-defined (albeit naive) denoising
function
my.fun <- function(x, wavelet="d4"){

filt <- wavDaubechies(wavelet=wavelet, norm=FALSE)$scaling
return(filter(x, filt))

}
z4 <- msDenoise(xnoise, FUN=my.fun, wavelet="s12")

create a stackplot of the results
z <- list(original=data$intensity[,1],

noisy=xnoise$intensity[,1],
waveshrink=z1$intensity[,1],
smooth=z2$intensity[,1],
mrd=z3$intensity[,1],
"my function"=z4$intensity[,1])

wavStackPlot(z, col=seq(along=z), same.scale=TRUE)

28 msDenoiseMRD

msDenoiseMRD Denoising a Mass Spectrum via Partial Summation of an MRD

Description

Forms a multiresolution decomposition (MRD) by taking a specified discrete wavelet transform
of the input spectrum and subsequently inverting each level of the transform back to the "time"
domain. The resulting components of the MRD form an octave-band decomposition of the original
spectrum, and can be summed together to reconstruct the original spectrum. Summing only a subset
of these components can be viewed as a denoising operation if the "noisy" components are excluded
from the summation.

Usage

msDenoiseMRD(x, wavelet="s8",
levels=1, xform="modwt", reflect=TRUE,
keep.smooth=TRUE, keep.details=TRUE,
process="msDenoiseMRD")

Arguments

x A vector containing a uniformly-sampled real-valued time series.

keep.details A logical value. If TRUE, the details corresponding to the specified levels are
included in the partial summation over the MRD components. The user also has
the choice to exclude the smooth in the summation via the keep.smooth op-
tion, but one of keep.details and keep.smooth must be TRUE. Default:
TRUE.

keep.smooth A logical value. If TRUE, the smooth at the last decomposition level is added to
the partial summation over specified details. The smooth typically contains low-
frequency trends present in a spectrum, so removing the smooth (keep.smooth=FALSE)
will result in removing the trend in such cases. The user also has the choice to
exclude the details in the summation via the keep.details option, but one
of keep.details and keep.smooth must be TRUE. Default: TRUE.

levels An integer vector of integers denoting the MRD detail(s) to sum over in forming
a denoised approximation to the orginal spectrum (the summation is performed
across scale and nto across time). All values must be positive integers, and
cannot exceed floor(logb(length(x),2)) if reflect=FALSE and, if
reflect=TRUE, cannot exceed floor(logb((length(x)-1)/(L-1)
+ 1, b=2))whereL is the length of the wavelet filter. Use the keep.smooth
option to also include the last level’s smooth in the summation. Default: 1.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. This pro-
cess is not updated if it already exists in the event history. Default: "msDenoiseMRD".

reflect A logical value. If TRUE, the last LJ = (2n.level−1)(L−1)+1 coefficients of
the series are reflected (reversed and appended to the end of the series) in order
to attenuate the adverse effect of circular filter operations on wavelet transform
coefficients for series whose endpoint levels are (highly) mismatched. The vari-
able LJ represents the effective filter length at decomposition level n.level,
where L is the length of the wavelet (or scaling) filter. A similar operation is

msDenoiseMRD 29

performed at the beginning of the series. After synthesis and (partial) summa-
tion of the resulting details and smooth, the middle N points of the result are
returned, where N is the length of the original time series. Default: TRUE.

wavelet A character string denoting the filter type. See wavDaubechies for details.
Default: "s8".

xform A character string denoting the wavelet transform type. Choices are "dwt"
and "modwt" for the discrete wavelet transform (DWT) and maximal overlap
DWT (MODWT), respectively. The DWT is a decimated transform where (at
each level) the number of transform coefficients is halved. GivenN is the length
of the original time series, the total number of DWT transform coefficients isN .
The MODWT is a non-decimated transform where the number of coefficients at
each level is N and the total number of transform coefficients is N*n.level.
Unlike the DWT, the MODWT is shift-invariant and is seen as a weighted av-
erage of all possible non-redundant shifts of the DWT. See the references for
details. Default: "modwt".

Details

Performs a level J decimated or undecimated discrete wavelet transform on the input series and
inverts the transform at each level separately to produce details D1, . . . , DJ and smooth SJ . The
decomposition is additive such that the original series X may be reconstructed ala X = SJ +∑J

j=1Dj . As the effective wavelet filters at level j are nominally associated with approximate
band pass filters, the detailsDj correspond approximately to normalized frequencies on the interval
[1/2j+1, 1/2j], while the content of the smooth SJ corresponds approximately to normalized fre-
quencies [0, 1/2J+1]. The collection of details and smooth form a multiresolution decomposition
(MRD).

With the intent of removing unwanted noise events, a summation over a subset of MRD components
may be calculated yielding a smooth approximation to the original spectrum. For example, sum-
ming all MRD components beyondD1 is tantamount to a low-pass filtering of the original spectrum
(whether or not this is a relevant and sufficient noise removal technique is left to the discretion of
the practitioner). This function allows the user to specify the decomposition levels they wish to sum
over in order to form a multiresolution approximation. The inclusion of the last level’s smooth in
the summation is controlled by the optional keep.smooth argument.

The user may also select either a decimated wavelet transform (DWT) or an undecimated wavelet
transform (MODWT). However, we recommend that the user stick with the MODWT for the fol-
lowing reasons:

Translation invariance Unlike the DWT, the MODWT is translation invariant, meaning that a (cir-
cular) shift of the input spectrum will result in a corresponding (circular) shift of the transform
coefficients.

Smoothness The MODWT coefficients are a result of cycle-spinning, where averages are taken
over all unique DWTs resulting from various circular shifts of the original spectrum. The
resulting MODWT MRD is relatively more smooth than the corresponding DWT MRD.

Zero phase aligment Unlike the DWT MRD, the MODWT MRD produces components that are
associated with exactly zero phase filter operations such that events (such as peaks) in the
details and smooth line up exactly with those of the original spectrum in TOF (or m/z).

Computational speed The DWT is faster than the MODWT, but the MODWT is still quite fast, re-
quiring multiplication and summation operations on the same order as the popular Fast Fourier
Transform.

30 msDenoiseMRD

Value

A vector containing the denoised series.

References

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

T.W. Randolph and Y. Yasui, Multiscale Processing of Mass Spectrometry Data, Biometrics, 62:589–
97, 2006.

T.W. Randolph, Scale-based normalization of spectral data, Disease Biomarkers, 2:135–144, 2006.

See Also

msDenoise, msDenoiseWaveletThreshold, msNoise, wavDaubechies, wavDWT, wavMODWT,
wavMRD, msSmoothLoess, msSmoothSpline, msSmoothKsmooth, msSmoothSupsmu,
msSmoothApprox, msDenoiseSmooth, eventHistory.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

obtain a subset of a mass spectrum and add some
noise
x <- qcset$intensity[5000:7000,1]
sd.noise <- 2
set.seed(100)
xnoise <- x + rnorm(length(x), sd=sd.noise)
mz <- as.matrix(as.numeric(names(x)))

define two different ranges of summation levels
lev1 <- 6:8
lev2 <- 4:8

calculate MODWT MRDs over these levels
z1 <- msDenoiseMRD(xnoise, levels=lev1)
z2 <- msDenoiseMRD(xnoise, levels=lev2)

plot the results
Slab <- "S8"
lab1 <- paste(paste("D", lev1, sep="", collapse="+"), Slab, sep="+")
lab2 <- paste(paste("D", lev2, sep="", collapse="+"), Slab, sep="+")

msPlot(matlines=list(
list(x=mz, y=cbind(z1, z2), lty=1, lwd=3),
list(x=mz, y=cbind(xnoise, xnoise), type="p", pch="o", cex=0.15)),
yref=FALSE, xlab="m/z", ylab="MODWT MRD",
text=list(x=rep(8300,2), y=c(2300,1650),
labels=c(lab2,lab1), adj=0, col=2:1))

msDenoiseSmooth 31

msDenoiseSmooth Denoising Mass Spectra via Smoothing

Description

Mass spectra are denoised via running medians.

Usage

msDenoiseSmooth(x, twiceit=TRUE, process="msDenoiseSmooth")

Arguments

x A numeric vector.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. This pro-
cess is not updated if it already exists in the event history. Default: "msDenoiseSmooth".

twiceit A logical flag. If TRUE, smooth performs twicing. Twicing is the process of
smoothing, computing the residuals from the smooth, smoothing these, and then
adding the two smoothed series together. Default: TRUE.

Value

A vector of the same length of x with noise removed.

See Also

smooth.

msDenoiseWavelet Denoising a Mass Spectrum via Wavelet Shrinkage

Description

Performs a decimated or undecimated discrete wavelet transform on the input series and "shrinks"
(decreases the amplitude towards zero) the wavelet coefficients based on a calculated noise threshold
and specified shrinkage function. The resulting shrunken set of wavelet transform coefficients is
inverted in a synthesis operation, resulting in a denoised version of the original series.

Usage

msDenoiseWavelet(x, wavelet="s8",
n.level=as.integer(floor(logb(length(x), 2))),
shrink.fun="hard",
thresh.fun="universal", thresh.scale=1,
xform="modwt", noise.variance=NULL,
reflect=TRUE, process="msDenoiseWavelet",
assign.attributes=FALSE)

32 msDenoiseWavelet

Arguments

x A vector containing a uniformly-sampled real-valued time series.
assign.attributes

A logical value. If TRUE, the argument values to the function call will be at-
tached as attributes to the output vector. Default: FALSE.

n.level The number of decomposition levels, limited to floor(logb(length(x),2)).
Default:as.integer(floor(logb(length(x), 2))).

noise.variance
A numeric scalar representing (an estimate of) the additive Gaussian white noise
variance. If unknown, setting this value to 0.0 (or less) will prompt the function
to automatically estimate the noise variance based on the median absolute devi-
ation (MAD) of the scale one wavelet coefficients. Default: NA (MAD estimate
will be used).

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. This pro-
cess is not updated if it already exists in the event history. Default: "msDenoiseWavelet".

reflect A logical value. If TRUE, the last LJ = (2n.level−1)(L−1)+1 coefficients of
the series are reflected (reversed and appended to the end of the series) in order
to attenuate the adverse effect of circular filter operations on wavelet transform
coefficients for series whose endpoint levels are (highly) mismatched. The vari-
able LJ represents the effective filter length at decomposition level n.level,
where L is the length of the wavelet (or scaling) filter. After waveshrinking and
reconstructing, the firstN points of the result are returned, whereN is the length
of the original time series. Default: TRUE.

shrink.fun A character string denoting the shrinkage function. Choices are "hard", "soft",
and "mid". Default: "hard".

thresh.fun A character string denoting the threshold function to use in calculating the waveshrink
thresholds.

character string Choices are "universal", "minimax", and "adaptive".
numeric values Either a single threshold value or a vector of values containing

n.levels thresholds (one threshold per decomposition level).

Note: if xform == "modwt", then only the "universal" threshold func-
tion is (currently) supported. Default: "universal".

thresh.scale A positive valued numeric scalar which is used to amplify or attenuate the
threshold values at each decomposition level. The use of this argument signifies
a departure from a model driven estimate of the thresholds and can be used to
tweak the levels to obtain a smoother or rougher result. Default: 1.

wavelet A character string denoting the filter type. See wavDaubechies for details.
Default: "s8".

xform A character string denoting the wavelet transform type. Choices are "dwt"
and "modwt" for the discrete wavelet transform (DWT) and maximal overlap
DWT (MODWT), respectively. The DWT is a decimated transform where (at
each level) the number of transform coefficients is halved. GivenN is the length
of the original time series, the total number of DWT transform coefficients isN .
The MODWT is a non-decimated transform where the number of coefficients at
each level is N and the total number of transform coefficients is N*n.level.
Unlike the DWT, the MODWT is shift-invariant and is seen as a weighted av-
erage of all possible non-redundant shifts of the DWT. See the references for
details. Default: "modwt".

msDenoiseWavelet 33

Details

Assume that an appropriate model for our time series is X = D+εwhere D represents an unknown
deterministic signal of interest and ε is some undesired stochastic noise that is independent and
identically distributed and has a process mean of zero. Waveshrink seeks to eliminate the noise
component ε of X in hopes of obtaining (a close approximation to) D. The basic algorithm works
as follows:

1 Calculate the DWT of X .

2 Shrink (reduce towards zero) the wavelet coefficients based on a selected thresholding scheme.

3 Invert the DWT.

This function support different shrinkage methods and threshold estimation schemes. Let W rep-
resent an arbitrary DWT coefficient and W (t) the correpsonding thresholded coefficient using a
threshold of δ. The supported shrinkage methods are

hard thresholding

W (t) =

{
0, if |W | ≤ δ;
W, otherwise

soft thresholding

W (t) = sign(W) f(|W | − δ)

where

sign(W) ≡

 +1, if W > 0;
0, if W = 0;
−1, if W < 0.

and

f(x) ≡
{
x, if x ≥ 0;
0, if x < 0.

mid thresholding

W (t) = sign(W) g(|W | − δ)

where

g(|W | − δ) ≡
{

2f(|W | − δ), if |W | < 2δ;
|W |, otherwise.

Hard thresholding reduces to zero all coefficients that do not exceed the threshold. Soft thresholding
pushes toward zero any coefficient whose magnitude exceeds the threshold, and zeros the coefficient
otherwise. Mid thresholding represents a compromise between hard and soft thresholding such
that coefficients whose magnitude exceeds twice the threshold are not adjusted, those between the
threshold and twice the trhreshold are shrunk, and those below the threshold are zeroed.

The supported threshold functions are

universal The universal threshold function is dependent on the type of wavelet transform used to
decompose the time series.
DWT transform: δ =

√
2σ2

ε log(N) where σ2
ε is the noise variance and N is the number of

samples in the time series. If the optional input argument noise.variance is non-positive,
it signifies that the additive noise variance is unknown and (in this case) the standard deviation
of the noise is estimated by

σ̂MAD ≡
median{|W1,t|}

0.6745

34 msDenoiseWavelet

where the W1,t are the set of level 1 DWT wavelet coefficients. The MAD estimate is normal-
ized by 0.6745 to ensure to return the proper result if the input series were solely comprised
of Gaussian white noise.
MODWT transform: δj =

√
2σ2

ε log(N)/2j where σ2
ε is the noise variance, N is the number

of samples in the time series, and j is the decomposition level. Note that, unlike the DWT
case, the threshold levels for the MODWT are a function of decomposition level. If the op-
tional input argument noise.variance is non-positive, it signifies that the additive noise
variance is unknown and (in this case) the standard deviation of the noise is estimated by

σ̃MAD ≡
21/2median{|W̃1,t|}

0.6745

where the W̃1,t are the set of level 1 MODWT wavelet coefficients. The MAD estimate
is normalized by 0.6745 to ensure to return the proper result if the input series were solely
comprised of Gaussian white noise.
In either case, the universal threshold is defined so that if the original time series was solely
comprised of Gaussian noise, then all the wavelet coefficients would be (correctly) set to
zero using a hard thresholding scheme. Inasmuch, the universal threshold results in highly
smoothed output.

minimax These thresholds are used with soft and hard thresholding, and are precomputed based
on a minimization of a theoretical upperbound on the asymptotic risk. The minimax thresh-
olds are always smaller than the universal threshold for a given sample size, thus resulting in
relatively less smoothing.

adaptive These are scale-adaptive thresholds, based on the minimization of Stein’s Unbiased Risk
Estimator for each level of the DWT. This method is only available with soft shrinkage. As a
caveat, this threshold can produce poor results if the data is too sparse (see the references for
details).

Finally, the user has the choice of using either a decimated (standard) form of the discrete wavelet
transform (DWT) or an undecimated version of the DWT (known as the Maximal Overlap DWT
(MODWT)). Unlike the DWT, the MODWT is a (circular) shift-invariant transform so that a circular
shift in the original time series produces an equivalent shift of the MODWT coefficients. In addition,
the MODWT can be interpreted as a cycle-spun version of the DWT, which is achieved by averaging
over all non-redundant DWTs of shifted versions of the original series. The result is a smoother
version of the DWT at the cost of an increase in computational complexity (for an N-point series,
the DWT requires O(N) multiplications while the MODWT requires O(N log2N multiplications.

Value

A vector containing the denoised series and optionally with the argument values of the function call
detached.

References

Donoho, D. and Johnstone, I. Ideal Spatial Adaptation by Wavelet Shrinkage. Technical report,
Department of Statistics, Stanford University, 1992.

Donoho, D. and Johnstone, I. Adapting to Unknown Smoothness via Wavelet Shrinkage. Technical
report, Department of Statistics, Stanford University, 1992.

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

msDenoiseWaveletThreshold 35

See Also

msDenoise, msDenoiseWaveletThreshold, msNoise, wavDaubechies, wavDWT, wavMODWT,
msSmoothLoess, msSmoothSpline, msSmoothKsmooth, msSmoothSupsmu, msSmoothApprox,
msDenoiseSmooth, eventHistory.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

create plot layout
old.par <- par()
par(mfrow=c(3,2))

grab portion of a mass spectrum and plot
x <- qcset$intensity[5000:7000,1]
plot(x,type="l");title("original")

create noise and add it to the spectrum portion
sd.noise <- 2
xnoise <- x + rnorm(length(x), sd=sd.noise)
plot(xnoise,type="l")
title(paste("original + noise (sd=", round(sd.noise,3),")",sep=""))

plot MODWT waveshrink results after scaling the
estimated threshold values
for (k in seq(0.5,2,length=4)){

y <- msDenoiseWavelet(xnoise, wavelet="s8",
shrink.fun="hard", thresh.fun="universal",
thresh.scale=k, xform="modwt")

plot(y,type="l")
title(paste("WS: thresh.scale =", round(k,2)))

}

DWT waveshrink using different threshold
functions
plot(x,type="l")
title("original")
plot(xnoise,type="l")
title(paste("original + noise (sd=", round(sd.noise,3),")",sep=""))

thresh.funs <- c("universal", "minimax", "adaptive")
for (k in thresh.funs){

plot(msDenoiseWavelet(xnoise, thresh.fun=k, xform="dwt"), type="l", ylab="y")
title(paste("WS: thresh.fun =", k))

}

restore original plot layout
par(old.par)

msDenoiseWaveletThreshold
Wavelet Shrinkage Threshold Test

36 msDenoiseWaveletThreshold

Description

Performs waveshrink on a given spectrum over a (wide) range of thresholds. For each threshold, a
waveshrunk version of the input spectrum is calculated and a separation statistic is formed based
on the absolute difference between the waveshrunk output and an infinitely smooth reference series.
The reference series is a the result of waveshrinking the input spectrum with a very large threshold,
where (nearly) all the wavelet coefficients are (shrunk toward) zero in the shrinkage process. The
plot method can be used to display an image of the separation statistics over the specified range of
thresholds and corresponding m/z values. This technique eliminates adaptive thresholding, where
a unique threshold is used to shrink the wavelet coefficients at different scales, since only a single
threshold is supplied.

Usage

msDenoiseWaveletThreshold(x, wavelet="s8",
n.level=as.integer(floor(logb(length(x), 2))),
shrink.fun="hard", thresh.scale=NULL,
xform="modwt", reflect=TRUE, n.threshold=500,
thresh.fun="universal", noise.variance=NULL,
min.thresh=NULL, max.thresh=NULL)

Arguments

x A vector containing a uniformly-sampled real-valued time series, typically a
mass spectrum.

min.thresh, max.thresh
Numeric scalars defining the threshold range. These arguments are only used if
the default value of the thresh.scale argument is used, i.e., thresh.scale=NULL.
Default: range(abs(wavelet coefficients)) using the specified transform.

n.level The number of decomposition levels, limited to floor(logb(length(x),2)).
Default: as.integer(floor(logb(length(x), 2))).

n.threshold The number of thresholds. This argument is only used if the default value of the
thresh.scale argument is used, i.e., thresh.scale=NULL. This argu-
ment must be a positive integer. Default: 500.

noise.variance
A numeric scalar representing (an estimate of) the additive Gaussian white noise
variance. If unknown, setting this value to 0.0 (or less) will prompt the function
to automatically estimate the noise variance based on the median absolute devi-
ation (MAD) of the scale one wavelet coefficients. Default: NA (MAD estimate
will be used).

reflect A logical value. If TRUE, the last LJ = (2n.level−1)(L−1)+1 coefficients of
the series are reflected (reversed and appended to the end of the series) in order
to attenuate the adverse effect of circular filter operations on wavelet transform
coefficients for series whose endpoint levels are (highly) mismatched. The vari-
able LJ represents the effective filter length at decomposition level n.level,
where L is the length of the wavelet (or scaling) filter. After waveshrinking and
reconstructing, the firstN points of the result are returned, whereN is the length
of the original time series. Default: TRUE.

shrink.fun A character string denoting the shrinkage function. Choices are "hard", "soft",
and "mid". Default: "hard".

thresh.fun A character string denoting the threshold function to use in calculating the waveshrink
thresholds.

msDenoiseWaveletThreshold 37

character string Choices are "universal", "minimax", and "adaptive".
numeric values Either a single threshold value or a vector of values containing

n.levels thresholds (one threshold per decomposition level).

Note: if xform == "modwt", then only the "universal" threshold func-
tion is (currently) supported. Default: "universal".

thresh.scale A numeric vector containing the threshold values to use in denoising the wavelet
coefficients. This vector must contain at least two numeric values. Default:
seq(min(abs(wavelet coefficients)), max(abs(wavelet coefficients)),
length=n.threshold)where wavelet coefficients are defined by
the specified transform. This range of thresholds allows the user to explore val-
ues over all the effective threshold levels.

wavelet A character string denoting the filter type. See wavDaubechies for details.
Default: "s8".

xform A character string denoting the wavelet transform type. Choices are "dwt"
and "modwt" for the discrete wavelet transform (DWT) and maximal overlap
DWT (MODWT), respectively. The DWT is a decimated transform where (at
each level) the number of transform coefficients is halved. GivenN is the length
of the original time series, the total number of DWT transform coefficients isN .
The MODWT is a non-decimated transform where the number of coefficients at
each level is N and the total number of transform coefficients is N*n.level.
Unlike the DWT, the MODWT is shift-invariant and is seen as a weighted av-
erage of all possible non-redundant shifts of the DWT. See the references for
details. Default: "modwt".

Value

An object of class msDenoiseWaveletThreshold.

S3 METHODS

plot Plots an image of the separation statistics as a function of threshold (ordinate) and m/z value
(abscissa). For reference, a line plot of the original and infinitely smoothed spectra are overlaid
on the image. Available options are:

xlab character string defining x-axis label. Default: "m/z".
ylab character string defining y-axis label. Default: "Waveshrink Threshold".
lty an integer denoting the line type ala the par function. Default: 1.
lwd an integer denoting the line width ala the par function. Default: 2.
... additional argument sent directly to the lines function used to overlay the image with

the original and infiniteluyu smooth spectra.

print Prints a summary of the returned object. Available options are:

justify text justification ala the format function. Default: "left".
sep header separator. Default: ":".

References

Donoho, D. and Johnstone, I. Ideal Spatial Adaptation by Wavelet Shrinkage. Technical report,
Department of Statistics, Stanford University, 1992.

Donoho, D. and Johnstone, I. Adapting to Unknown Smoothness via Wavelet Shrinkage. Technical
report, Department of Statistics, Stanford University, 1992.

38 msDetrend

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

http://bioinformatics.mdanderson.org/sizer.html.

See Also

msDenoiseWavelet, msDenoise, rescale.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

grab portion of a mass spectrum and plot
x <- qcset$intensity[5000:7000,1]

create noise and add it to the spectrum portion
sd.noise <- 2
set.seed(100)
xnoise <- x + rnorm(length(x), sd=sd.noise)

calculate the waveshrink separation statistics
z <- msDenoiseWaveletThreshold(xnoise)
print(z)
plot(z)

msDetrend Baseline Correction

Description

Estimate and subsequently subtract the baselines from mass spectra. The basic technique for base-
line estimation is to fit a curve locally to the intensity minima.

Usage

msDetrend(x, FUN="loess",
attach.base=TRUE,
event="Baseline Correction", ...)

Arguments

x An object of class msSet.

... Additional arguments for the FUN specified. See the specific underlying func-
tion for details.

FUN Either an object of class "character" or of class "function".
character: A character string denoting the method to use in smoothing the data
to estimate the baseline. Supported choices are

"loess" uses the function loess.smooth to fit a local regression model to
the local minima.

"spline" uses the function spline to interpolate through the local minima
by means of a cubic spline.

msDetrend 39

"supsmu" uses the function supsmu to fit a smooth curve to the local min-
ima.

"approx" uses the function approx to linearly interpolate the local minima.
"monotone" uses the function cummin to fit a non-increasing curve to all

the intensity values.
"mrd" uses the function msSmoothMRD to extract wavelet-based multireso-

lution decomposition components relevant to baseline trends.

Default: "loess".
function: A user-defined function with an argument list of the form (x, ...)
where x is a required argument corresponding to a numeric vector (typically
these values will be the noise estimates of a mass spectrum).
In either case, the additional arguments ... will be passed directly to the spec-
ified routine.

attach.base A logical value specifying if the estimated baseline needs to be attached as an
element to the output, and the default is T. It has to be T if you want to visualize
the baseline.

event A character string denoting the name of the event to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"Baseline Correction".

Value

An object of class msSet, optionally, with the estimated baseline attached as element "baseline".

Note

If FUN="mrd", an mrd object containing meta information regarding the multiresolution decom-
position is attached to the msSet output object for subsequent use by other MRD-based function
calls such as msPeak(x, FUN="mrd", ...).

See Also

msSmoothLoess, msSmoothSpline, msSmoothSupsmu, msSmoothApprox, msSmoothMonotone,
msSmoothMRD.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract several spectra from the build-in
dataset
z <- qcset[, 1:8]

denoising
z <- msDenoise(z, FUN="wavelet", n.level=10, thresh.scale=2)

baseline subtraction
z <- msDetrend(z, FUN="monotone", attach=TRUE)

visualize the baseline
plot(z, process="msDetrend", subset=1:3,

xlim=c(5000, 8500), lty=1, lwd=c(1,3))

40 msExtrema

msExtrema Find both Local Maxima and Local Minima

Description

Finds both local extrema in a vector, time series, or in each column of a matrix.

Usage

msExtrema(x, span=3)

Arguments

x a vector, time series, or matrix. If x is a matrix, msExtrema finds both local
maxima and local minima in each column of x.

span a numeric value indicating the span of the local extreme. A local maximum
(minimum) is defined as an element in a sequence which is greater (smaller)
than all other elements within a window of width span centered at that element.
The default value is 3, meaning that a maximum (minimum) is bigger (smaller)
than both of its neighbors.

Value

a list with two elements:

index.max an object like x of logical values. Values that are TRUE correspond to local
maxima in the data.

index.min an object like x of logical values. Values that are TRUE correspond to local
minima in the data.

See Also

zeroCross.

Examples

create a synthetic sequence
a<-c(3,3,2,1,1,2,1,2,3,3,1,1,1,3,3,3,2,2,2,1,1,1,1,2,3)

detect local maxima and minima
maxmin <- msExtrema(a)

visualize the result
par(mfrow=c(1,1))
plot(a, type="l")
points((1:length(a))[maxmin$index.max],

a[maxmin$index.max], col=2, pch=1)
points((1:length(a))[maxmin$index.min],

a[maxmin$index.min], col=3, pch=2)
if (!is.R()){

legend(x=18, y=3, col=2:3, marks=1:2, legend=c("maxima", "minima"))
} else {

legend(x=18, y=3, col=2:3, pch=1:2, legend=c("maxima", "minima"))
}

msHelp 41

msHelp Open msProcess Help Files in S-PLUS

Description

Used to quickly open help files related to the msProcess package.

Usage

msHelp(keyword="", section="msProcess")

Arguments

keyword A character string specifying a particular S+Proteome function or object. De-
fault: "".

section A character string giving the name of a module or a library associated with the
S+Proteome module. Default: "proteome".

See Also

help.

Examples

open the S+Proteome help file
msHelp()

msImport Mass Spectra Data Import

Description

Imports data from (multiple) mass spectrum file(s) and compiles them into an object of msList,
i.e., a list of two-column matrices.

Usage

msImport(path, label="unclassified", type="ASCII",
pattern="", ...)

Arguments

path A single character string or a vector of character strings. Each character string
can either be a path to the directory containing the mass spectra files (i.e., direc-
tory path) or a path to a mass spectra file (i.e., file path). In the case of a vector
of character strings, the paths should be either all directory paths or all file paths.

... Additional arguments. See importData for details.

42 msImport

label A single character string or a vector of character strings defining the classifica-
tion label(s) for the spectra to be imported. The length of label must be equal
to the number of elements in the path argument. The labels will be used in
mass spectra classification but not in processing. Default: "unclassified".

pattern A character string denoting the pattern to use in filtering the list of files in the
path directory. Default: "" (all files in path).

type A single character string or a vector of character strings specifying the input data
file type(s). The length of type must be equal to the number of elements in the
path variable, otherwise the first entry is replicated accordingly. This argu-
ment may be any of the supported types in the importData function or type
"CiphergenXML", which represents a Ciphergen XML mass spectrometry
data file. Default: "ASCII".

Details

Each data file has two columns defined by m/z and intensity values. This function also checks
if the following conditions hold:

1 the m/z values are distinct;

2 the m/z values are positive;

3 the m/z values are the same across spectra;

4 the lengths of each spectra are the same.

and issues warning messages if not.

Value

An object of msList, which is a list of two-column matrices, one matrix for each imported
file. The first column is named "mz" and contains m/z values. The second column is named
"intensity" and contains the intensity values. The list has an attribute named "type", which
is a factor and contains the classification labels for the imported spectra.

See Also

msImportCiphergenXML.

Examples

create faux MS data files
n.file <- 10
files <- file.path(getwd(), paste("ms", seq(n.file), ".csv", sep=""))

for (i in seq(n.file)) {
ms <- data.frame("m/z"=(1:5), intensity=(6:10)+i)
if (is.R())
write.table(ms, file=files[i])

else
write.table(ms, file=files[i], dimnames="colnames")

}

load the mass spectra files into a list of
two-column matrices
msImport(path=files)

msImportCiphergenXML 43

do the same except use the path and pattern
arguments
msImport(path=getwd(), pattern=".csv")

remove the files
unlink(files)

msImportCiphergenXML
Import Mass Spectrometry Data from a Ciphergen XML File

Description

Imports either time-of-flight (TOF) or intensity values from a mass spectrum written in Ciphergen’s
XML format. The corresponding m/z data are either imported directly from the file or calculated
(to a specified precision) based on mass calibration factors extracted from the XML file.

Usage

msImportCiphergenXML(x, tof=FALSE, mz.calc=TRUE, digits=3)

Arguments

x A character string defining the path to the Ciphergen XML file.

digits An integer defining the precision of the m/z if mz.calc is TRUE. Default: 3.

mz.calc A logical value. If TRUE, the m/z values are calculated based on the mass
calibration parameters given in the file. If any of the required parameters are
missing in the file, then the pre-calculated m/z values are returned instead (if
they do not exist, then an error is returned). The precision of the m/z values is
controlled through the digits argument. Default: TRUE.

tof A logical value. If TRUE, the TOF data are returned. Otherwise, the intensity
values (processed TOF data) are returned. In the case that the tof is FALSE
but the intensity values do not exist in the file, then the TOF data are returned
instead. Default: FALSE.

See Also

msImport.

Examples

create a faux Ciphergen file with basic MS data
information
xmlFileName <- file.path(getwd(), "ciphergen_example.xml")
cat(paste(
"<spectrum>",

"<processingParameters>",
"<massCalibration>",

"<massCalibrationA>264659356.3912175</massCalibrationA>",
"<massCalibrationB>0.0005517310499463604</massCalibrationB>",
"<massCalibrationT0>2.053450999111159e-007</massCalibrationT0>",

"</massCalibration>",

44 msLaunchExample

"</processingParameters>",
"<tofData>",

"<tofDataNumSamples>5</tofDataNumSamples>",
"<tofDataTimeZero>0</tofDataTimeZero>",
"<tofDataSamples>2172 2163 2114 2061 2107</tofDataSamples>",

"</tofData>",
"<acquisitionInfo>",

"<setting>",
"<ionSourceVoltage>20000</ionSourceVoltage>",
"<digitizerRate>2.5e+008</digitizerRate>",

"</setting>",
"</acquisitionInfo>",
"<processedData>",

"<processedDataSamples>",
"10.811,4.4363 10.820,4.4179 10.828,4.3178",
"10.837,4.2096 10.845,4.3035",

"</processedDataSamples>",
"</processedData>",

"</spectrum>",
sep="\n"), file=xmlFileName)

read in the data, comparing calculated and
preset m/z values
msImportCiphergenXML(xmlFileName, mz.calc=TRUE, digits=3)$mz
msImportCiphergenXML(xmlFileName, mz.calc=FALSE)$mz

read in TOF and then the intensity data
msImportCiphergenXML(xmlFileName, tof=TRUE, digits=3)$tof
msImportCiphergenXML(xmlFileName, tof=FALSE)$intensity

msLaunchExample Open msProcess Example/Demo Files in S-PLUS

Description

Used to quickly open help files related to the msProcess package.

Usage

msLaunchExample(x, open=TRUE, run=TRUE, type="R-ex")

Arguments

x A character string specifying the name of a particular example or demo script.

open A logical indicating open the script or not. Default: TRUE.

run A logical indicating run the script or not. Default: TRUE.

type A character string giving the name of a subdirectory where the example or demo
script is located. Default: "R-ex".

See Also

example.

msList 45

Examples

Not run:
if (!is.R() && is.ui.app("s+gui")) {
open a msProcess example file
msLaunchExample("msDenoise", open=TRUE, run=FALSE, type="R-ex")
}

End(Not run)

msList S3 Class Representing a List of Spectra with Possibly Different m/z

Description

An msList object is a list of matrices with each matrix representing a spectrum. Each matrix in
the list has two columns. The first column is named "mz" and contains them/z values. The second
column is named "intensity" and contains the intensity values. The list has also an attribute
named "type", which is of type factor and contains the classification labels for the spectra. An
object of this class is usually generated from the function msImport() in package proteome.

S3 METHODS

[extract or replace parts of an msList object.
Usage: x[i]
x an msList object.
i a subscript expression used to identify the spectra to extract or replace.

merge merges multiple msList objects.
Usage: merge(...)
... msList objects.

plot plot a single spectrum from an msList object.
Usage: plot(x, index=1, type="l", add=FALSE, ...)
x an msList object.
index a single numeric value or character string specifying the spectrum to be plotted. The

default is 1.
type a single character specifying the type of plot. see fucntion par for details. The default

is "l"
add A logical value. If TRUE, the plot is added using the current par() layout. Otherwise a

new plot is produced. Default: FALSE.
... other graphical parameters passed to the plot function.

print prints an msList object.
Usage: print(x, justify="left", sep=":", ...) or x
x an msList object.
justify a character string giving the justification of the numbers relative to each other. The

choices are "none", "left", "right" and "decimal". Only the first letter needs to be given.
sep a character string to be inserted between text and values. The default is a colon.

summary provides a synopsis of an msList object.
Usage: summary(x)
x an msList object.

46 msLogic

See Also

msSet.

Examples

if (!exists("qclist")) data("qclist", package="msProcess")

print an msList object
qclist

print the synopsis of an msList object
summary(qclist)

plot the first spectrum from an msList object
plot(qclist, index=1)

msLogic Processing Logic

Description

For a specific msSet object x, it determines which methods are applicable for the processing step
process. This function is mainly used to build the GUI for the msProcess package.

Usage

msLogic(x, process="msDenoise")

Arguments

x An object of class msSet.

process a character string specifying the process to be applied. The options are "msDenoise",
"msNoise", "msDetrend", "msNormalize", "msPeak", "msAlign",
and "msQuantify". Default: "msDenoise".

Value

A vector of character string denoting the methods of process that are applicable to the msSet
object x, which are the valid options for the FUN argument of process. NULL is returned if none
is applicable.

See Also

msSet.

msNoise 47

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

determine which methods of msDenoise are applicable to qcset
msLogic(qcset, "msDenoise")

determine which methods of msNoise are applicable to qcset
msLogic(qcset, "msNoise")

apply wavelet denoise
denoised <- msDenoise(qcset, FUN="wavelet")

determine which methods of msNoise are applicable to the denoised spectra
msLogic(denoised, "msNoise")

determine which methods of msPeak are applicable to the denoised spectra
msLogic(denoised, "msPeak")

msNoise Local Noise Estimation

Description

Estimates the local noise level by applying a specified smoother function to the the noise data
attached to the primary input variable.

Usage

msNoise(x, FUN="spline",
pre=abs, detach.noise=FALSE,
event="Local Noise Estimation", ...)

Arguments

x An object of class msSet with an existing element "noise". The noise ele-
ment should be a matrix with the same dimensions as the intensity data, such as
that returned by the msDenoise function.

... Additional arguments to FUN. They are passed unchanged to each call of FUN
and include their names. See the help documentation of the specified routine for
details.

FUN Either an object of class "character" or of class "function".
character: A character string denoting the method to use in smoothing the noise
data. Supported choices are "spline", "supsmu", "ksmooth", "loess",
and "mean". Default: "spline".
function: A user-defined function with an argument list of the form (x, ...)
where x is a required argument corresponding to a numeric vector (typically
these values will be the noise estimates of a mass spectrum).
In either case, the additional arguments ... will be passed directly to the spec-
ified routine.

detach.noise A logical indicating if the noise removed previously should be detached or not.
Default: FALSE.

48 msNoise

event A character string denoting the name of the event to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"Local Noise Estimation".

pre A function that is applied to the data prior to processing it with the function
defined by FUN. Default: abs.

Value

An object of class msSet with local noise estimate attached as element "noise.local" and
optionally with the element "noise" detached.

See Also

msDenoise, msSet, properCase.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

denoise a noise contaminated spectrum portion
via waveshrink
mz <- (qcset$mz > 3000 & qcset$mz < 5000)
data <- qcset[mz, 1, drop=FALSE]
noise <- rnorm(length(data$intensity), sd=stdev(data$intensity)/3)
xnoise <- data

xnoise$intensity <- data$intensity + matrix(noise, ncol=1)
z <- vector("list", length=4)
z[[1]] <- msDenoise(xnoise, FUN="wavelet")

smooth the resulting noise estimates to form a
localized estimate of the noise using
various supported methods

z[[2]] <- msNoise(z[[1]], FUN="spline")
z[[3]] <- msNoise(z[[1]], FUN="loess")

create a user-defined smoothing function
my.fun <- function(x, wavelet="d4"){

filt <- wavDaubechies(wavelet=wavelet, norm=FALSE)$scaling
return(filter(x, filt))

}
z[[4]] <- msNoise(z[[1]], FUN=my.fun, wavelet="s12")

create a stackplot of the results
type <- c("noise", rep("noise.local", 3))
for (i in 1:4){

z[[i]] <- as.vector(z[[i]][[type[i]]])
}
names(z) <- c("noise","spline", "loess", "my function")
wavStackPlot(z, col=seq(along=z), same.scale=TRUE)

msNormalize 49

msNormalize Mother Function for Intensity Normalization

Description

Normalizes the intensity matrix of an msSet object.

Usage

msNormalize(x, FUN="tic",
event="Intensity Normalization", ...)

Arguments

x An object of class msSet.

... Additional arguments to FUN. They are passed unchanged to each call of FUN
and include their names. See the help documentation of the specified FUN for
details.

FUN Either an object of class "character" or of class "function".
character: A character string denoting the method to use in denoising the data.
Supported choices are "snv" for standard normal variate transformation or
"tic" for normalization based on the median total ion current estimate for
all spectra. Default: "tic".
function: A user-defined function with an argument list of the form (x, ...)
where x is a required argument corresponding to a numeric vector (typically
these values will be the intensity values of a mass spectrum).
In either case, the additional arguments ... will be passed directly to the spec-
ified FUN.

event A character string denoting the name of the event to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"Intensity Normalization".

Value

An msSet object with the intensity matrix object replaced by its normalized form.

See Also

msNormalizeTIC, msNormalizeSNV, msSet.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

normalize a subset of spectra in the
qcset object using total ion current.
data <- qcset[,1:8]
zion <- msNormalize(data, FUN="tic")
plot(zion, process="msNormalize", subset=1:8,
xlim=c(13000, 17000), lty=c(1,4), lwd=1:2)

50 msNormalizeSNV

normalize a subset of spectra in the
qcset object using a standard normal
variate transformation.
zsnv <- msNormalize(data, FUN="snv")
plot(zsnv, process="msNormalize", subset=1:8,
xlim=c(13000, 17000), lty=c(1,4), lwd=1:2)

perform a multiresolution decomposition of each
spectrum in the intensity matrix, sum over
levels 6-8, then normalize using the SNV
transformation (this process is equivalent
to scale-based normalization (SBN)).
data <- msDenoise(data, FUN="mrd", levels=6:8, keep.smooth=FALSE)
zsnv <- msNormalize(data, FUN="snv")
plot(zsnv, process="msNormalize", subset=1:8,
xlim=c(13000, 17000), lty=c(1,4), lwd=1:2)

msNormalizeSNV Standard Normal Variate Intensity Normalization

Description

Normalizes the input spectrum via the Standard Normal Variate (SNV) transformation defined as
Xt ≡ (Xt − X̄)/

√
var(X), where X is the spectrum.

Usage

msNormalizeSNV(x, process="msNormalizeSNV")

Arguments

x A vector containing a uniformly-sampled real-valued time series.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. This pro-
cess is not updated if it already exists in the event history. Default: "msNormalizeSNV".

Details

This function can also produce scale-based normalization transformations if the input is a (partial)
sum over multiresolution decomposition (MRD) components formed by taking a discrete wavelet
transform of the input spectrum and subsequently inverting each level of the transform back to
the "time" domain. The resulting components of the MRD form an octave-band decomposition of
the original spectrum, and can be summed together to reconstruct the original spectrum. Summing
only a subset of these components can be viewed as a denoising operation if the "noisy" components
are excluded from the summation. The result is then normalized by the standard deviation of the
sum of the details. As this function merely calls the msDenoiseMRD function with the argument
normalize=TRUE, see that function for more details.

Value

A vector containing the scale-based normalization of the input spectrum.

msNormalizeTIC 51

References

I.S. Helland, T. Naes and T. Isaksson, Related versions of the multiplicative scatter correction
method for preprocessing spectroscopic data, Chemometrics and Intelligent Laboratory Systems,
29:233–241, 1995.

T.W. Randolph, Scale-based normalization of spectral data, Cancer Biomarkers, 2:135–144, 2006.

T.W. Randolph and Y. Yasui, Multiscale Processing of Mass Spectrometry Data, Biometrics, 62:589–
97, 2006.

See Also

msNormalize, msNormalizeTIC, msDenoiseWavelet, wavDaubechies, wavDWT, wavMODWT,
wavMRD, eventHistory.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

obtain a subset of a mass spectrum and add some
noise
x <- qcset[5000:7000,1]
sd.noise <- 2
set.seed(100)
x$intensity <- x$intensity + rnorm(length(x), sd=sd.noise)
mz <- x$mz

sum over specified MODWT MRD details and
normalize
y <- msDenoise(x, FUN="mrd", levels=6:8, keep.smooth=FALSE)
z <- msNormalizeSNV(y)

plot the results
old.plt <- par("plt")
par(plt=c(0.08,1,0.5,0.95))
plot(mz, x$intensity, type="l", xaxt="n", xlab="", ylab="xnoise")
par(plt=c(0.08,1,0.12,0.5), new=TRUE)
plot(mz, z$intensity, type="l", xlab="m/z", ylab="Normalized (D6+D7+D8)")
par(plt=old.plt)

msNormalizeTIC Intensity Normalization Using Total Ion Current

Description

Normalizes a set of spectra using the total ion current (TIC). Each TIC is calculated as the sum of
the intensities. The intensity of a spectrum is divided by its TIC and then multiplied by the median
TIC of the set of spectra.

Usage

msNormalizeTIC(x, process="msNormalizeTIC")

52 msObjects

Arguments

x An object of class msSet.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. This pro-
cess is not updated if it already exists in the event history. Default: "msNormalizeTIC".

Value

An object of class msSet such that the normalized spectra have the same AUC (the median of the
AUCs of spectra). The TIC’s are attached as element "tic".

References

E.T. Fung and C. Enderwick, ProteinChip clinical proteomics: computational challenges and solu-
tions, Biotechniques, Supplement 32:S34-S41, 2002.

See Also

msNormalize, msNormalizeSNV.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract several spectra from the build-in
dataset
z <- qcset[, 1:8]

denoising
z <- msDenoise(z, FUN="wavelet", n.level=10, thresh.scale=2)

baseline subtraction
z <- msDetrend(z, FUN="monotone", attach=TRUE)

intensity normalization
z <- msNormalizeTIC(z)

visualize the normalization
plot(z, process="msNormalize", subset=1:8,

xlim=c(13000, 17000), lty=c(1,4), lwd=1:2)

msObjects Finding msSet Object Names

Description

Returns a vector of character strings (possibly of zero length) which are the names of the msSet
objects in the working database to which process can be applied. This function is mainly used to
build the GUI for the msProcess package.

Usage

msObjects(process="msDenoise")

msPeak 53

Arguments

process a character string specifying the process to be applied. The options are "msDenoise",
"msNoise", "msDetrend", "msNormalize", "msPeak", "msAlign",
and "msQuantify". Default: "msDenoise".

Value

a character vector of names of the msSet objects in the working database to which process can
be applied or character(0) if none applicable.

See Also

msSet.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

find the names of msSet objects to which msDenoise can be applied
msObjects("msDenoise")

find the names of msSet objects to which msDenoise can be applied
my.qcset <- qcset
msObjects("msDenoise")

apply denoise, peak detection, and alignment
denoised <- msDenoise(qcset)
detected <- msPeak(denoised)
aligned <- msPeak(detected)

find the names of msSet objects to which msAlign can be applied
msObjects("msAlign")

find the names of msSet objects to which msQuantify can be applied
msObjects("msQuantify")

msPeak Mother Function for Peak Detection

Description

This function detects peaks in a set of mass spectra.

Usage

msPeak(x, FUN="simple",
use.mean=FALSE, event="Peak Detection", ...)

54 msPeak

Arguments

x An object of class msSet.

... Additional arguments for the FUN specified. See the specific routine for details.

FUN A character string specifying the method for peak detection. Possible choices
are "simple", "search", "cwt" and "mrd". In the MRD case, the in-
put msSet object is expected to contain an attached mrd object containing
meta information regarding the wavelet-based multiresolution decomposition as
output by msDenoise(x, FUN="mrd", ...) as an example. See the
msPeakMRD function for more details. Default: "simple".

event A character string denoting the name of the event to register with the (embedded)
event history object of the input after processing the input data. Default: "Peak
Detection".

use.mean A logical value specifying if to detect peaks in the mean spectum. Default:
FALSE.

Value

An object of class msSet with elements depending on the value of use.mean:

use.mean==TRUE
the mean spectrum is attached as element "intensity.mean" (along with
"noise.mean" and "noise.local.mean") the peak info is attached as
element "peak.class", and the argument "use.mean" is attached as el-
ement "use.mean". The element "peak.class" is a matrix with peak
classes as rows and some summary statistics as columns. These statistics include
the location, left bound, right bound, and span of each peak class in both clock
tick ("tick.loc", "tick.left", "tick.right", "tick.span") and
mass measure ("mass.loc", "mass.left", "mass.right", "mass.span").

use.mean==FALSE
the peak info is attached as element "peak.list". The element "peak.list"
is a list with one element for each spectrum. Each element is a data.frame with
10 columns: the location, left bound, right bound, and span of each peak in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span")
and mass measure ("mass.loc", "mass.left", "mass.right", "mass.span"),
and also peak signal-to-noise ratio and intensity ("snr", "intensity").

See Also

msPeakSimple, msPeakSearch, msPeakMRD, msNormalize.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract several spectra from the build-in
dataset
z <- qcset[, 1:8]

denoising
z <- msDenoise(z, FUN="wavelet", n.level=10, thresh.scale=2)

local noise estimation
z <- msNoise(z, FUN="mean")

msPeakCWT 55

baseline subtraction
z <- msDetrend(z, FUN="monotone", attach=TRUE)

intensity normalization based on total ion
current
z <- msNormalize(z, FUN="tic")

peak detection
z <- msPeak(z, FUN="simple", use.mean=FALSE, snr=2)

visualize the detected peaks
plot(z, process="msPeak", subset=1:8, offset=100,

xlim=c(13000, 17000))

perform a similar analysis using a
multiresolution decomposition approach
z <- qcset[, 1:8]
z <- msDenoise(z, FUN="mrd", levels=6, keep.smooth=FALSE)
z <- msPeak(z, FUN="mrd")
plot(z, process="msPeak", subset=1:8, offset=100,

xlim=c(13000, 17000))

perform a similar analysis using a CWT approach
z <- qcset[, 1:8]
z <- msPeak(z, FUN="cwt", scale.min=8)
plot(z, process="msPeak", subset=1:8, offset=100,
xlim=c(13000, 17000))

msPeakCWT Peak Detection via the Continuous Wavelet Transform

Description

This function isolates peaks of interest in the input mass spectrum by way of a continuous wavelet
transform (CWT). The method is scale-selective, i.e., the user can specify the scale range of interest
in defining peaks. The basic algorithm works as follows:

CWT a continuous wavelet transform of the input spectrum y is calculated over a broad range of
scales.

CWT Tree a CWT tree is formed by dividing the set of local maxima in the CWT time-scale plane
into branches. Each branch contains a list of maxima whose neighbors are close in time as
scales are traversed from coarse to fine. The m/z value at the smallest scale identifies the peak
location in the original input spectrum.

Pruning The collection of branches (and corresponding peak locations) is pruned in numerous
ways (see the wavCWTPeaks function for details.)

In addition to peak identification, this function also calculates an estimate of the Holder exponent
associated with each peak. Qualitatively speaking, the magnitude (of the modulus) of the Holder ex-
ponent is proportional to the the sharpness of the corresponding peak. See the holderSpectrum
function for more information. The Holder exponents are packed into the output data.frame
along with other peak-related information.

56 msPeakCWT

Usage

msPeakCWT(x, y, n.scale = 100, snr.min = 3, scale.min = 4,
length.min = 10, noise.span = NULL, noise.fun =
"quantile", noise.min = NULL, n.octave.min = 1,
tolerance = 0, holder = TRUE, process = "msPeakCWT")

Arguments

x A numeric vector representing the m/z values of a spectrum.

y A numeric vector representing the intensity values of the spectrum.

length.min The minimum number of points along a CWT tree branch and within the spec-
ified scale.range needed in order for that branches peak to be considered a
peak candidate. See the wavCWTPeaks function for more details. Default: 10.

n.octave.min A pruning factor for excluding non-persistent branches. If a branch of connected
extrema does not span this number of octaves, it is excluded from the tree. See
the wavCWTTree function for more details. Default: 1.

n.scale The (maximum) number of logarithmically distributed scales over which to eval-
uate the CWT. For a uniformly sampled time series (x), the supported range of
CWT scales is deltat(x) * c(1, length(x)). where deltat(x) is
the sampling interval. However, a mass spectrum is generally viewed as a non-
uniformly sampled time series because the difference in successive m/z values
is non-constant due to the quadratic mapping of the TOF values to the m/z do-
main. For the purpose of peak detection, however, the sampling interval can be
set to unity. Thus, the possible range of CWT scales is 1 to length(x) and
the scale values are integers. See the wavCWT function for more details on CWT
scales. Default: 100.

holder a logical value. If TRUE, the holder exponents corresponding to the peaks are
also calculated.

noise.fun A character string defining the function to apply to the local noise estimates in
order to sumarize and quantify the local noise level into a scalar value. See the
DETAILS section for more information. Supported values are

"quantile" quantile(x, probs=0.95)
"sd" sd(x)
"mad" mad(x, center=0)

where x is a vector of smallest-scale CWT coefficients whose time indices are
near that of the branch termination time. See the wavCWTPeaks function for
more details. Default: "quantile".

noise.min The minimum allowed estimated local noise level. Values must be between
0 and 1 inclusive. Default NULL corresponds to 0.05. It is converted to raw
scale before passed to wavCWTPeaks: quantile(attr(x,"noise"),
prob=0.05), where x is the input wavCWTTree object.

noise.span The span in time surrounding each branche’s temrination point to use in forming
local noise estimates and (ultimately) peak SNR estimates. See the wavCWTPeaks
function for more details. Default: NULL,max(0.01 * diff(range(times)),
5*sampling.interval), where times and sampling.interval are
attributes of the input wavCWTTree object.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msPeakCWT".

msPeakCWT 57

scale.min The minimum allowable value of the scale associated with a CWT peak. See
the scale.range argument of the wavCWTPeaks function for more details.
Default: 4.

snr.min The minimum allowed peak signal-to-noise ratio. See the wavCWTPeaks func-
tion for more details. Default: 3.

tolerance A tolerance vector used to find CWT extrema. This vector must be as long as
there are scales in the CWT such that the jth element defines the tolerance to
use in finding modulus maxima at the jth scale of the CWT. If not, the last value
is replicated appropriately. See the wavCWTTree function for more details.
Default: 0.

Value

A data.frame with 11 columns: peak class location, left bound, right bound and peak span in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span") and mass mea-
sure ("mass.loc", "mass.left", "mass.right", "mass.span"), and peak signal-to-
noise ratio and intensity ("snr", "intensity"). The final column is "holder", representing
the estimated Holder exponent asscoiated with each peak. Since noise.local is NULL, "snr"
is the same as ("intensity").

References

Pan Du, Warren A. Kibbe, and Simon M. Lin, “Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching", Bioinformatics, 22, 2059–
2065 (2006).

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

See Also

wavCWT, wavCWTTree, msPeak, msPeakInfo.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract a subset of a single spectrum
mz <- qcset$mz
imz <- mz > 3000 & mz < 5000
z <- as.vector(qcset[imz, 1]$intensity)
mz <- mz[imz]
plot(mz, z, cex=0.5, ylab="Intensity", xlab="m/z", type="l")

estimate the peak locations using various
minimum CWT scales and overlay the plot
locations
scale.min <- c(2,4,8)
col <- c("green","blue","red")

for (i in seq(along=scale.min)){
p <- msPeakCWT(mz, z, scale.min=scale.min[i])
ipeak <- p[["tick.loc"]]
points(mz[ipeak], z[ipeak], cex=i, col=col[i], pch=1)

}

58 msPeakInfo

add a legend
if (is.R()){
legend(3000,10000,pch=1,col=col,legend=paste("scale.min =", scale.min))

} else {
legend(3000,10000,marks=1,col=col,legend=paste("scale.min =", scale.min))

}

plot the Holder exponents corresponding to each
peak
hx <- p[["mass.loc"]]
hy <- abs(p[["holder"]])
plot(hx, hy, type="h", xlim=range(mz), lty="dashed", col="blue", xlab="m/z", ylab="|Holder exponent|")
points(hx, hy, col="red", cex=1.2)
lines(mz, rescale(z,c(0,0.5)), lwd=3)
abline(h=0, lty="dotted")
legend(3000,1,col=c("blue","black"), lwd=c(1,3), lty=c("dashed","solid"),

legend=c("|Holder exponent|", "Scaled spectrum"))

msPeakInfo Peak Detection Constructor Function

Description

Provides a common interface for packing detected mass spectrometry peaks into an appropriate
output object.

Usage

msPeakInfo(x, y, index.min, index.max, noise.local = NULL,
snr.thresh = 2)

Arguments

x A numeric vector representing the m/z values of a spectrum.

y A numeric vector representing the intensity values of the spectrum.

index.max A logical vector the size of the original mass spectrum. If the kth element is
TRUE, it indicates that the corresonding kth element of the original mass spec-
trum is a local maxima.

index.min A logical vector the size of the original mass spectrum. If the kth element is
TRUE, it indicates that the corresonding kth element of the original mass spec-
trum is a local minima. It is assumed that for each peak (identified as a TRUE
element in index.max) there exists two minima which encompass the peak in
time. Hence, it is expected that length(which(index.min)) will be one
greater than length(which(index.max)).

noise.local A numeric vector representing the estimated instantaneous noise level, i.e., one
noise element for eachm/z value. This argument is used to form signal-to-noise
ratio (SNR) estimates that are subsequently compared to the snr.thresh ar-
gument in the pruning process. Default: NULL (no SNR pruning is performed).

snr.thresh A numeric value representing the signal intensity threshold. Only the local max-
ima whose signal intensity is above this value will be recorded as peaks. Default:
2.

msPeakMRD 59

Value

A data.frame with 10 columns: peak class location, left bound, right bound and peak span in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span") and mass mea-
sure ("mass.loc", "mass.left", "mass.right", "mass.span"), and peak signal-to-
noise ratio and intensity ("snr", "intensity"). Since noise.local is NULL, "snr" is the
same as ("intensity").

See Also

msPeak, msPeakSimple, msPeakMRD, msPeakCWT.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

create faux MS peak data
z <- qcset[seq(500), 1]
x <- z$mz
y <- z$intensity
noise <- as.vector(wavCWT(y, n.scale=1))
index.min <- peaks(-y, span=31)
index.max <- peaks(y, span=31)

pack data using the constructor
msPeakInfo(x, y, index.min, index.max, noise.local=noise, snr.thresh=1.3)

msPeakMRD Peak Detection via Multiresolution Decomposition

Description

A multiresolution decomposition (MRD) of the input time is formed using the maximal overlap
discrete wavelet transform (MODWT). The sum of the MRD details (D) over the user-specified
decomposition level(s) is formed.

If the number of specified decomposition levels is unity, first and second derivative approximations
of D are approximated via (approximate) zero phase shifted versions of the MODWT(D) using the
Haar and D4 (Daubechies extremal phase 4-tap) wavelet filter, respectively. The index locations of
the original series are "marked" where the the first derivative is approximately zero and the second
derivative exceeds a user defined threshold, providing an estimate of the local extrema locations in
D. Here, we note that a positive convavity threshold is used (as opposed to a negative value) due
to a natural negation of the second derivative approximation using the wavelet scheme described
above.

If the number of decomposition levels is greater than one, a simple peak detection scheme (msExtrema)
is used to return the locations of the local maxima in D.

Usage

msPeakMRD(x, y, n.level=floor(log2(length(y))),
concavity.threshold=0, snr.thresh=0, process="msPeakMRD")

60 msPeakMRD

Arguments

x A numeric vector representing the m/z values of a spectrum.

y A numeric vector representing the intensity values of the spectrum.
concavity.threshold

A non-negative concavity threshold. All points in the second derivative approx-
imation to the calculated detail series that do no exceed this threshold are re-
moved a potential local extrema candidates. Only used if length(levels)
== 1. Default: 0.

n.level The decomposition level in which the analysis is to be carried out. limited to
floor(log2(length(y))). Default: floor(log2(length(y))).

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msPeakMRD".

snr.thresh A numeric value representing the signal intensity threshold. Only the local max-
ima whose signal intensity is above this value will be recorded as peaks. Default:
0.

Value

A data.frame with 10 columns: peak class location, left bound, right bound and peak span in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span") and mass mea-
sure ("mass.loc", "mass.left", "mass.right", "mass.span"), and peak signal-to-
noise ratio and intensity ("snr", "intensity"). Since noise.local is NULL, "snr" is the
same as ("intensity").

References

T. W. Randolph and Y. Yasui, Multiscale Processing of Mass Spectrometry Data, Biometrics, 62,
pp. 589–597, 2006.

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

See Also

wavMODWT, wavDaubechies, wavIndex, msPeak.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract a subset of a single spectrum
mz <- qcset$mz
imz <- mz > 3000 & mz < 5000
z <- as.vector(qcset[imz, 1]$intensity)
mz <- mz[imz]

specify the decomposition levels of interest
level <- 6

calculate the MRD detail
D <- wavMRDSum(z, wavelet="haar",

levels=level, xform="modwt",

msPeakSearch 61

keep.smooth=FALSE, keep.details=TRUE,
reflect=TRUE)

locate MODWT MRD detail features via
wavelet-based first and second derivative
approximations
ipeak1 <- msPeakMRD(mz, D, n.level=level)[["tick.loc"]]

plot the results
plot(D, cex=0.5, ylab=paste("D",level,sep=""), type="b")
abline(v=ipeak1, col="blue", lty="dashed")

msPeakSearch Peak Detection via Elevated Intensity

Description

This method seeks intensities that are higher than those in a local area and are higher than an
estimated average background at the sites.

Usage

msPeakSearch(x, y, noise.local=NULL, span=41, span.supsmu=0.05,
snr.thresh=2, process="msPeakSearch")

Arguments

x A numeric vector representing the m/z values of a spectrum.

y A numeric vector representing the intensity values of the spectrum.

noise.local A numeric vector representing the estimated local noise level. Default: NULL.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msPeakSearch".

snr.thresh A numeric value representing the signal to noise threshold. Only the local max-
ima whose signal to noise level is above this value will be recorded as peaks.
Default: 2.

span A peak is defined as an element in a sequence which is greater than all other
elements within a window of width span centered at that element. Default: 41.

span.supsmu The fraction of observations in the smoothing window. If span="cv", then au-
tomatic (variable) span selection is done by means of cross validation. Default:
0.05.

Value

A data.frame with 10 columns: peak class location, left bound, right bound and peak span in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span") and mass mea-
sure ("mass.loc", "mass.left", "mass.right", "mass.span"), and peak signal-to-
noise ratio and intensity ("snr", "intensity"). If noise.local is NULL, "snr" is the
same as ("intensity").

62 msPeakSimple

References

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q.T., “Sam-
ple classification from protein mass spectrometry, by peak probability contrasts," Bioinformatics,
20(17):3034–44, 2004.

Yasui, Y., McLerran, D., Adam, B.L., Winget, M., Thornquist, M., Feng, Z., “An automated peak
identification/calibration procedure for high-dimensional protein measures from mass spectrome-
ters," Journal of Biomedicine and Biotechnology, 2003(4):242–8, 2003.

Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, Jr., G.L., Qu, Y., Potter, J.D., Winget,
M., Thornquist, M., and Feng, Z., “A data-analytic strategy for protein biomarker discovery: Pro-
filing of high-dimensional proteomic data for cancer detection," Biostatistics, 4(3):449–63, 2003.

See Also

msPeak, msPeakSimple, msExtrema, peaks.

msPeakSimple Peak Detection via Local Maxima

Description

Performs peak detection via a simple local maxima search.

Usage

msPeakSimple(x, y, noise.local=NULL, span=3,
snr.thresh=2, process="msPeakSimple")

Arguments

x A vector representing the m/z values of a spectrum.

y A vector representing the intensity values of the spectrum.

noise.local A vector representing the estimated local noise level. Default: NULL.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msPeakSimple".

snr.thresh A value representing the signal to noise threshold. Only the local maxima whose
signal to noise level is above this value will be recorded as peaks. Default: 2.

span A peak is defined as an element in a sequence which is greater than all other
elements within a window of width span centered at that element. The default
value is span=3, meaning that a peak is bigger than both of its neighbors.

Value

A data.frame with 10 columns: peak class location, left bound, right bound and peak span in both
clock tick ("tick.loc", "tick.left", "tick.right", "tick.span") and mass mea-
sure ("mass.loc", "mass.left", "mass.right", "mass.span"), and peak signal-to-
noise ratio and intensity ("snr", "intensity"). If noise.local is NULL, "snr" is the
same as ("intensity").

msPlot 63

References

Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., Kuerer, H.M., “Improved peak detec-
tion and quantification of mass spectrometry data acquired from surface-enhanced laser desorption
and ionization by denoising spectra with the undecimated discrete wavelet transform," Proteomics,
5:4107–17, 2005.

See Also

msPeak, msPeakSearch, msExtrema, peaks.

msPlot General Plotting Utility

Description

This function facilitates a wide array of customized plots, enabling the user to easily combine
matlines, matpoints, lines, points, image, abline, and text elements. An advan-
tage of this technique is that the plot boundaries defined by xlim and ylim are automatically
and correctly set using all sources of relevant input data to avoid "plot out of bounds" warnings.
A second advantage is with the matlines and matpoints plots in that the optional offset
function can be used to visually separate each series (column) of the supplied data matrix in the dis-
play, creating a waterfall-like plot. There are restrictions, however, in that the number of columns
of the matlines and matpoints matrices must be the same if supplied. Also, currently a mix
of matlines-matpoints with lines-points is not supported.

Usage

msPlot(matlines.=NULL, matpoints.=NULL, lines.=NULL, points.=NULL,
image.=NULL, abline.=NULL, text.=NULL, offset=NULL, recenter=FALSE,
offset.fun=function(x){3 * stdev(x, na.rm=TRUE)},
xlab="", ylab="", yref=TRUE, main="", add=FALSE, ...)

Arguments

... additional arguments for plot().

abline. a list of named objects. This list must contain either of the objects h or v,
containing the vector of coordinates at which to plot at the specifed ablines.
Default: NULL (no ablines).

add a logical value. If TRUE, the plot is added using the current par() layout.
Otherwise a new plot is produced. Default: FALSE.

image. a list of named objects. At the very least, the objects x, y, and z must exist,
containing the x and y vectors and z matrix, respectively. Default: NULL (no
image).

lines. a list of named objects. At the very least, the objects x and y must exist, con-
taining the x and y matrices, respectively. Default: NULL (no lines).

main a character string representing the title label. Default: "" (no label).

matlines. a list of named objects. At the very least, the objects x and y must exist, con-
taining the x and y matrices, respectively. Default: NULL (no matlines).

64 msPlot

matpoints. a list of named objects. At the very least, the objects x and y must exist, con-
taining the x and y matrices, respectively. Default: NULL (no matpoints).

offset a numeric scalar representing the vertical offset to apply between each line in
matlines and each point in matpoints. If NULL, the offset is automati-
cally calculated. Default: NULL (the offset between plots is set to one standard
deviation calculated over the entire set of matlines-matpoints y data).

offset.fun the function to use in calculating the offset if not supplied. This function
should have a single input argument which operates over a vector assumed to
contain a vectorized collection of all matlines and matpoints y matrices.
Default: function(x){3 * stdev(x)}.

points. a list of named objects. At the very least, the objects x and y must exist, con-
taining the x and y matrices, respectively. Default: NULL (no points).

recenter a logical value specifying whether or not to recenter the plot. Default: FALSE.

text. a list of named objects. At the very least, the objects x and y must exist, con-
taining the x and y coordinates, respectively, used to place the text. Default:
NULL (no text).

xlab a character string representing the x-axis label. Default: "" (no label).

ylab a character string representing the y-axis label. Default: "" (no label).

yref a logical value. If TRUE, a line connecting each y-offset value on the ordinate
to the starting point of the corresponding series is drawn for matlines and
lines plots. Default: TRUE.

Value

the offsets applied to each column of existing matlines-matpoints y data. This vector is
returned invisibly.

See Also

matlines, matpoints, lines, points, image, abline, text, par.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

define range variables
iz <- seq(7500)
pts <- c(1500,2500,4500)

plot matrix style objects
offsets <- msPlot(

matlines=list(x=qcset$mz[iz], y=qcset$intensity[iz,1:4],
lty = 1),

matpoints=list(x=qcset$mz[pts], y=qcset$intensity[pts,1:4],
pch=1,cex=2),

text=list(x=c(3,7)*1000, y=c(15,18)*1000,
labels=c("cow","moon"), cex=2, adj=1, col=1:2),

abline=list(v=qcset$mz[pts], h=10000),
xlab="X Label", ylab="Y Label", main="Title",
yref=TRUE)

plot non-matrix style objects

msPrepare 65

x <- y <- seq(-4*pi, 4*pi, len=27)
r <- sqrt(outer(x^2, y^2, "+"))
z <- cos(r^2)*exp(-r/6)

msPlot(
lines=list(x=-60:-55, y=40:45, lwd=5, col=4),
points=list(x=rnorm(30)-65, y=sin(1:30)+35, col=3, pch=2, cex=2),
text=list(x=-65,y=39.5,"Sample text", cex=4, col=2),
image=list(x=x/5-70, y=y/5+45, z=z),
yref=FALSE)

multiple matlines in a single call
x <- matrix(seq(0,10,by=0.1))
y <- sin(x %*% t(1:4))
msPlot(matlines=list(

list(x=x, y=y, lty=1, lwd=1),
list(x=x, y=y + 0.2, lty=1, lwd=2),
list(x=x, y=y - 0.2, lty=1, lwd=4)),
yref=TRUE)

msPrepare Convert an msList Object to an msSet Object

Description

Converts an msList object to an msSet object by truncating the spectra to the mass range of
interest, interpolating the spectra to a common set of m/z values, and transforming the intensity
values if specified.

Usage

msPrepare(x, mass.min=1500, transform=NULL, data.name = NULL)

Arguments

x An object of class msList.

mass.min A numeric value denoting the lowest mass (in Dalton) of interest. The portion
of the spectra below this value will be removed. The low mass region is gener-
ally considered suspicious as matrix contamination may be a problem. Default:
1500.

transform A function to be used to transform the intensity values. The main purpose of
the transformation is to reduce the variance of the intensity values and to stabi-
lize the noise component of the spectra. Some possible choices are logarithm
(log), square root (sqrt) and cube root. The default is not to perform any
tranformation. Default: NULL (no transform).

data.name name for the data. Default: deparseText(substitute(x)).

Value

An object of class msSet that has the same number of spectra as in the input msList object x.

66 msQualify

See Also

msList, msSet, msNormalize.

Examples

if (!exists("qclist")) data("qclist", package="msProcess")

extract several spectra from the build-in
dataset qclist
zList <- qclist[1:8]

convert the subset to an msSet object
cbrt <- function(x) x^(1/3)
zSet <- msPrepare(zList, mass.min=950, transform=cbrt)

visualize a portion of the spectra
plot(zSet, subset=NULL, xlim=c(13000, 17000), offset=0.5)

msQualify Quality Assessment of Mass Spectra Data

Description

Creates a data quality object using a set of spectra from a quality control (QC) sample. The result
can be used to assess the quality of other spectra generated from the same QC sample.

Usage

msQualify(x, FUN="princomp", ...)

Arguments

x A matrix of peak intensity values with spectra as rows and peak classes as
columns. The peak intensity matrix can be estimated via the msAlign function
(with measure="intensity") whose output contains (in part) a peak.matrix
object.

... Additional arguments for the specified principal component analysis FUN. See
the specific function for details.

FUN A character string specifying the method for principal component analysis. Pos-
sible choices are "princomp", "princompRob". Default: "princomp".

Details

The user is expected to provide a (training) peak intensity matrix that has been derived from a set of
pooled quality control samples. The output of msQualify contains the projection of this matrix
onto its principal components (PCs) via the princomp or princompRob function. The user can
subsequently assess the quality of another (test) peak intensity matrix generated from the same QC
sample via the predict method, which compares the training PCs to the test PCs.

Value

An object of class msQualify.

msQualify 67

S3 METHODS

predict Predict the quality of a set of spectra. This method supports the following optional argu-
ments.

object An object of class msQualify.
newdata A matrix of peak intensities. It must have the same number of columns as the peak

intensity matrix used to compute the msQualify object.
criterion A character string indicating the criterion to be use. Possible choices are "Cattell"

and "Kaiser". Default: "Cattell".
threshold A numeric value representing the threshold to be used. Default: 0.9.

References

Coombes KR, Fritsche HA Jr., Clarke C, Chen JN, Baggerly KA, Morris JS, Xiao LC, Hung MC,
and Kuerer HM, “Quality control and peak finding for proteomics data collected from nipple as-
pirate fluid by surface-enhanced laser desorption and ionization," Clinical Chemistry, 49(10), pp.
1615–23, 2003.

See Also

princomp.

Examples

create multiple reference samples with multiple
peaks
set.seed(10)
nrs <- 240
nv <- 35
my.mean <- 10
my.sd <- rnorm(nv)
my.sd <- my.sd - min(my.sd) + 1
rsam <- splus2R::rmvnorm(n=nrs, d=nv, mean=rep(my.mean, nv),

cov=diag(nv), sd=my.sd)

run msQualify
pca <- msQualify(rsam, FUN="princompRob", estim="auto")

create multiple reference samples with multiple
peaks from the same distribution
nts <- 72
tsam <- splus2R::rmvnorm(n=nts, d=nv, mean=rep(my.mean, nv),

cov=diag(nv), sd=my.sd)

predict the quality of the test samples

quality <- predict(pca, tsam)
quality$pass
if (!is.R()) assign("quality", quality, frame=1)
check if the distances truly follow
chisq(nkeep) distribution
qqmath(~quality$dist,

distribution=function(p, df=quality$df) qchisq(p, df),
panel = function(x, y) {
panel.grid()

68 msQuantify

panel.abline(0, 1)
panel.qqmath(x, y)
},
aspect=1,
xlab=paste("Chisq(", quality$df, ") Quantile"),
ylab="mahalanobis distance")

msQuantify Mother Function for Peak Quantification

Description

Given an msSet object containing a peak.class element defining a common set of peak classes,
this function returns either (i) a matrix of peak intensities or (ii) a count of the peaks that are
associated with each peak class. The measure argument is used to specify the output type.

Usage

msQuantify(x, xnew=NULL, measure="intensity")

Arguments

x An object of class msSet containing a peak.class element.

measure A character string specifying the measure to be used for quantification. Choices
are

"intensity" quantifies a peak class using the maximum intensity in the cor-
rected spectra within the span of the peak class.

"count" quantifies a peak class using the number of peaks found in the cor-
rected spectra within the span of the peak class.

Default: "intensity".

xnew An object of class msSet. This object may contain a set of spectra that were
not used to originally generate the peak classes. If the user wishes to quantify
the original spectra, set xnew=NULL. Default: NULL.

Value

The same input msSet object (x if xnew=NULL, xnew otherwise) with an updated/new peak.matrix
element. The rows and columns of the peak.matrix are the peak class measures and peak
classes, respectively. If measure="count", the element "peak.list" is also updated with a
class ID for each peak.

References

Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R., “Feature extraction and
quantification for mass spectrometry in biomedical applications using the mean spectrum," Bioin-
formatics, 21(9):1764–75, 2005.

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q.T., “Sam-
ple classification from protein mass spectrometry, by peak probability contrasts," Bioinformatics,
20(17):3034–44, 2004.

msQuantifyCount 69

Yasui, Y., McLerran, D., Adam, B.L., Winget, M., Thornquist, M., Feng, Z., “An automated peak
identification/calibration procedure for high-dimensional protein measures from mass spectrome-
ters," Journal of Biomedicine and Biotechnology, 2003(4):242–8, 2003.

Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, Jr., G.L., Qu, Y., Potter, J.D., Winget,
M., Thornquist, M., and Feng, Z., “A data-analytic strategy for protein biomarker discovery: Pro-
filing of high-dimensional proteomic data for cancer detection," Biostatistics, 4(3):449–63, 2003.

See Also

msQuantifyIntensity, msQuantifyCount, msAlign.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

extract several spectra from the build-in
dataset
z <- qcset[, 1:8]

denoising
z <- msDenoise(z, FUN="wavelet", n.level=10, thresh.scale=2)

local noise estimation
z <- msNoise(z, FUN="mean")

baseline subtraction
z <- msDetrend(z, FUN="monotone", attach=TRUE)

intensity normalization
z <- msNormalize(z)

peak detection
z <- msPeak(z, FUN="simple", use.mean=FALSE, snr=2)

peak alignment
z <- msAlign(z, FUN="cluster", snr.thresh=10, mz.precision=0.004)

peak quantification using intensity
z <- msQuantify(z, measure="intensity")

extract peak.matrix
z[["peak.matrix"]]

visualize the peak.matrix
image(z, what="peak.matrix")

msQuantifyCount Count of Spectral Peaks Associated with a Peak Class

Description

Using the peak.list element of a given msSet object, this function returns a count of peaks
associated with a common set of peak classes.

70 msQuantifyIntensity

Usage

msQuantifyCount(x, xnew=NULL)

Arguments

x An object of class msSet containing a peak.class element.

xnew An object of class msSet. This object may contain a set of spectra that were
not used to originally generate the peak classes. If the user wishes to quantify
the original spectra, set xnew=NULL. Default: NULL.

Value

The same input msSet object (x if xnew=NULL, xnew otherwise) with an updated/new peak.matrix
element. The rows and columns of the peak.matrix are the peak class measures and peak
classes, respectively. If measure="count", the element "peak.list" is also updated with a
class ID for each peak.

References

Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R., “Feature extraction and
quantification for mass spectrometry in biomedical applications using the mean spectrum," Bioin-
formatics, 21(9):1764–75, 2005.

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q.T., “Sam-
ple classification from protein mass spectrometry, by peak probability contrasts," Bioinformatics,
20(17):3034–44, 2004.

Yasui, Y., McLerran, D., Adam, B.L., Winget, M., Thornquist, M., Feng, Z., “An automated peak
identification/calibration procedure for high-dimensional protein measures from mass spectrome-
ters," Journal of Biomedicine and Biotechnology, 2003(4):242–8, 2003.

Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, Jr., G.L., Qu, Y., Potter, J.D., Winget,
M., Thornquist, M., and Feng, Z., “A data-analytic strategy for protein biomarker discovery: Pro-
filing of high-dimensional proteomic data for cancer detection," Biostatistics, 4(3):449–63, 2003.

See Also

msQuantify, msQuantifyIntensity.

msQuantifyIntensity
Spectral Peak Intensities Associated with a Peak Class

Description

Given an msSet object, this function quantifies the spectral peak intensities associated with a
common set of peak classes. The measure used to identify candidate peaks is the maximum intensity
value found over a pre-defined span of the corresponding peak class.

Usage

msQuantifyIntensity(x, xnew=NULL)

msSet 71

Arguments

x An object of class msSet containing the peak.class element.

xnew An object of class msSet. This object may contain a set of spectra that were
not used to originally generate the peak classes. If the user wishes to quantify
the original spectra, set xnew=NULL. Default: NULL.

Value

The same input msSet object (x if xnew=NULL, xnew otherwise) with an updated/new peak.matrix
element. The rows and columns of the peak.matrix are the peak class measures and peak
classes, respectively.

References

Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R., “Feature extraction and
quantification for mass spectrometry in biomedical applications using the mean spectrum," Bioin-
formatics, 21(9):1764–75, 2005.

Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., and Le, Q.T., “Sam-
ple classification from protein mass spectrometry, by peak probability contrasts," Bioinformatics,
20(17):3034–44, 2004.

Yasui, Y., McLerran, D., Adam, B.L., Winget, M., Thornquist, M., Feng, Z., “An automated peak
identification/calibration procedure for high-dimensional protein measures from mass spectrome-
ters," Journal of Biomedicine and Biotechnology, 2003(4):242–8, 2003.

Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, Jr., G.L., Qu, Y., Potter, J.D., Winget,
M., Thornquist, M., and Feng, Z., “A data-analytic strategy for protein biomarker discovery: Pro-
filing of high-dimensional proteomic data for cancer detection," Biostatistics, 4(3):449–63, 2003.

See Also

msQuantify, msQuantifyCount.

msSet S3 Class Representing a Set of Spectra with Common m/z Values

Description

An object of class msSet is a list containing three required components:

mz A vector of mass/charge values.

type A factor denoting the disease label for each spectrum.

intensity A matrix of intensity values. Each column corresponds to a spectrum and each row
corresponds to an m/z value. The number of rows should be the same as the length of mz.
The number of columns should be the same as the length of type.

It can also have additional elements such as "noise", "noise.local", "baseline", "tic",
"peak.list", "peak.class", "peak.matrix", "intensity.mean", "noise.mean",
and "noise.local.mean".

72 msSet

Usage

msSet(x, mz=NULL, type=NULL, data.name=NULL, ...)

Arguments

x a vector, a matrix, a data.frame, or an object of class msSet.

... additional elements to be added.

data.name a character string denoting the name for the dataset. Default: NULL, i.e., using
the variable name of the x argument.

mz a vector of m/z values. It must be of the same length as x if x is a vector, or
its length must be the same as the number of rows of x if x is a matrix or
data.frame.

type a factor denoting the disease label for each spectrum. This argument must be a
scalar (length=1) if x is a vector, or a vector whose length is the same as the
number of rows of x in the case that x is a matrix or data.frame.

Value

an object of class msSet.

S3 METHODS

[spectra extraction from an msSet object.
Usage: x[i, j]

x an msSet object.
i a subscript expression used to identify the m/z elements to extract or replace.
j a subscript expression used to identify the spectra to extract or replace.

image displays a set of spectra as an image.
Usage: image(x, what="spectra", subset=NULL, xaxis="mass", xlim=NULL, add=FALSE,
xaxs="i", yaxs="i", ...)

x an msSet object.
what a character string specifying what to be imaged. The options are "spectra", "noise",

"noise.local", "baseline", "peak.list", and "peak.matrix". Default:
"spectra". If what=="peak.matrix", the arguments subset, xaxis, and
xlim are ignored.

subset a numeric vector indicating the spectra numbers to be included. All spectra are in-
cluded by default.

xaxis a character string specifying what to be used as the x-axis. The options are "mass"
and "time". Default: "time".

xlim a numeric vector with two elements specifying the range for the x axis. Its first element
should be less than its second element. If it is NULL (by default), the entire range of the
data is plotted. If one of its element is NA, it is replaced with the corresponding limit.

add a logical value. If TRUE, the plot is added using the current par() layout. Otherwise a
new plot is produced. Default: FALSE.

xaxs a character specifying the style of x axis interval calculation. Default: "i". See par for
details.

yaxs a character specifying the style of y axis interval calculation. Default: "i". See par for
details.

... Other graphical parameters passed to the image function.

msSet 73

plot visualizes a particular processing step.
Usage: plot(x, process="msPrepare", subset=1, offset=0, xaxis="mass", xlim=NULL, pch=1,
lty=1:2, col=1:8, lwd=1, add=FALSE, ...)

x an msSet object.
process a character string specifying the process to be visualized. The options are "msPrepare",

"msDenoise", "msNoise", "msDetrend", "msNormalize", "msPeak", "msAlign".
Default: "msPrepare".

subset a numeric vector or NULL indicating the index of the spectra to be plotted. Default: 1,
i.e., the first spectrum. If NULL, the entire set of spectra are plotted.

offset a numeric scalar representing the vertical offset to apply between each spectrum. If
NULL, the offset is automatically calculated. Default: NULL.

xaxis a character string specifying what to be used as the x-axis. The options are "mass"
and "time". Default: "time".

xlim a numeric vector with two elements specifying the range for the x axis. Its first element
should be less than its second element. If it is NULL (by default), the entire range of the
data is plotted. If one of its element is NA, it is replaced with the corresponding limit.

pch a single character or integer denoting the plotting character for the peaks. Default: 1, i.e.,
a circle.

lty an integer vector of length 2 denoting the line type for the two lines associated with each
spectrum to be plotted. If it is a single integer, it will be used cyclically. If its length is
more than 2, only the first two elements will be used.

col a vector of integers denoting the colors for the spectra to be plotted. Colors are used
cyclically.

lwd a integer vector of length 2 denoting the line width for the two lines associated with
each spectrum to be plotted, device dependent. If it is a single integer, it will be used
cyclically. If its length is more than 2, only the first two elements will be used. Width 1
is the standard width for the device. Many devices cannot change line width. Default: 1.

add a logical value. If TRUE, the plot is added using the current par() layout. Otherwise a
new plot is produced. Default: FALSE.

... Other graphical parameters passed to the underlying plotting functions.

print prints an msSet object.
Usage: print(x, justify="left", sep=":", ...) or x

x an msSet object.
justify a character string giving the justification of the numbers relative to each other. The

choices are "none", "left", "right" and "decimal". Only the first letter needs
to be given.

sep a character string to be inserted between text and values. The default is a colon.

summary provides a synopsis of an msSet object.
Usage: summary(x)

x an msSet object.

See Also

msList, msPlot, apply.msSet.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

74 msSmoothApprox

plot a few spectra from qcset
plot(qcset, subset=1:5)

image of all spectra in qcset
image(qcset)

msSmoothApprox Piecewise Linear Baseline Estimation

Description

Estimates the baseline of a spectrum as a linear or constant interpolation of the local minima of a
spectrum.

Usage

msSmoothApprox(x, y, method="linear", rule=2, f=0.5,
index=rep(TRUE, length(x)), process="msSmoothApprox")

Arguments

x A numeric vector representing the m/z values of a spectrum.

y A numeric vector representing the intensity values of the spectrum correspond-
ing to the specified m/z values.

f A numeric scalar used when method="constant", which determines a blend
of the left and right side y values. e.g., suppose we want an interpolated value
between x1 and x2 (with corresponding y values y1 and y2). Then the interpo-
lated value is (1 − f) ∗ y1 + f ∗ y2. Thus, if f = 0, the left y-value is used,
if f = 1, the right y-value, and if f is between 0 and 1, an intermediate value is
used. Default: 0.5.

index A logical vector indicating the local minima to be used to approximate the base-
line. Default: rep(TRUE, length(x)).

method A character string describing the method to be used in approximating the base-
line. This must be either "linear" or "constant". Default: "linear".

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothApprox".

rule An integer (either 2 or 3) describing the rule to be used for values that are outside
the range of the minima of x.
If rule=2, the y values corresponding to the extreme x values will be used. If
rule=3, linear extrapolation is used. Default: 2.

Value

A numeric vector representing the estimated piece-wise linear baseline.

See Also

msSmoothKsmooth, msSmoothLoess, msSmoothMean, msSmoothMonotone, msSmoothSpline,
msSmoothSupsmu.

msSmoothKsmooth 75

msSmoothKsmooth Fit a Smooth Curve Using Kernel Smoothers

Description

Fits a smooth curve to a set of data points using kernel smoothers and returns a vector of fitted
smooth curve values evaluated at the original locations.

Usage

msSmoothKsmooth(x, y, kernel="box", bandwidth=100, process="msSmoothKsmooth")

Arguments

x A numeric vector of abscissa values.

y A numeric vector of ordinate values, which must be of the same length as x.

kernel, bandwidth
See fucntion ksmooth for descriptions.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothKsmooth".

Value

A numeric vector of fitted smooth curve values evaluated at the original locations.

See Also

msSmoothApprox, msSmoothLoess, msSmoothMean, msSmoothMonotone, msSmoothSpline,
msSmoothSupsmu.

msSmoothLoess Fit a Smooth Curve Using Loess

Description

Fits a local regression model to a subset or set of data points and returns a vector of fitted smooth
curve values evaluated at the original locations.

Usage

msSmoothLoess(x, y, span=0.1, degree=1, family="symmetric",
index=rep(TRUE, length(x)), process="msSmoothLoess")

76 msSmoothMean

Arguments

x A numeric vector of abscissa coordinates.

y A numeric vector of ordinate coordinates, which must be of the same length as
x.

index A logical vector of the same length as x, indicating the indices of x and y to use
in fitting the data. Default: rep(TRUE, length(x)).

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothLoess".

span, degree, family
See function loess.smooth for descriptions.

Value

A numeric vector of fitted smooth curve values evaluated at the original locations.

See Also

msSmoothApprox, msSmoothKsmooth, msSmoothMean, msSmoothMonotone, msSmoothSpline,
msSmoothSupsmu.

msSmoothMean Fit a Smooth Curve Using Moving Average

Description

Fits a smooth curve to a vector using moving average and returns a vector of fitted smooth curve
values evaluated at the original locations.

Usage

msSmoothMean(y, half.span=250, process="msSmoothMean")

Arguments

y A numeric vector.

half.span A numeric value denoting half of the window width when performing average.
Default: 250.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothMean".

Value

A vector of fitted smooth curve values evaluated at the original locations.

See Also

msSmoothApprox, msSmoothKsmooth, msSmoothLoess, msSmoothMonotone, msSmoothSpline,
msSmoothSupsmu.

msSmoothMonotone 77

msSmoothMonotone Monotonic Baseline Estimation

Description

Estimates the baseline of a spectrum as a decreasing function that always takes on a monotonic
minimum value.

Usage

msSmoothMonotone(x, process="msSmoothMonotone")

Arguments

x A numeric vector representing the intensity values of a spectrum.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothMonotone".

Details

Since this function estimates the baseline of a spectrum as a monotone minimum, it works only if
the portion before the maximum of the saturation period has been removed from the spectrum.

Value

A vector representing the estimated monotonically decreasing baseline.

References

Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., Kuerer, H.M., “Improved peak detec-
tion and quantification of mass spectrometry data acquired from surface-enhanced laser desorption
and ionization by denoising spectra with the undecimated discrete wavelet transform," Proteomics,
5:4107–17, 2005.

See Also

msSmoothApprox, msSmoothKsmooth, msSmoothLoess, msSmoothMean, msSmoothSpline,
msSmoothSupsmu.

78 msSmoothMRD

msSmoothMRD Baseline Estimation via Partial Summation of an MRD

Description

Forms a multiresolution decomposition (MRD) by taking a specified discrete wavelet transform of
the input spectrum and subsequently inverting each level of the transform back to the "time" do-
main. The resulting components of the MRD form an octave-band decomposition of the original
spectrum, and can be summed together to reconstruct the original spectrum. In many real-world
observations, the trend of the data is caught up in the last decomposition level’s so-called smooth,
which corresponds to residual low frequency content. This function allows the user to approximate
the baseline trend in a mass spectrum by calculating the MRD smooth. Additionally, the user has
the option to include relatively higher frequency content in the approximation by including various
MRD details (see the DETAILS section for a definition of MRD details and MRD smooth). As this
function primarily calls the wavMRDSum function with appropriate arguments, see the correspond-
ing help documentation for more details.

Usage

msSmoothMRD(x, wavelet="s8", levels=1,
xform="modwt", reflect=TRUE,
keep.smooth=TRUE, keep.details=FALSE,
process="msSmoothMRD")

Arguments

x A vector containing a uniformly-sampled real-valued time series.

keep.details A logical value. If TRUE, the details corresponding to the specified levels are
included in the partial summation over the MRD components. The user also has
the choice to include the smooth in the summation via the keep.smooth op-
tion, but one of keep.details and keep.smooth must be TRUE. Default:
FALSE.

keep.smooth A logical value. If TRUE, the smooth at the last decomposition level is added
to the partial summation over specified details. The smooth typically contains
low-frequency trends present in a spectrum. The user also has the choice to
include the details in the summation via the keep.details option, but one
of keep.details and keep.smooth must be TRUE. Default: TRUE.

levels An integer vector of integers denoting the MRD detail(s) to sum over in forming
a denoised approximation to the orginal spectrum (the summation is performed
across scale and nto across time). All values must be positive integers, and
cannot exceed floor(logb(length(x),2)) if reflect=FALSE and, if
reflect=TRUE, cannot exceed floor(logb((length(x)-1)/(L-1)
+ 1, b=2))whereL is the length of the wavelet filter. Use the keep.smooth
option to also include the last level’s smooth in the summation. Default: 1.

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. This pro-
cess is not updated if it already exists in the event history. Default: "msSmoothMRD".

reflect A logical value. If TRUE, the last LJ = (2n.level−1)(L−1)+1 coefficients of
the series are reflected (reversed and appended to the end of the series) in order

msSmoothMRD 79

to attenuate the adverse effect of circular filter operations on wavelet transform
coefficients for series whose endpoint levels are (highly) mismatched. The vari-
able LJ represents the effective filter length at decomposition level n.level,
where L is the length of the wavelet (or scaling) filter. A similar operation is
performed at the beginning of the series. After synthesis and (partial) summa-
tion of the resulting details and smooth, the middle N points of the result are
returned, where N is the length of the original time series. Default: TRUE.

wavelet A character string denoting the filter type. See wavDaubechies for details.
Default: "s8".

xform A character string denoting the wavelet transform type. Choices are "dwt"
and "modwt" for the discrete wavelet transform (DWT) and maximal overlap
DWT (MODWT), respectively. The DWT is a decimated transform where (at
each level) the number of transform coefficients is halved. GivenN is the length
of the original time series, the total number of DWT transform coefficients isN .
The MODWT is a non-decimated transform where the number of coefficients at
each level is N and the total number of transform coefficients is N*n.level.
Unlike the DWT, the MODWT is shift-invariant and is seen as a weighted av-
erage of all possible non-redundant shifts of the DWT. See the references for
details. Default: "modwt".

Value

A vector containing the baseline trend of the input spectrum.

References

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

T.W. Randolph and Y. Yasui, Multiscale Processing of Mass Spectrometry Data, Biometrics, 62:589–
97, 2006.

See Also

wavMRDSum, msDetrend, wavDaubechies, wavDWT, wavMODWT, wavMRD, eventHistory.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

obtain a subset of a mass spectrum and add some
noise
x <- qcset$intensity[5000:10000,1]
sd.noise <- 2
set.seed(100)
xnoise <- x + rnorm(length(x), sd=sd.noise)
mz <- as.matrix(as.numeric(names(x)))

calculate the smooth at decomposition level 9
and use that as an approximation of the
spectrum baseline
z <- msSmoothMRD(xnoise, levels=9)

plot the results
plot(range(mz), range(xnoise), type="n",

80 msSmoothSpline

xlab="m/z", ylab="Spectrum and Baseline Estimation")
lines(mz, xnoise, type="l", lty=2, col=1)
lines(mz, z, lty=1, lwd=3, col=2)

msSmoothSpline Fit a Smooth Curve Using Cubic Spline

Description

Fits a cubic spline curve to a subset or set of data points and returns a vector of fitted smooth curve
values evaluated at the original locations.

Usage

msSmoothSpline(x, y, df=30, spar=0, cv=FALSE, all.knots=FALSE,
df.offset=0, penalty=1, index=rep(TRUE, length(x)),
process="msSmoothSpline")

Arguments

x A numeric vector of abscissa values.

y A numeric vector of ordinate values, which must be of the same length of x.

df, spar, cv, all.knots, df.offset, penalty
See function smooth.spline for descriptions.

index A logical vector of the same length of x indicating the elements to be used in
the fitting. Deafult: rep(TRUE, length(x)).

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothSpline".

Value

A numeric vector of fitted smooth curve values evaluated at the original locations.

See Also

msSmoothApprox, msSmoothKsmooth, msSmoothLoess, msSmoothMean, msSmoothMonotone,
msSmoothSupsmu.

msSmoothSupsmu 81

msSmoothSupsmu Fit a Smooth Curve Using Super Smoother

Description

Fits a smooth curve to a subset or set of data points using a super smoother and returns a vector of
fitted smooth curve values evaluated at the original locations.

Usage

msSmoothSupsmu(x, y, span="cv", periodic=FALSE, bass=0,
index=rep(TRUE, length(x)), process="msSmoothSupsmu")

Arguments

x A numeric vector of abscissa values.

y A numeric vector of ordinate values, which must be of the same length of x.

index A logical vector of the same length of x indicating the elements to be used in
the fitting. Deafult: rep(TRUE, length(x)).

process A character string denoting the name of the process to register with the (embed-
ded) event history object of the input after processing the input data. Default:
"msSmoothSupsmu".

span, periodic, bass
See function supsmu for descriptions.

Value

A vector of fitted smooth curve values evaluated at the original locations.

See Also

msSmoothApprox, msSmoothKsmooth, msSmoothLoess, msSmoothMean, msSmoothMonotone,
msSmoothSpline.

msVisual Determining What Can Be Visualized

Description

For a specific msSet object x, it determines which processing steps or object elements can be
visualized using FUN. This function is mainly used to build the GUI for the msProcess package.

Usage

msVisual(x, FUN="plot")

82 princomp2

Arguments

x An object of class msSet.

FUN a character string specifying the visualization method. The options are "plot"
and "image". Default: "plot".

Value

A vector of character string denoting the processing steps or object elements that can be visual-
ized for the msSet object x. Depending on FUN, its elements are the valid options for either the
process argument of plot.msSet or the what argument of image.msSet.

See Also

plot.msSet, image.msSet.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

determine which processing steps can be visuazlized using plot for qcset
msVisual(qcset, "plot")

determine which elements can be visuazlized using image for qcset
msVisual(qcset, "image")

apply wavelet denoise
denoised <- msDenoise(qcset, FUN="wavelet")

determine which processing steps can be visuazlized using plot for the denoised spectra
msVisual(denoised, "plot")

determine which elements can be visuazlized using image for the denoised spectra
msVisual(denoised, "image")

princomp2 Principal Component Analysis for Wide Data

Description

This function performs principal component analysis (PCA) for wide data x, i.e. dim(x)[1] <
dim(x)[2]. This kind of data can be handled by princomp in S-PLUS but not in R. The trick
is to do PCA for t(x) first and then convert back to the original space. It might be more efficient
than princomp for high dimensional data.

Usage

princomp2(x, ...)

Arguments

x a matrix.

... not used.

proteins 83

Value

an object of class "princomp".

See Also

princomp.

Examples

d <- matrix(rnorm(12), nrow=3)
dimnames(d) <- list(paste("S", 1:3, sep=""), paste("V", 1:4, sep=""))
{d.pc <- princomp2(d)}
summary(d.pc)
screeplot(d.pc)
biplot(d.pc)
predict(d.pc, d)
plot(loadings(d.pc))

proteins Class Representing a Protein Mixture or Sample

Description

Class slots:

masses A numeric vector of protein masses in daltons.
counts An integer vector of protein counts/abundance.

Usage

proteins(masses, counts)

Arguments

masses A positive numeric vector of protein masses in daltons, whose elements should
be unique.

counts A positive integer vector of protein counts/abundance, which should have the
same length as masses.

S3 METHODS

Arith Arith group generic functions.
Usage: FUN(x, y) or x op y
FUN a member of the Arith group generic functions, which include +, -, *,^, %%, %/%,

and /.
x a proteins object or a numeric vector.
y a proteins object or an integer vector.
If both x and y are objects of proteins, only + and - apply as mixing two protein samples
and taking part of a protein sample away, respectively. If x is a numeric and y is an objects
of proteins, the masses of y will be modified according to the operation. If x is an
objects of proteins and y is an integer, the counts of x will be modified according to the
operation.

84 proteins

Compare Compare group generic functions.
Usage: FUN(x, y)

FUN a member of the Compare group generic functions, which include ==, >, <, ! =,
<=, >=, and compare.

x a proteins object or a numeric vector.
y a proteins object or a numeric vector.

If both x and y are objects of proteins, only == and ! = apply . If x is a numeric and y is
an objects of proteins, the masses of y will be compared according to the operation. If x
is an objects of proteins and y is a numeric, the counts of x will be compared according
to the operation.

Math, Math2, Logic Math, Math2, Logic group generic functions are not defined for class proteins.

Summary Summary group generic functions.
Usage: FUN(x)

FUN a member of the Summary group generic functions, which include max, min, range,
prod, sum, any, and all.

x a proteins object.

[Extract parts of a proteins object.
Usage: x[i]

x a proteins object.
i a subscript expression identifying the proteins to extract.

[@mt<- Replace the counts of parts of a proteins object.
Usage: x[i]< −value

x a proteins object.
i a subscript expression identifying the protein counts to replace.
value a proteins object or an integer vector.

show Display a proteins object.
Usage: show(object) or object

object a proteins object.

xyCall Make all functions that naturally relate to points in the plane work with objects of class
proteins, including plot, lines, points, and etc. This generic function is not meant
to be called directly.
Usage: xyCall(x, y, FUN, ..., xexpr, yexpr)

x a proteins object.
y missing.
FUN a function to be called that have arguments x, y,
xexpr the S object representing the x argument to FUN unevaluated.
yexpr the S object representing the y argument to FUN unevaluated.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

See Also

calibrants, spectrometer.

qclist 85

Examples

generate two protein samples
sam1 <- proteins(masses=c(1, 95, 190), counts=as.integer(c(500, 3000, 10000)))
sam2 <- proteins(masses=10000+200*(0:3), counts=as.integer(c(12000, 4000, 2000, 1000)))

print the synopsis of the protein samples
sam1
sam2

mix the protein samples
sam <- sam1 + sam2

visualize the protein mixture
plot(sam, type="h")

qclist Mass Spectra from a Breast Cancer Quality Control Sample

Description

A data object of class msList, consisting of 8 mass spectra generated from a pooled sample of
nipple aspirate fluid (NAF) from healthy breasts and breasts with cancer. (see references for details).

References

Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., and Kuerer, H.M., "Improved peak
detection and quantification of mass spectrometry data acquired from surface-enhanced laser des-
orption and ionization by denoising spectra with the undecimated discrete wavelet transform," Pro-
teomics, 5:4107–17, 2005.

Pawlik, T.M., Fritsche, H., Coombes, K.R., Xiao, L., Krishnamurthy, S., Hunt, K.K., Pusztai, L.,
Chen, J.N., Clarke, C.H., Arun, B., Hung, M.C., and Kuerer, H.M., "Significant differences in nipple
aspirate fluid protein expression between healthy women and those with breast cancer demonstrated
by time-of-flight mass spectrometry," Breast Cancer Research and Treatment, 89(2):149–57, 2005.

Kuerer, H.M., Coombes, K.R., Chen, J.N., Xiao, L., Clarke, C., Fritsche, H., Krishnamurthy, S.,
Marcy, S., Hung, M.C., and Hunt, K.K., "Association between ductal fluid proteomic expres-
sion profiles and the presence of lymph node metastases in women with breast cancer," Surgery,
136(5):1061–9, 2004.

Coombes, K.R., Fritsche, Jr., H.A., Clarke, C., Chen, J.N., Baggerly, K.A., Morris, J.S., Xiao, L.C.,
Hung, M.C., and Kuerer, H.M., "Quality control and peak finding for proteomics data collected
from nipple aspirate fluid by surface-enhanced laser desorption and ionization," Clinical Chemistry,
49(10):1615–23, 2003.

See Also

qcset.

86 qcset

Examples

if (!exists("qclist")) data("qclist", package="msProcess")

print an msList object
qclist

print the synopsis of an msList object
summary(qclist)

plot the first spectrum from an msList object
plot(qclist, index=1)

qcset Mass Spectra from a Breast Cancer Quality Control Sample

Description

A data object of class msSet, consisting of 8 mass spectra generated from a pooled sample of
nipple aspirate fluid (NAF) from healthy breasts and breasts with cancer. The data set was derived
from qclist by eliminating the mass region below 950 Da/charge. Please see the references for
more details.

References

Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., and Kuerer, H.M., "Improved peak
detection and quantification of mass spectrometry data acquired from surface-enhanced laser des-
orption and ionization by denoising spectra with the undecimated discrete wavelet transform," Pro-
teomics, 5:4107–17, 2005.

Pawlik, T.M., Fritsche, H., Coombes, K.R., Xiao, L., Krishnamurthy, S., Hunt, K.K., Pusztai, L.,
Chen, J.N., Clarke, C.H., Arun, B., Hung, M.C., and Kuerer, H.M., "Significant differences in nipple
aspirate fluid protein expression between healthy women and those with breast cancer demonstrated
by time-of-flight mass spectrometry," Breast Cancer Research and Treatment, 89(2):149–57, 2005.

Kuerer, H.M., Coombes, K.R., Chen, J.N., Xiao, L., Clarke, C., Fritsche, H., Krishnamurthy, S.,
Marcy, S., Hung, M.C., and Hunt, K.K., "Association between ductal fluid proteomic expres-
sion profiles and the presence of lymph node metastases in women with breast cancer," Surgery,
136(5):1061–9, 2004.

Coombes, K.R., Fritsche, Jr., H.A., Clarke, C., Chen, J.N., Baggerly, K.A., Morris, J.S., Xiao, L.C.,
Hung, M.C., and Kuerer, H.M., "Quality control and peak finding for proteomics data collected
from nipple aspirate fluid by surface-enhanced laser desorption and ionization," Clinical Chemistry,
49(10):1615–23, 2003.

See Also

qclist.

Examples

if (!exists("qcset")) data("qcset", package="msProcess")

plot a few spectra
plot(qcset, subset=1:5)

readBinMatrix 87

image of all spectra
image(qcset)

readBinMatrix Read a binary file containing dimension information

Description

readBinMatrix reads a binary file containing dimension information, and the result is wrapped
into a matrix.

Usage

readBinMatrix(name, what = "double", ncol = 1e+06, ...)

Arguments

name A character string.

what A character string.

ncol An integer specifying an upper limit of the column number.

... Additional optional arguments.

Details

readBinMatrix reads a binary file containing dimension information and wrap the data into a
matrix. The first element in the input file name must be an integer n, determining the length of
dimensionality. The following n elements must also be integers, specifying the actual dimensional-
ity, followed by data elements. Only the first dimension will used to determine the number of rows.
This function needs user-defined ncol (the number of columns). If ncol is unknown, a pre-defined
upper limit (1000000) will be used.

Value

returns a logical indicating whether the importing was successful or not.

Author(s)

Y. Alex Chen <ychen@insightful.com>

See Also

readBin, importBin2Sqlite

88 setting

rescale Rescale a Vector or a Matrix to the Specified Limits

Description

Linear scales a vector or matrix to the specified range.

Usage

rescale(x, range.=c(0,1), ...)

Arguments

x a vector as defined by isVectorAtomic, a signalSeries object, or a
matrix.

... additional data to be rescaled. Each additional input is scaled in the exact same
way as the x input. This provides relative scaling functionality to the user.

range. a two-element numeric vector containing the upper and lower bounds for the
scaled data: Default: c(0,1).

See Also

scale.

Examples

rescale(1:10,c(-3,-5))
rescale(-1:4, c(0,1), 1:3, 0:1)

setting Class Representing the Setting of a Mass Spectrometer

Description

Class slots:

dist.drift a numeric scalar denoting the length of drift tube in meters.

dist.focus a numeric scalar denoting the distance between charged grids in millimeters.

dist.accel a numeric scalar denoting the distance from sample plate to first grid in millimeters.

volt.accel a numeric scalar denoting the voltage between charged grids in volts.

volt.focus a numeric scalar denoting the voltage used in ion focusing phase in volts.

time.delay a numeric scalar denoting the delay time before focus voltage is applied in nanoseconds.

time.resol a numeric scalar denoting the time between detector records in seconds.

vel0.mean a numeric scalar denoting the mean initial velocity in meters/second.

vel0.std a numeric scalar denoting the standard deviation of initial velocity.

spectrometer 89

The model of a linear MALDI-TOF instrument with time-lag focusing depends on the nine pa-
rameters. In a real instrument, the three distance parameters (dist.drift, dist.focus, and
dist.accel) are unchanging characteristics of the design. The user has direct control over
volt.accel, volt.focus, time.delay, and time.resol. The parameters that deter-
mine the normal distribution of initial velocities, i.e., vel0.mean and vel0.std, are controlled
indirectly by the choice of EAM and by the laser intensity.

S3 METHODS

show Display a setting object.
Usage: show(object) or object

object a setting object.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

See Also

spectrometer.

spectrometer Class Representing a Mass Spectrometer

Description

Class slots:

setting an object of class setting.

calibrator an object of class calibrator.

Usage

spectrometer(dist.drift=1, dist.focus=17, dist.accel=8,
volt.accel=20000, volt.focus=2000,
time.delay=600, time.resol=4e-9,
vel0.mean=350, vel0.std=50,
time.mean=numeric(0), model=structure(NULL, class="lm"), error.rel=numeric(0))

Arguments

dist.accel A numeric scalar denoting the distance from sample plate to first grid in mil-
limeters.

dist.drift A numeric scalar denoting the length of drift tube in meters.

dist.focus A numeric scalar denoting the distance between charged grids in millimeters.

error.rel A numeric vector denoting the relative calibration error for the calibrants.

model An object of class lm.

90 spectrometer

time.delay A numeric scalar denoting the delay time before focus voltage is applied in
nanoseconds.

time.mean A numeric scalar denoting the mean time-of-flight of the calibrants.

time.resol A numeric scalar denoting the time between detector records in seconds.

vel0.mean A numeric scalar denoting the mean initial velocity in meters/second.

vel0.std A numeric scalar denoting the standard deviation of initial velocity.

volt.accel A numeric scalar denoting the voltage between charged grids in volts.

volt.focus A numeric scalar denoting the voltage used in ion focusing phase in volts.

S3 METHODS

run Run a mass spectrometer.

Usage: run(simObj, proObj, isotope)

simObj a spectrometer object.

proObj a proteins object or a calibrants object. If proObj is a calibrants
object, then a calibration run is performed and a calibrated spectrometer object is re-
turned. If proObj is a proteins object, then a real run is performed and a spectrum
object is returned. If the spectrometer object has been calibrated, the returned
spectrum will have values for both mz slot and tof slot. Otherwise, the returned
spectrum will have values only for tof slot.

isotope a logical value indicating if isotope distribution should be simulated.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

See Also

setting, calibrator, spectrum, ion.focus.delay.

Examples

run a uncalibrated mass spectrometer
sam <- proteins(masses=c(1, 95, 190), counts=as.integer(c(500, 3000, 10000)))
sim <- spectrometer(vel0.mean=350, vel0.std=75, time.resol=4e-9)
x <- run(sim, sam)
plot(x)

run a calibrated mass spectrometer
cal <- calibrants(masses=c(1000, 2000, 5000, 10000, 20000), counts=as.integer(rep(1000, 5)))
sim.cal <- run(sim, cal)
y <- run(sim.cal, sam)
plot(y)

spectrum 91

spectrum Class Representing a Spectrum

Description

Class slots:

tof a numeric vector denoting the time-of-flight value of the proteins.

mz a numeric vector denoting the mass-to-charge ratio of the proteins.

intensity a integer vector denoting the aboundance/counts of the proteins.

S3 METHODS

xyCall Make all functions that naturally relate to points in the plane work with objects of class
spectrum, including plot, lines, points, and etc. This generic function is not meant
to be called directly.
Usage: xyCall(x, y, FUN, ..., xexpr, yexpr)

x a spectrum object.
y missing.
FUN a function to be called that have arguments x, y,
xexpr the S object representing the x argument to FUN unevaluated.
yexpr the S object representing the y argument to FUN unevaluated.

References

Coombes, K.R., Koomen, J.M., Baggerly, K.A., Morris, J.S., Kobayashi, R., “Understanding the
characteristics of mass spectrometry data through the use of simulation," Cancer Informatics, 2005(1):41–
52, 2005.

See Also

spectrometer.

throwEvent Throw a History Event to a Specified Frame

Description

Throws a history event with a specified name to a specified frame in S-PLUS (or environment
in R). Typically, this function will be issued within a caller with the expectation that the thrown
history will be added to by the callee(s). The history can then be caught by the caller using the
catchHistory function.

Usage

throwEvent(x, histname="event.history", envir=msNewEnv())

92 writeBinBlocks

Arguments

x a character string defining the event.

envir the frame in S-PLUS (or environment in R) designated for the processing
and storage of pipeline history data. Default: msNewEnv().

histname a character string defining the name of the history variable stored in the specified
frame. Default: "event.history".

Value

a list named histname containing the following objects is written to the specified frame.

name A character string defining the name of the event.

history The actual history object.

recorded A vector of chacter strings maintaining a record of all processes that have been
recorded for the event.

Typically, these list objects will not be accessed directly by the user. Rather, this information is
updated and retrieved via the throwEvent and catchEvent function.

See Also

catchEvent, assignEvent, isProcessRecorded, eventHistory.

Examples

throw an event
envir <- msGlobalEnv()
throwEvent("Wimbledon 2005", envir=envir)

assign data to the thrown event
record <- list(Men="Roger Federer", Women="Venus Williams")
assignEvent(record)

catch event
catchEvent(NULL)

writeBinBlocks Write a series of binary files containing data blocks

Description

Functions to write a vector x into a series of binary files.

Usage

writeBinBlocks(x, pattern, maxRows=10000, path=".", what = c("double", "integer", "character"),
append = FALSE, verbose = TRUE)

zeroCross 93

Arguments

x A character string to specify the name of the binary file.

path A character string to specify the path to input binary file.

what A character string denoting the mode of the data to be read, one of: ’"dou-
ble", "integer", "character"’.

append A logical value. If FALSE, then existing files will be overwritten. Otherwise,
data will be appended onto the existing file.

pattern A character string to specify the common prefix for a series of binary files.

maxRows An integer to specify the maximum number of rows allowed in a single bi-
nary file. See details for more information.

verbose A logical value specifying whether or not to print verbose messages.

Details

To facilitate handling large data, function writeBinBlocks is provided, in which a long x is
split into several small parts, each containing less than maxRows rows. A series of binary files, like
[pattern]1, [pattern]2, [pattern]3, ..., will be thus generated.

Value

returns an invisible NULL.

Author(s)

Y. Alex Chen <ychen@insightful.com>

See Also

writeBin, readBinMatrix, importBin2Sqlite

zeroCross Find the Zero Crossing of a Time Series

Description

Finds positive-negative of negative-positive zero crossings of the input time series.

Usage

zeroCross(x, slope="positive")

Arguments

x a numeric vector representing a time series.

slope a character string defining the typeo of zero-crossings to find: specifying a
"negative" slope identifies all positive- to negative-valued zero-crossings,
while a "positive" slope identifies all negative- to positive-valued zero cross-
ings. Default: "positive".

94 zeroCross

See Also

msExtrema.

Examples

x <- sin(seq(0,10,length=1000))
pos <- zeroCross(x, "positive")
neg <- zeroCross(x, "negative")
plot(x, cex=0.5, type="b")
abline(v=pos, col="red", lty="solid")
abline(v=neg, col="blue", lty="dashed")

Index

∗Topic classes
apply, 3
msList, 45
msSet, 71

∗Topic database
cypherGenXML2Bin, 10
importBin2Sqlite, 15
importXMLDir, 16

∗Topic file
readBinMatrix, 87
writeBinBlocks, 92

∗Topic hplot
msPlot, 63

∗Topic interface
cypherGenXML2Bin, 10
importBin2Sqlite, 15
importXMLDir, 16
readBinMatrix, 87
writeBinBlocks, 92

∗Topic manip
calibrants, 7
calibrator, 8
ion.focus.delay, 17
msAlign, 20
msCalibrate, 23
msCharge, 25
msDenoise, 26
msDenoiseMRD, 28
msDenoiseSmooth, 31
msDenoiseWavelet, 31
msDenoiseWaveletThreshold, 35
msDetrend, 38
msExtrema, 40
msHelp, 41
msImport, 41
msImportCiphergenXML, 43
msLaunchExample, 44
msLogic, 46
msNoise, 47
msNormalize, 49
msNormalizeSNV, 50
msNormalizeTIC, 51
msObjects, 52

msPeak, 53
msPeakCWT, 55
msPeakInfo, 58
msPeakMRD, 59
msPeakSearch, 61
msPeakSimple, 62
msPrepare, 65
msQualify, 66
msQuantify, 68
msQuantifyCount, 69
msQuantifyIntensity, 70
msSmoothApprox, 74
msSmoothKsmooth, 75
msSmoothLoess, 75
msSmoothMean, 76
msSmoothMonotone, 77
msSmoothMRD, 78
msSmoothSpline, 80
msSmoothSupsmu, 81
msVisual, 81
proteins, 83
rescale, 88
setting, 88
spectrometer, 89
spectrum, 91
zeroCross, 93

∗Topic multivariate
princomp2, 82

∗Topic package
msProcess-package, 3

∗Topic sysdata
qclist, 85
qcset, 86

∗Topic utilities
argNames, 5
assignEvent, 6
catchEvent, 9
eventHistory, 11
existHistory, 13
getHistory, 14
isProcessRecorded, 18
matchObject, 19
msAssign, 22

95

96 INDEX

throwEvent, 91
[,msList-method (msList), 45
[,msSet-method (msSet), 71
[,proteins-method (proteins), 83
[.eventHistory (eventHistory), 11
[.msList (msList), 45
[.msSet (msSet), 71
[<-,proteins,ANY,ANY,ANY-method

(proteins), 83
[<-,proteins,ANY,ANY,proteins-method

(proteins), 83

abline, 64
apply, 3
apply.msSet, 73
argNames, 5
args, 5
Arith,numeric,proteins-method

(proteins), 83
Arith,proteins,integer-method

(proteins), 83
Arith,proteins,missing-method

(proteins), 83
Arith,proteins,proteins-method

(proteins), 83
assign, 22
assignEvent, 6, 9, 12–14, 18, 92

binblocks2SQLite
(importBin2Sqlite), 15

calibrants, 7, 84
calibrants-class (calibrants), 7
calibrator, 8, 90
calibrator-class (calibrator), 8
catchEvent, 7, 9, 18, 92
coef.msCalibrate (msCalibrate), 23
Compare,numeric,proteins-method

(proteins), 83
Compare,proteins,integer-method

(proteins), 83
Compare,proteins,proteins-method

(proteins), 83
cypherGenXML2Bin, 10
cypherGenXMList2BinBlocks, 17
cypherGenXMList2BinBlocks

(cypherGenXML2Bin), 10

eventHistory, 9, 11, 12–14, 18, 30, 35, 51,
79, 92

example, 44
existHistory, 12, 13, 14
exists, 22

formula.msCalibrate
(msCalibrate), 23

get, 22
getHistory, 12, 13, 14

help, 41
holderSpectrum, 55

image, 64
image.msSet, 82
image.msSet (msSet), 71
importBin2Sqlite, 11, 15, 17, 87, 93
importXMLDir, 16
ion.focus.delay, 17, 90
is.R, 22
isProcessRecorded, 7, 9, 12–14, 18, 92

lines, 64
lm, 24
Logic,ANY,proteins-method

(proteins), 83
Logic,proteins,ANY-method

(proteins), 83
ls, 19

matchObject, 19, 27
Math,proteins-method (proteins),

83
Math2,proteins-method (proteins),

83
matlines, 64
matpoints, 64
merge.msList (msList), 45
msAlign, 3, 20, 69
msAlignCluster (msAlign), 20
msAlignGap (msAlign), 20
msAlignMRD (msAlign), 20
msAlignVote (msAlign), 20
msAssign, 22
msCalibrate, 23, 24
msCharge, 25
msDenoise, 3, 26, 30, 35, 38, 48
msDenoiseMRD, 27, 28
msDenoiseSmooth, 27, 30, 31, 35
msDenoiseWavelet, 27, 31, 38, 51
msDenoiseWaveletThreshold, 30, 35,

35
msDetrend, 3, 38, 79
msExists (msAssign), 22
msExtrema, 40, 62, 63, 94
msGet (msAssign), 22
msGlobalEnv (msAssign), 22

INDEX 97

msHelp, 41
msImport, 3, 41, 43
msImportCiphergenXML, 42, 43
msLaunchExample, 44
msList, 3, 4, 45, 66, 73
msList-class (msList), 45
msLogic, 46
msNewEnv (msAssign), 22
msNoise, 30, 35, 47
msNormalize, 3, 49, 51, 52, 54, 66
msNormalizeSNV, 49, 50, 52
msNormalizeTIC, 49, 51, 51
msObjects, 52
msPeak, 3, 21, 53, 57, 59, 60, 62, 63
msPeakCWT, 55, 59
msPeakInfo, 57, 58
msPeakMRD, 54, 59, 59
msPeakSearch, 54, 61, 63
msPeakSimple, 54, 59, 62, 62
msPlot, 63, 73
msPrepare, 3, 65
msProcess (msProcess-package), 3
msProcess-package, 3
msQualify, 3, 66
msQuantify, 3, 21, 68, 70, 71
msQuantifyCount, 69, 69, 71
msQuantifyIntensity, 69, 70, 70
msRemove (msAssign), 22
msSet, 3, 4, 25, 46, 48, 49, 53, 66, 71
msSet-class (msSet), 71
msSmoothApprox, 30, 35, 39, 74, 75–77,

80, 81
msSmoothKsmooth, 30, 35, 74, 75, 76, 77,

80, 81
msSmoothLoess, 30, 35, 39, 74, 75, 75–77,

80, 81
msSmoothMean, 74, 75, 76, 76, 77, 80, 81
msSmoothMonotone, 39, 74–76, 77, 80, 81
msSmoothMRD, 39, 78
msSmoothSpline, 30, 35, 39, 74–77, 80, 81
msSmoothSupsmu, 30, 35, 39, 74–77, 80, 81
msVisual, 81

objects, 19

par, 64
peaks, 62, 63
plot,proteins,missing-method

(proteins), 83
plot,spectrum,missing-method

(spectrum), 91
plot.msCalibrate (msCalibrate), 23

plot.msDenoiseWaveletThreshold
(msDenoiseWaveletThreshold),
35

plot.msList (msList), 45
plot.msSet, 82
plot.msSet (msSet), 71
points, 64
predict.msCalibrate

(msCalibrate), 23
predict.msQualify (msQualify), 66
princomp, 67, 83
princomp2, 82
print.eventHistory

(eventHistory), 11
print.msCalibrate (msCalibrate),

23
print.msDenoiseWaveletThreshold

(msDenoiseWaveletThreshold),
35

print.msList (msList), 45
print.msSet (msSet), 71
print.summary.msList (msList), 45
print.summary.msSet (msSet), 71
properCase, 48
proteins, 8, 83
proteins-class (proteins), 83

qclist, 85, 86
qcset, 85, 86

readBin, 16, 87
readBinMatrix, 11, 16, 87, 93
remove, 22
rescale, 38, 88
run (spectrometer), 89
run,spectrometer,calibrants-method

(spectrometer), 89
run,spectrometer,proteins-method

(spectrometer), 89

scale, 88
setting, 88, 90
setting-class (setting), 88
show,proteins-method (proteins),

83
show,setting-method (setting), 88
smooth, 31
spectrometer, 8, 18, 84, 89, 89, 91
spectrometer-class

(spectrometer), 89
spectrum, 90, 91
spectrum-class (spectrum), 91

98 INDEX

Summary,proteins-method
(proteins), 83

summary.msList (msList), 45
summary.msList-class (msList), 45
summary.msSet (msSet), 71

text, 64
throwEvent, 6, 7, 9, 18, 22, 91

wavCWT, 56, 57
wavCWTPeaks, 55–57
wavCWTTree, 56, 57
wavDaubechies, 30, 35, 51, 60, 79
wavDWT, 30, 35, 51, 79
wavIndex, 60
wavMODWT, 30, 35, 51, 60, 79
wavMRD, 30, 51, 79
wavMRDSum, 79
writeBin, 93
writeBinBlocks, 11, 16, 92

zeroCross, 40, 93

	msProcess-package
	apply
	argNames
	assignEvent
	calibrants
	calibrator
	catchEvent
	cypherGenXML2Bin
	eventHistory
	existHistory
	getHistory
	importBin2Sqlite
	importXMLDir
	ion.focus.delay
	isProcessRecorded
	matchObject
	msAlign
	msAssign
	msCalibrate
	msCharge
	msDenoise
	msDenoiseMRD
	msDenoiseSmooth
	msDenoiseWavelet
	msDenoiseWaveletThreshold
	msDetrend
	msExtrema
	msHelp
	msImport
	msImportCiphergenXML
	msLaunchExample
	msList
	msLogic
	msNoise
	msNormalize
	msNormalizeSNV
	msNormalizeTIC
	msObjects
	msPeak
	msPeakCWT
	msPeakInfo
	msPeakMRD
	msPeakSearch
	msPeakSimple
	msPlot
	msPrepare
	msQualify
	msQuantify
	msQuantifyCount
	msQuantifyIntensity
	msSet
	msSmoothApprox
	msSmoothKsmooth
	msSmoothLoess
	msSmoothMean
	msSmoothMonotone
	msSmoothMRD
	msSmoothSpline
	msSmoothSupsmu
	msVisual
	princomp2
	proteins
	qclist
	qcset
	readBinMatrix
	rescale
	setting
	spectrometer
	spectrum
	throwEvent
	writeBinBlocks
	zeroCross
	Index

